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SUMMARY

Given the potential health benefits of polyphenolic compounds in the diet, there is a growing interest in the
generation of food crops enriched with health-protective flavonoids. We undertook a series of metabolite
analyses of tomatoes ectopically expressing the Delila and Rosea1 transcription factor genes from snap-
dragon (Antirrhinum majus), paying particular attention to changes in phenylpropanoids compared to con-
trols. These analyses revealed multiple changes, including depletion of rutin and naringenin chalcone, and
enhanced levels of anthocyanins and phenylacylated flavonol derivatives. We isolated and characterized the
chemical structures of the two most abundant anthocyanins, which were shown by NIVIR spectroscopy to
be delphinidin-3-(4"'-0-trans-p-coumaroyl)-rutinoside-5-O-glucoside and petunidin-3-(4""-O-trans-p-cou-
maroyl)-rutinoside-5-0O-glucoside. By performing RNA sequencing on both purple fruit and wild-type fruit,
we obtained important information concerning the relative expression of both structural and transcription
factor genes. Integrative analysis of the transcript and metabolite datasets provided compelling evidence of
the nature of all anthocyanin biosynthetic genes, including those encoding species-specific anthocyanin dec-
oration enzymes. One gene, SIFAAT1 (Solyc129g088170), predicted to encode a flavonoid-3-O-rutinoside-4'"'-
phenylacyltransferase, was characterized by assays of recombinant protein and over-
expression assays in tobacco. The combined data are discussed in the context of both our current
understanding of phenylpropanoid metabolism in Solanaceous species, and evolution of flavonoid decorat-
ing enzymes and their transcriptional networks in various plant species.

Keywords: anthocyanin metabolism, tomato, Solanaceous species, RNA-seq, acyltransferase, glycosyltrans-
ferase.

INTRODUCTION

The relationship between nutrition and prevention of
human diseases has been the topic of several recent
reviews (Fitzpatrick et al., 2012; Martin, 2013; Martin et al.,
2013; Schwahn et al., 2014). Phenolics, a widespread group
of secondary plant metabolites, have multiple functions in
plants, including UV-B protection (Kusano et al., 2011), the
control of growth and developmental processes (Vanholme
et al, 2012), and defence against herbivores and patho-
gens (Brechenmacher et al.,, 2010; Huang et al., 2010).
Their widespread distribution amongst seed plants (Tohge
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et al., 2013a,b), and their ability to scavenge free radicals
and reduce oxidative damage (Gutteridge, 1994; Halliwell,
2012), means that flavonoids and related phenolics have
been identified as important bioactive molecules in the
human diet. The beneficial influence of phenolics on a
number of human diseases has been reported, including
the prevention of cancer (Hollman etal, 1996; Le
Marchand, 2002), dementia (Commenges et al., 2000),
atherosclerosis (Aviram and Fuhrman, 2002) and coronary
heart disease (Hollman et al., 1996; Mojzisova and Kuchta,
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2001). Consequently, there is an increasing interest in
developing alternative food sources that are rich in pheno-
lic compounds. The broad spectrum of biological proper-
ties of individual phenolics, their bioavailability and the
range of levels in various foodstuffs are generally unchar-
acterized, and even the chemical identity of the individual
compounds themselves has often not been established.
Nevertheless, elucidation of these compounds and their
biological properties provides an important foundation
upon which strategies for metabolic engineering or biofor-
tification may be based.

Given both the volume consumed and the variation in
form of tomato-based products (such as salad, puree, pasta
sauce and ketchup), tomato (Solanum lycopersicum) is one
of the most important vegetables in the human diet world-
wide, and therefore may be regarded an ideal vehicle for
enhancing phenylpropanoid intake. However, tomato culti-
vars contain relatively low levels of phenolic compounds
(Le Gall et al., 2003; Willits et al., 2005), and anthocyanins
are normally absent in tomato fruit (Jones et al., 2003).
Several strategies to modify the biosynthesis of phenolics
and hence alter the composition of tomato fruit flavonoids
have been tested. The most common approach is altered
expression of specific endogenous genes, including ANTT,
encoding a Myb transcription factor, AFT, encoding a Myb
transcription factor, and DE-ETIOLATED1, encoding a chro-
matin remodelling factor (Jones et al, 2003; Mathews
et al., 2003; Enfissi et al., 2010), and ectopic expression of
chalcone isomerase from petunia (Petunia x hybrida) or the
transcription factors LC and C7 from maize (Zea mays)
(Muir et al., 2001; Bovy et al., 2002). Whilst increased levels
of flavonoids were reported in all instances, in none of
these studies were anthocyanins detected at appreciable
levels throughout the ripe tomato fruit, with their accumu-
lation being confined to the surface layers.

However, ectopic fruit-specific expression of the snap-
dragon (Antirrhinum majus) transcription factors Delila
(Del, bHLH) and Roseal (Ros1, Myb) resulted in accumula-
tion of anthocyanins throughout the fruit, to substantially
higher levels than previously achieved by metabolic engi-
neering strategies in tomato (Butelli et al., 2008). The con-
trol of anthocyanin biosynthesis normally involves a
complex of Myb, bHLH and WDR proteins called the MBW
complex (Ramsay and Glover, 2005). Experiments involv-
ing over-expression of a Myb transcription factor only are
dependent on endogenous WDR and bHLH proteins for
anthocyanin production. The WDR protein is normally con-
stitutively expressed in plant cells, and thus combined
expression of the bHLH and Myb transcription factors over-
came the limited bHLH expression in tomato fruit and
resulted in induction of the gene encoding flavonoid-3'5'-
hydroxylase (F3'5'H) and high levels of anthocyanin accu-
mulation throughout Del/Ros1 tomato fruit (Bovy et al.,
2002; Butelli et al., 2008).
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As evidenced by this example (and those described
above), the function of transcription factors is often studied
by over-expression, as, given the size of transcription fac-
tor families, the consequences of down-regulating individ-
ual transcription factors are often masked by their
redundancy of function. Considerable advances have been
made in functional characterization of numerous members
of bHLH and Myb classes of transcription factor using this
approach (Borevitz et al., 2000; Grotewold et al., 2000; Hirai
et al., 2007; Sonderby et al., 2007; Dal Cin et al., 2011;
Kong et al., 2012). Analysis of anthocyanins has greatly
improved since the proof-of-concept study that first took
this approach, i.e. the combined transcriptomic and meta-
bolomic evaluation of the AtMYB75 (AtPAP1) activation-
tagged Arabidopsis line by Tohge et al. (2005), and follow-
up research based on this study for functional characteriza-
tion of genes encoding anthocyanin glycosyltransferases
and acyltransferases (Luo et al., 2009; Yonekura-Sakakibara
et al., 2012). Despite the growing use of ‘guilt by associa-
tion’ approaches to correlate changes in transcripts/tran-
scription factors and metabolite levels in tomato (Carrari
et al., 2006; Mounet et al., 2009; Rohrmann et al., 2011),
more comprehensive analyses of chemical changes result-
ing from targeted modification of transcription factor activ-
ity in crop species are largely lacking.

Here we describe comprehensive analysis of the phenolic
content of Del/Ros1 purple tomatoes in comparison with
the wild-type control, as well as the performance of primary
metabolic profiling and RNA sequencing for comparing
fruit of the transgenic line and the wild-type. We identified
considerable alterations in a total of 113 compounds, which
included seven anthocyanins and 18 flavonol derivatives.
We characterized the major anthocyanins as delphinidin-3-
O-[4"—(trans-p-coumaroyl)-a—L-rhamnopyranosyl-(1—6)-p-
p-glucopyranoside]-5-O-p-p-glucopyranoside (TA1, com-
monly referred to as nasunin and violanin) and petunidin-3—-
O-[4""(trans-p-coumaroyl)-o—-L-rhamnopyranosyl-(1—-6)-f-
p-glucopyranoside]-5-O-B-p-glucopyranoside (TA2, peta-
nin), which have already been characterized in aubergine/
eggplant (Kuroda and Wada, 1933; Sakamura et al., 1963)
(Solanum melongena) and petunia (Schram et al., 1983),
respectively. Integration of metabolomic and transcrip-
tomic data allowed us to speculate about the genetic and
biochemical mechanisms underlying the alterations in
these profiles. Furthermore, phylogenetic analysis of candi-
dates for target genes of Del/Ros1, identified by the
integrated approach, suggested functions for anthocyanin-
decorating enzymes, namely Solyc10g083440 (anthocyanin-3
—O-glucosyltransferase, SIA3GIcT), Solyc12g098590 (antho-
cyanin-5-0O-glucosyltransferase, SIA5GIcT), Solyc09g059170
(anthocyanin-3-0-glucoside-6"-0-rhamnosyltransferase, Sl
A3GIc6”RhaT) and Solyc12g088170 (anthocyanin-3-O-ruti-
noside-4""-0O-phenylacyltransferase). Further investigation
of the function of Solyc12g088170 (SIFdAT1) using
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Figure 1. Comparative metabolite profiling between WT and Del/Ros1 purple tomatoes.

Whole fruits of ripe fruit harvested at the time point breaker + 1 week (B + 1w) were used for the analysis.

(a) LC/MS total ion chromatogram (negative ion detection) for WT and Del/Ros 1 tomatoes.

(b) Chemical structure of major flavonoid aglycones characterized previously (Slimestad and Verheul, 2009).

(c) Changes in major phenolics in Del/Ros1tomatoes compared to WT. The intensity of log-scaled fold changes is indicated using colour: red, increased in Del/
Ros1 tomatoes; blue, decreased in Del/RosT tomatoes, both compared to WT. Descriptions and abbreviations of the metabolites (1-27) are given in Table S1.
The heatmaps show values displayed on a log, scale (-3 to 3) for fold change compared to WT.

recombinant enzyme assays and metabolite profiling of
transgenic tobacco (Nicotiana tabacum) confirmed that
SIFdAT1encodes a flavonoid-3-O-rutinoside-4""-0-phenyla-
cyltransferase (SIFd3Glc6’Rha4’’PAT). Cross-species com-
parisons of anthocyanin acyltransferases suggested that
flavonoid-3-O-rutinoside-4""-0O-phenylacyltransferases are
well conserved in Solanaceous species but evolved after the
family diverged from its closest relatives.

RESULTS

LC/MS-based metabolite profile of Del/Ros1 transgenic
tomatoes

We performed LC/MS-based secondary metabolite profiling
of extracts from whole fruits, flesh and peel from wild-type
and  Del/[Ros1 purple tomatoes harvested at
breaker + 1 week (B + 1w) (Butelli et al., 2008). Representa-
tive chromatograms are shown in Figure 1(a) and Figure S1,
in which it may clearly be seen that the Del/Ros1 line has a
richer diversity of secondary metabolites than the control
for both whole-fruit and peel samples. A total of seven
anthocyanins, four flavonols, ten phenylacylated flavonols

and four naringenin derivatives were identified and anno-
tated across both genotypes (Figure 1b). The anthocyanins
and phenylacylated flavonols were essentially detected only
in the Del/Ros1fruit, and large quantitative differences were
seen for the flavonols and naringenin derivatives between
the lines (Figure 1c and Table S1). Indeed, in the peel and
whole—fruit samples, phenylacylated flavonols were 4-200
times lower in abundance in MicroTom fruit than in Del/
Ros1 tomatoes. By contrast, naringenin chalcone levels in
the Del/Ros1 fruit were only 60% of those observed in the
WT control, although the levels of naringenin derivatives
were 1.3-6.0-fold higher than in the WT control and flavonol
contents were invariant. Considering other pathways of sec-
ondary metabolism, as shown on the metabolic map in Fig-
ure S2, tomatine-related glycoalkaloids were twofold higher
in Del/Ros1fruit, whilst the level of esculeoside-type glycoal-
kaloids was slightly lower (Figure S2 and Table S1). Given
that reduction of tomatine-type glycoalkaloids is a strong
indicator of fruit ripening (Schwahn et al., 2014; Tohge
et al., 2014), the higher levels of tomatine-type glycoalka-
loids in Del/Ros1 fruit probably reflect a delay in ripening,
confirming previous observations (Zhang et al., 2013).
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GC/MS-based metabolite profile of Del/Ros1 purple
tomatoes

A total of 67 metabolites, including amino acids and
polyamines, organic acids, cell-wall precursors, sugars,
sugar phosphates, chlorogenic acids and nucleobases,
were detected using our GC/MS platform. The whole pur-
ple tomato fruit were characterized by slight decreases in
ornithine and tryptophan and major decreases in pheny-
lalanine, alanine, a putative galactose peak and threitol
compared to control fruit. In contrast, major increases were
observed in quinate, a putative galacturonate, and, most
dramatically, in four chlorogenic acids (CGAs) (Table 1 and
Figure S2). When the tissues were dissected, metabolic
changes were far more prominent. Thirty compounds
(eight of which increased and 22 of which decreased) were
altered in abundance in fruit flesh. Levels of quinate,
2-oxoglutarate (20G), a putative galacturonate and all iso-
mers of CGA were increased significantly in the flesh of
purple tomatoes compared to controls. Thirteen amino
acids and the benzoate, nicotinate, galactose and maltose
peaks, adenine, threitol and urea levels were lower in the
flesh of purple fruit than in controls. The results for purple
skin were similar, with 25 metabolites altered in abundance
in the transgenic line (15 of which increased and 10 of
which decreased) compared to controls. In this tissue,
levels of lysine, methionine, putrescine and threonate,
increased whilst alanine, -alanine, isoleucine and tyrosine
decreased. For other classes of metabolites, there were
increases in 20G and malate in purple peel, but decreases
in nicotinate, a putative citramalate, and galactose peaks,
as well as sucrose, glycerol and threitol.

Comparative gene expression analysis in Del/Ros1 and
wild-type tomatoes

To complement these metabolomic analyses, we under-
took RNA-seq analysis on extracts from whole fruit har-
vested at breaker + 1 week (B + 1w) and breaker + 4 weeks
(B + 4w) (Table S2). Changes in gene expression were
evaluated on a global scale using the most recent update
of the tomato mapman files (Urbanczyk-Wochniak et al.,
2006) (http:/mapman.gabipd.org/) (Figure S3). Genes asso-
ciated with flavonoid, phenylpropanoid, cell wall biosynth-
esis, wax and aromatic amino acid biosynthesis, as well as
lipid metabolism and histidine degradation, were up-regu-
lated in purple tomatoes, whilst genes involved in protein
and branched chain amino acid synthesis, serine, glycine
and cysteine synthesis, cell-wall modification, minor cell-
wall modifications and hormone metabolism, as well as
redox dismutases and catalases, were down-regulated in
both developmental stages of purple tomatoes compared
to controls. In addition, there were some developmental
stage-specific differences between the genotypes. At the
B + 1w stage, transcripts associated with the Calvin—Ben-
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son cycle and photosystems were up-regulated in the pur-
ple fruit, as well as some associated with the tricarboxylic
acid cycle (consistent with the elevated levels of 20G and
malate), sugar metabolism and sulfur assimilation, but
levels of transcripts associated with GIn, Pro and Arg syn-
thesis decreased, as were those for the branched chain
amino acids (consistent with the observed changes in the
levels of the metabolites themselves), and most enzymes
involved in lipid metabolism were down-regulated. These
changes in transcripts are consistent with a delay in ripen-
ing as previously observed (Zhang et al., 2013). At the
B + 4w stage, the only specific differences were down-reg-
ulation of transcripts associated with the Calvin-Benson
cycle, the photosystems and the tricarboxylic acid cycle.

We next performed a targeted analysis of genes associ-
ated with anthocyanin metabolism. Figure 2(a) shows the
gene expression of known or previously annotated genes
involved in phenylalanine, phenylpropanoid and flavonoid
biosynthesis in tomato. Using this approach, we were able
to annotate a total of 37 genes comprising five genes
involved in phenylalanine biosynthesis, including those
encoding chorismate mutase, prephenate aminotransferase
and arogenate dehydratase, 13 genes of general phenyl-
propanoid metabolism, including those encoding pheny-
lalanine ammonia lyase, cinnamate-4-hydroxylase and
4-coumarate CoA ligase, three genes for hydroxycinnamate
biosynthesis, including those encoding hydroxycinnamoyl
CoA shikimate/quinate hydroxycinnamoyltransferase and
CoA:quinate hydroxycinnamoyl! transferase, and 16 flavo-
noid biosynthetic genes, including those encoding chalcone
synthase, chalcone isomerase, flavonol-O-methyltrans-
ferase, flavanone-3-hydroxylase, flavonoid-3'-hydroxylase,
flavonoid-3'5'-hydroxylase, flavonol synthase, dihy-
droflavonol reductase, anthocyanidin synthase and flavo-
noid-3-glycosyltransferase (Figure 2b).

All genes involved in flavonoid anthocyanin biosynthe-
sis were up-regulated (5-4088-fold and 5-1820-fold
changes in B+ 1w and B + 4w, respectively) with the
exception of the flavonoid-3'-hydroxylase and flavonol syn-
thase, which are involved in the flavonol-specific biosyn-
thetic branch, and flavonol-O-methyltransferases, which
are involved in quercetin and cyanidin production and in
O-methylation of trichome-specific flavonol aglycones.
Furthermore, genes that are not involved in anthocyanin
biosynthesis, such as the hydroxycinnamate biosynthetic
gene CoA:quinate hydroxycinnamoyl transferase, were not
up-regulated.

We also analysed individual genes up-regulated at differ-
ent developmental stages. Table 2 shows the genes up-
regulated in Del/Ros1 fruit at both B + 1 and B + 4 stages
of fruit ripening. Gene counts were assessed as described
by Rallapalli et al. (2014) and varied more than eightfold in
purple fruit compared to WT. Twelve transcripts (nine fla-
vonoid biosynthetic genes and three miscellaneous genes),
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Figure 2. Gene expression profiles in Del/Ros1tomatoes.

Gene expression profiling was performed by RNA-seq for two time points:

ripe  stage (breaker + 1week, B+ 1w) and overripe stage

(breaker + 4 weeks, B + 4w).

(a) The expression level of phenylpropanoid biosynthetic genes character-

ized or annotated previously. The intensity of log-scaled fold change (-3 to

3) is indicated using colour; red, up-regulated in Del/Ros1 tomatoes; blue,

down-regulated in Del/Ros1tomatoes.

(b) Venn diagrams of genes that are up-regulated (>8.0-fold) and down-reg-

ulated (<0.125-fold) at both developmental stages.

namely F3'5H, ANS, DFR, GST, FFT-like, AnthOMT, bHLH,
PDF, ACLB-2, UGTs and an anthocyanin acyltransferase,
were more than 100-fold up-regulated in Del/Ros1 fruit.
The up-regulated genes included two additional flavonoid
glycosyltransferase genes (Solyc09g059170 and Soly-
¢129098590), one gene associated with the shikimate path-
way, and four additional genes associated with
phenylpropanoid metabolism (Table 2).

We compared the up-regulated genes with the genes
reported to be up-regulated in the Ant71 over-expression
mutant, which showed intense purple pigmentation in
seedlings (Mathews et al., 2003) (Table 2). Based on the
ITAG2.3 annotation, sequence of EST contigs were blasted
and converted to Solyc IDs. Of the up-regulated genes in
the Del/Ros1 line, chalcone isomerase, a putative
anthocyanin-3-0O-glucosyltransferase, a putative antho-
cyanin-5-O-glucosyltransferase, glutathione-S-transferase
and flower flavonoid transporter were also up-regulated in
the Ant1 over-expression experiments. We also used this
dataset to look for conserved changes between the two
ripening stages.

We compared genes up-regulated in purple tomatoes
relative to control fruit with those up-regulated in Ara-
bidopsis plants constitutively expressing the transcription
factor PAP1 (pap 1-D; Tohge et al., 2005). Venn diagrams of
up-regulated genes are shown in Figure 2(b) with a total of
374 genes up-regulated more than eightfold in Del/Ros1 at
B + 1w and 36 genes up-regulated more than eightfold at
B + 4w. Twenty-nine genes were up-regulated more than
eightfold compared to WT at both stages. We next com-
pared these conserved genes to their Arabidopsis homo-
logues up-regulated in the pap7-D mutant, and found that
nine of the 29 are common (Table 2). There was consider-
ably less overlap for down-regulated genes, with only 28
genes being more than eightfold down-regulated in Del/
Ros1 at B + 1w only, whereas 49 were down-regulated at
B + 4 only, and four were down-regulated at both time
points. The same comparison was made with the pap7-D
mutant, but none of the transcripts were commonly down-
regulated. These analyses highlight both conserved genes
and species-specific differences, and probably relate to dif-
ferences in anthocyanin decoration between tissues and
species analysed as well as indirect transcriptional
responses to over-expression of the transcription factors.

Characterization of anthocyanins in tomato fruit

To assess pathway structure and regulation more fully,
detailed structural data for the constituent metabolites
were necessary. The six most abundant anthocyanins in
tomato were separated and characterized using fruit mate-
rial from the purple tomato line. The crude extract was pro-
cessed by preparative HPLC, and peaks corresponding to
the main compounds detectable at 535 nm were collected
(Figure S4 and Doc. S1). Pure fractions of the main antho-
cyanins were then analysed by LC/MS with and without
acid hydrolysis to confirm the aglycone structure and
sugar moieties (Figure S5 and Doc. S1). The molecular ions
[M]* at m/z 919 and 933 had the molecular formulae
C42H47043 and Cy3H,49043, respectively.

The structures of the two main anthocyanins in tomato
(TA1 and TA2) were elucidated using NMR (Doc. S2). In the
"H-NMR spectrum of TA1, the most significant feature was
the absence of a methoxy group singlet at § = 4.00 ppm
(present in compound V), attached to the C3' position. The
NMR spectra also confirmed the presence of two glucose
molecules, one rhamnose molecule and one molecule of
p-coumaric acid in each anthocyanin. In the p-coumaric
acid moiety, the 2" and 3" protons had large coupling con-
stants (J = 15.9 Hz) for both of the compounds. Therefore,
the olefinic part of the p-coumaric acid moiety was con-
cluded to exhibit a trans-configuration. In the rhamnose
moiety, the triplet signal for H4 appeared to be shifted
down-field, thus the hydroxyl group at position 4 was acy-
lated with p-coumaric acid in TA1 and TA2. This finding
was confirmed by the occurrence of a cross-peak in the
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Figure 3. Characterization of major anthocyanins in

tomato.
(a) (a) Tomato anthocyanins characterized in this
study.
(b) Co-elution profiles of purple tomato extracts for
HO peak characterization of endogenous anthocyanins
in leaves of domesticated tomato (S. lycopersicum,
HO M82) and wild tomato (S. pennelli). LC/MS
HO extracted ion chromatograms showing TA1 (peta-
nin, m/z 933) and TA2 (nasunin m/z 919) (positive
HO ion detection).
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heteronuclear multiple bond correlation spectrum between
H4 (rhamnose) and the carbonylic carbon (p-coumaric
acid) (4.91/169.20 ppm). In both of these compounds, the
doublet signals of their glucose anomeric protons
appeared at & values of approximately 5.5 and 5.2 ppm,
respectively (glucose A and B) with a J value of approxi-
mately 7.8 Hz, indicating a p-b-glucopyranose form. More-
over, the anomeric proton signal in the rhamnose moiety
appeared as a singlet at 5 4.71 ppm, and the methyl group
appeared as a doublet (5 of approximately 1.0; J = 6.2 Hz),
suggesting the presence of the o-L-rhamnopyranose form.
Finally, by analysis of nuclear Overhauser and exchange
spectroscopy and heteronuclear multiple bond correlation
spectra, the glucose A and B residues were found to be
attached to OH-3 and OH-5, respectively, of the corre-
sponding anthocyanidin through glycosidic bonds. These

findings showed the proposed structures of TA1 and
TA2 to be delphinidin-3-O-[4""—(trans-p-coumaroyl)-o—L-
rhamnopyranosyl-(1-6)-p-p-glucoside]-5-O-p-p-glucoside
(commonly referred to as nasunin) and petunidin-3-0-[4"'—
(trans-p-coumaroyl)-o—L-rhamnosyl-(1-6)-B-b-glucosidel-
5-0-B-p-glucoside (commonly referred to as petanin),
respectively (Figure 3a).

Presence of anthocyanin-3-0-(4""-0-phenylacyl)-
rutinoside-5-0-glucosides in the plant kingdom

Having established that ectopic expression of snapdragon
transcription factors in tomato fruits leads to the synthesis
of nasunin and petanin pigments, we next analysed the
anthocyanins present in tomato leaves of the common
domesticated tomato line M82. As shown in Figure 3(b),
young leaves of M82 contain the same anthocyanins as

© 2015 The Authors
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observed in Del/Ros1 tomato fruits. Furthermore, the wild
species, Solanum pennellii, which is characterized by its
extreme stress tolerance (Bolger et al., 2014), also accumu-
lates both of these compounds as major anthocyanins in
leaves (Figure 3b). Furthermore, searching recently pub-
lished RNA-seq data (Koenig et al, 2013) revealed that
anthocyanin biosynthetic genes are more highly expressed
in seedlings and mature leaves than in roots of both S. ly-
copersicum and S. pennellii (Figure S6) (Koenig et al.,
2013). Thus the expression levels are in keeping with the
metabolite contents observed. Our results suggested that
there was conservation of anthocyanin decoration between
tomato species, so we searched the KNApSAcK database
(http://kanaya.naist.jp/KNApSAcK/) (Afendi et al., 2012) and
literature cited in the ‘Handbook of Natural Flavonoids’,
edited by Harborne and Baxter (1999), to assess the distri-
bution of these specific flavonoids further. We searched for
all possible 4”-O-phenylacylated anthocyanin-3-O-ruti-
noside-5-0-glucosides and for phenylacylated flavonol-
3-O-rustinosides as summarized in Table 3. Amongst the
decorated anthocyanins listed in the databases, 37 are
phenylacylated delphinidin derivatives, four of which con-
tain the -O-(4""-phenylacyl-rutinoside)-5-0O-glucoside moi-
ety, as for TA1 and TA2. When anthocyanin-3-O-(4"
-phenylacyl-rutinoside)-5-O-glucosides  derivatives only
were selected, five petunidin, seven malvidin, two peonidin,
two pelargonidin and a cyanidin derivative were identified.
Interestingly, the major anthocyanins detected in this study
in tomato, namely nasunin and petanin, have both been
identified previously in other Solanaceous species. Nasunin
(also named violanin) is particularly well characterized egg-
plant (S. melongena; Kuroda and Wada, 1933; Sakamura
et al., 1963), as well as potato (Goto et al., 1978), pepper
(Sadilova et al., 2006) and petunia (Schram et al., 1983)
although it is also present in Iris tingitana (Harborne, 1964;
Nerdal and Andersen, 1992) and Viola tricolor (Harborne
and Baxter, 1999), whereas petanin is particularly well char-
acterized in petunia (Schram et al, 1983), as has been
described in potato, Solanum nigrum and Iris (Harborne
and Baxter, 1999). Other anthocyanin derivatives exhibiting
3-0-(4""-phenylacyl-rutinoside)-5-0-glucoside decorations
have mostly been described in Solanaceous species (petu-
nia species, eggplant, potato and S. nigrum), but also with
additional species of iris, Ipomoea indivisia and Silene
dioica (Table 3). These results emphasize the conservation
of metabolic decoration of anthocyanins in the form of 3-O-
(4""—phenylacyl-rutinoside)-5-O-glucoside derivatives in
Solanaceous species. Despite this metabolite conservation
of  anthocyanin-3-0-(4""-phenylacyl-rutinoside)-5-0-glu-
coside derivatives, flavonol derivatives with 3-O-
(4""—phenylacyl)-rutinoside decorations were limited to
kaempferol-3-0-(4"'—(3"-O-rhamnosyl)-trans-p-coumaroyl-
rutinoside in Dicranopteris linearis. Although flavonol-3-O-
rutinosides are one of the most abundant flavonols in the

© 2015 The Authors
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plant kingdom, their acylated derivatives appear to be
uncommon in plants.

Phylogenetic analysis of candidate genes involved in
anthocyanin production in tomato

On the basis of the phenylacyl decoration of the major
anthocyanins abundant in the purple tomato lines and
their conservation within the Solanaceae, it seemed appro-
priate to perform a phylogenetic analysis of candidate
genes responsible for this specific decoration. Given the
characterized chemical structures of the decorated antho-
cyanins and flavonols and RNA-seq data, four of the genes
[three UDP-glycosyltransferase genes (Solyc09g059170,
Solyc10g083440 and Solyc12g098590), and one BEAT/
AHCT/HCBT/DAT (BAHD) gene (Solyc129g088170)], which
were observed to be up-regulated at the transcript level in
purple tomatoes, represent very strong candidates for
involvement in anthocyanin decoration in tomato. Flavo-
noid glycosyltransferase genes most commonly belong to
the UGT1 gene family. The phylogenetic analysis shown in
Figure 4(a) demonstrates that the candidate anthocyanidin
glycosyltransferases from tomato fall into distinct clades
within the UGT1 family, with the tomato glycosyltransfer-
ase being most similar to one from petunia in each sub-
clades. The candidate genes encoded proteins belonging
to three classes, namely a flavonoid-3-O-glycosyltrans-
ferase (SIFd3GlcT; Solyc10g083440), an anthocyanin-5-O-
glycosyltransferase (SIA5GIcT; Solyc12g098590) and a fla-
vonoid-3-0-glycoside-O-glycosyltransferase (SIA3GI-
c6”’RhaT; Solyc09g059170). This sequence similarity to
other genes from both within the Solanaceous family and
other plant families suggested that the anthocyanin sugar
transferases evolved prior to the divergence of Solanaceous
species. In contrast, the gene encoding a putative flavonoid
acyltransferase, Solyc12g088170 (which we named
SIFdAT1), did not cluster with any previously characterized
anthocyanin acyltransferase (Figure 4b), meaning that it
could be classified as a member of the BAHD family, but
not in the subclades of known functions (D'Auria, 2006) on
the basis of phylogeny. All these genes encoding candidate
decorating enzymes showed similar expression patterns in
specific tissues of tomato in the eFP browser (http:/bar.utor-
onto.ca/efp_tomato/cgi-bin/efpWeb.cgi) (Figure S7).

As a further step towards understanding the anthocyanin
metabolic pathway, we searched the PLAZA database
(http://bioinformatics.psb.ugent.be/plaza) for orthologues
of tomato genes known, or suggested from our study, to
encode each step of the anthocyanin biosynthetic pathway.
The results of this search are presented in Figure 4(c),
which indicates the number of genes found for each
enzyme and the number of species in which they were
found. For the majority of enzymatic steps, genes were
found in more than 20 species, and, for some, enzymatic
reactions are obviously catered for by a large number of

The Plant Journal © 2015 John Wiley & Sons Ltd, The Plant Journal, (2015), 83, 686-704
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Table 3 Anthocyanin-3-0-(4""—phenylacyl-rutinoside)-5-O-glucosides and flavonol-3-0-(4"'-phenylacyl)-rutinosides found in plant species

Flavonoid* Formula Species Plant name
Anthocyanins
Delphinidin derivatives (37)
C00006893 Delphinidin-3-(4"'-trans-p-coumaroyl-Rut)-5-Glc CyoH47023  Iridaceae Iris tingitana
Synonyms: violanin, nasunin Solanaceae Petunia x hybrida
Solanaceae Solanum melongena
Solanaceae Solanum tuberosum
Solanaceae Capsicum annuum
Violaceae Viola tricolor
C00014796 Delphinidin-3—(4""'-(4""""-Glc)-trans-p-coumaroyl)-Rut-5-Glc CugHs70,5  Solanaceae Petunia reitzii
C00014797 Delphinidin-3-(4""-trans-caffeoyl)-Rut-5-Glc C4oH470,4  Solanaceae Petunia occidentalis
C00014798 Delphinidin-3-(4"'-trans-p-coumaryl)-Rut-5-Glc C4oH470,3  Solanaceae Solanum melongena
Petunidin derivatives (9)
C00006900 Petunidin-3—(4'""-trans-p-coumaroyl)-Rut-5-Glc Cy43Ha90,3 Iridaceae Iris spp.
Synonym: petanin Solanaceae Petunia x hybrida
Solanaceae Solanum nigrum
Solanaceae Solanum tuberosum
C00011099 Petunidin-3—(4'"'-(6"""~0O-caffeoyl-Glc)-p-coumaroyl)-Rut-5-Glc  CsgHesO31  Solanaceae Petunia x hybrida
C00014855 Petunidin-3—(4'""-caffeoyl)-Rut-5-Glc Cy3Hs90,4 Solanaceae Solanum tuberosum
C00014861  Petunidin-3—(4'""-(4'"""-Glc)-p-coumaroyl-Rut)-5-Glc Cu9Hs90,5  Solanaceae Petunia occidentalis
C00014862 Petunidin-3—(4'""-feruroyl)-Rut-5-Glc C44Hs510,4  Solanaceae Solanum tuberosum
Malvidin derivatives (22)
C00006914 Malvidin-3-(4""-caffeoyl)-Rut-5-Glc C44Hs510,4  Solanaceae Petunia x hybrida
C00011074 Malvidin-3—(4"'-(6""""—caffeoyl-Glc)-p-coumaroyl)-Rut-5-Glc CsoHe7031  Solanaceae Petunia guarapuavensis
Solanaceae Petunia hybrida cultivar
C00011075 Malvidin-3-(4"'-(6""""—caffeoyl-Glc)-caffeoyl)-Rut-5-Glc CsgHe7032  Solanaceae Petunia guarapuavensis
Solanaceae Petunia hybrida cultivar
C00011100 Malvidin-3-(4""-(6""""—feruroyl-Glc)-p-coumaroyl)-Rut-5-Glc CeoHe9031  Solanaceae Petunia x hybrida
C00011101  Malvidin-3-(4""-(6""""~Glc-p-coumaroyl)-p- Cs9Hg7039  Solanaceae Petunia x hybrida
coumaroyl-Rut)-5-Glc
C00011102 Malvidin-3-(4""-p-coumaroyl)-Rut-5-Glc C44Hs510,3  Solanaceae Petunia x hybrida
C00014829 Malvidin-3—-(4"'-feruroyl)-Rut-5-Glc CssHs30,4  Solanaceae Solanum tuberosum
Peonidin derivatives (10)
C00006873 Peonidin-3-(4"""-p-coumaroyl)-Rut-5-Glc C43Hs90,,  Solanaceae Petunia x hybrida
Synonym: peonanin Solanaceae Solanum nigrum
Solanaceae Solanum phureja
Solanaceae Solanum tuberosum
C00006874 Peonidin-3—(4'""-caffeoyl)-Rut-5-Glc C43Hi9023  Convolvulaceae  Ipomoea indivisa
Solanaceae Petunia x hybrida
Solanaceae Solanum tuberosum
Pelargonidin derivatives (41)
C00006789 Pelargonidin-3—(4'""-p-coumaryl)-Rut-5-Glc C4oH470,,  Caryophyllaceae  Silene dioica
Synonym: pelanin Solanaceae S. andigena x S. tuberosum
C00014853  Pelargonidin-3-(4"'-feruloyl)-Rut-5-Glc Cy3Hi90,,  Solanaceae S. andigena xS. tuberosum
Cyanidin derivatives (73)
€00006856 Cyanidin-3-(4'"-caffeyl)-Rut-5-Glc C4oH47023  Caryophyllaceae  Silene dioica
68156-54-7 Cyanidin-3—(4'"-caffeyl)-Rut Cs6H3;045  Caryophyllaceae  Silene dioica
Flavonols
Kaempferol derivatives (83)
C00005905 Kaempferol-3—-(4'"’-(3""~-Rha)-p-coumaroyl-Rut CyoHi6021  Gleicheniaceae  Dicranopteris linearis
Quercetin derivatives (42)
No entry
Isorhamnetin derivatives (10)
No entry
Myricetin derivatives (3)
No entry

*The total number of phenylacylated flavonoids is shown in parentheses.
We searched the KNApSAcK database (http://kanaya.naist.jp/KNApSAcK/) (Afendi et al., 2012) and literature cited in the ‘Handbook of Natu-
ral Flavonoids’ edited by Harborne and Baxter (1999) for information on these flavonoids. References are supplied in Doc. S3.
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Figure 4. Phylogenetic analysis of candidate UGT and BAHD genes involved in flavonoid biosynthesis.

(a, b) Molecular phylogenetic trees of the amino acid sequences of the (a) flavonoid glycosyltransferases and (b) flavonoid acyltransferases from tomato. The
amino acid sequences were aligned using MEGA5.1 (http://www.megasoftware.net/).
(c) A total of 31 plant species were used for orthologue gene cluster analysis using PLAZA 3.0 Dicots (http://bioinformatics.psb.ugent.be/plaza//). Red arrows indi-

cate up-regulation in Del/Ros1tomatoes.
(d) Molecular phylogenetic tree of amino acid sequences corresponding to ORFs encoding orthologues to SIFAAT1 (Solyc12g088170). The amino acid sequences

were aligned using MEGAB.1 (http://www.megasoftware.net/).
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isoforms. There were four exceptions with respect to
number of species: flavonoid-3'5'-hydroxylase (F3'5'H),
anthocyanin-3-0-glucosyltransferase (A3GlcT), anthocyanin-
3-0-glucoside-6"-O-rhamnosyltransferase ~ (A3Glc6'RhaT)
and flavonoid-3-O-rutinoside-4""-0O-phenylacyltransferase
(SIFAAT1) (Figure 4c). As SIFAAT1 shows very poor conser-
vation and is limited to three species, we searched gene
sequences submitted to Genbank for orthologues of SIFdAT
(Figure 4d). Targeted phylogenetic analysis showed a clear
separation between a BAHD subclade that included SIFdAT1
(http://www.ncbi.nim.nih.gov/) and ATs from the Solana-
ceae, such as potato andtobacco, but did not include ATs
from other plant families (Figure 4d).

SIFdAT1 encodes a flavonoid-3-O-rutinoside-4"'-O-
phenylacyl transferase

To characterize the biochemical function of SIFdATT,
assays of the recombinant enzyme were performed
(Figure ba-d). The cDNA sequence of Solyc12g088170

—
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annotated by SOL database (http://solgenomics.net/) was
amplified and recombined into expression vector
pJAM1784 (Luo et al., 2007) to produce pJAM1786, which
expresses SIFJAT fused N-terminally to the S-TAG of
RNase S. The recombinant protein was expressed in
Escherichia coli, and total protein was measured in crude
extracts. The activity of SIFAAT1 with six acyl donors
(p-coumaroyl CoA, feruloyl CoA, caffeoyl CoA, sinapoyl CoA,
cinnamoyl CoA and malonyl CoA) and four acyl acceptors
(cyanidin-3-O-rutinoside, quercetin-3-O-rutinoside, kaemp-
ferol-3-O-rutinoside and delphinidin-3-O-rutinoside) were
tested. We were unable to prepare large enough
amounts of substrates for determination of complete
kinetic parameters, but we were able to characterize sub-
strate specificities based on relative activities. Reaction
products were confirmed by LC/PDA-MS. The recombi-
nant enzyme showed -4""-O-phenylacyltransferase activity
with both anthocyanin acyl acceptors (Figure 5a,b) and
flavonol acyl acceptors (Figure 5c,d) and all phenylacyl

Cya-3-O-rutinoside + p-Cou-CoA (b) Del-3-O-rutinoside + p-Cou-CoA Figure 5. Functional characterization of SIFdAT1.

(a-d) HPLC chromatograms for assays of the
SIFdAT acyltransferase from S. lycopersicum.

(a) Activity of recombinant protein expressed in
E. coli with cyanidin-3-O-rutinoside as acyl accep-
tor and p-coumaroyl CoA as acyl donor, (b) del-
phinidin-3-O-rutinoside as acyl acceptor and p-
coumaroyl CoA as acyl donor, (c) quercetin-3-O-
rutinoside as acyl acceptor and p-coumaroyl CoA
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Table 4 Enzyme activity of recombinant SIFdAT in E. coli

nmol sec'mg™  Relative activity (%)?

Acyl acceptor®
Cyanidin-3-rutinoside 0.046 + 0.012 100.0
Delphinidin-3-rutinoside  0.090 + 0.036 194.4
Quercetin-3-rutinoside 0.052 + 0.012 112.4
Kaempferol-3-rutinoside  0.019 + 0.001 42.1

Acyl donor®
p-coumaroyl CoA
Feruloyl CoA
Caffeoyl CoA

0.046 + 0.012 100.0
0.041 + 0.007 88.6
0.018 + 0.001 40.0
Cinnamoyl CoA 0.034 £+ 0.015 74.8
Sinapoyl CoA 0.004 + 0.004 8.0
Malonyl CoA 0 0.0

Relative activity was calculated by comparison to the activity of
the enzyme with cyanidin 3-rutinoside as acyl acceptor and p-
coumaroyl CoA as acyl donor.

"The reactions were performed using p-coumaroyl CoA as the
acyl donor.

°The reactions were performed using cyanidin 3-rutinoside as the
acyl acceptor.

donors, but no activity with malonyl CoA as the acyl
donor (Table 4).

Additionally, SIFdAT1 was expressed in tobacco under
the control of the 35S promoter to examine SIFAAT1 func-
tion in vivo (Figure 5e-g). In tobacco, anthocyanins accu-
mulate in the flower limb exclusively. These are largely
cyanidin-3-0O-rutinoside, with small amounts of pelargoni-
din-3-O-rutinoside. There are no reports of acylated antho-
cyanins from tobacco. Metabolite profiling of flower
extracts of a line over-expressing SIFdAT1 showed
production of significant levels of phenylacylated cyanidin-
3-O-rutinosides and trace levels of phenylacylated querce-
tin-3-O-rutinoside (Figure 5f,g and Figure S8). Given the
results of the assays of recombinant SIFdAT1 protein
in vitro, these data confirm that SIFAAT1 acts as a flavo-
noid-3-0O-rutinoside-4"'-O-phenylacyltransferase in vivo,
and its activity accounts for the acylation of both antho-
cyanins and flavonols observed in tomato. Taken together,
the phylogenetic analyses suggest that SIFdAT1 evolved
within the Solanaceae, independently of other anthocyanin
phenylacyltransferases, implying that the convergent evo-
lution of SIFAAT1 to adopt anthocyanin phenylacyl trans-
ferase activity means that its broad substrate specificity for
hydroxycinnamoyl CoA acyl donors and for both flavonol
and anthocyanin acyl acceptors is relatively unusual in the
plant kingdom.

DISCUSSION

Over-expression of transcription factors has proven a
highly effective strategy to ascertain their function (Tam-
agnone et al., 1998; Tohge et al., 2005; Wu et al., 2012;
Schmidt et al., 2013), and to facilitate identification of the
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metabolic pathways that they regulate (Sharma and Dixon,
2005; Tohge et al., 2005; Peel et al., 2009; Zhao et al., 2010;
Liu et al., 2014). Here we performed an in-depth analysis of
Del/Ros1 purple tomatoes that accumulate anthocyanins at
concentrations comparable to those found in blackberries
(Rubus spp.) and blueberries (Vaccinium spp.), enhancing
the antioxidant potential of the fruit threefold and extend-
ing the lifespan of cancer-susceptible mice in a dietary con-
text (Butelli et al., 2008). The presence of such high levels
of anthocyanins in tomatoes was subsequently demon-
strated to double the shelf life of the fruit by delaying over-
ripening and reducing susceptibility to Botrytis cinerea
(Zhang et al., 2013). Our current study utilized comprehen-
sive metabolite profiling alongside RNA-seq to obtain a
fuller picture of the compositional changes resulting from
fruit-specific, ectopic expression of these transcription fac-
tors. In addition, using the E8 promoter to switch on antho-
cyanin biosynthesis is equivalent to using an inducible
promoter (albeit slow induction), and analysis of the
effects of the transcription factors is more likely to reveal
direct targets and less likely to be compromised by indirect
effects resulting from use of constitutive promoters. We
showed that over-expression of Del/Ros1 resulted in multi-
ple changes in addition to the changes in anthocyanins
reported in previous studies (Butelli et al., 2008; Zhang
et al., 2013, 2014). These changes included depletion of
phenylalanine, rutin and naringenin chalcone levels, but
enhanced levels of total carotenoids, CGAs and flavonol
derivatives. The accumulated anthocyanins were quite
unusual, with phenylacylation of the rhamnose sugar of
the rutinoside.

While the metabolic changes in the Del/Ros1 transgenic
line were mostly focused on anthocyanins, several other
changes are worthy of discussion, particularly when these
data are evaluated in conjunction with those from RNA-seq
analysis. One prominent change was the reduced levels of
phenylalanine, which was observed in peel, pericarp and
whole-fruit samples, as were decreased levels of alanine,
threitol and galactose. Phenylalanine is the direct precursor
of the phenylpropanoid pathway, and its decreased levels
are probably the direct result of increased demand for
anthocyanin biosynthesis. Interestingly, analysis of the
RNA-seq data revealed that this decrease occurred despite
elevated expression of genes involved in phenylalanine
biosynthesis, suggesting that the increased demand for
phenylalanine in the purple tomatoes outstrips the pre-
dicted enhanced production of the amino acid. On the
other hand, quinate and several isoforms of CGAs were
increased in the Del/Ros1 line. As RNA-seq analysis
showed up-regulation of genes involved in not only flavo-
noid biosynthesis but also phenylpropanoid, phenylalanine
and shikimate biosynthesis, over-accumulation of quinate
and CGAs are probably the result of enhanced demand for
flavonoids in the Del/Ros1 line.
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Structural elucidation of tomato anthocyanins has previ-
ously proven very difficult, as they are not usually available
in large amounts (Jones et al., 2003), and prior to this
study, accumulation as a result of genetic manipulation
had rarely been detected in tomato flesh (Bovy et al.,
2002). A low abundance of anthocyanins in tissues is
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Figure 6. Summary of differences in regulation of anthocyanin biosynthesis
between tomato and Arabidopsis.

Red arrows indicate up-regulation in (a) Del/Ros1tomato or (b) pap1-D Ara-
bidopsis.

observed in tomatoes and in most non-domesticated
tomato accessions such as S. pennellii. Using the high-
yielding purple tomatoes, six major anthocyanins were
identified, which include the same anthocyanins found in
eggplant and petunia. Co-elution profiles of anthocyanins
from Del/Ros1 fruits and M82/pennellii leaves revealed that
these anthocyanins are the same as endogenous antho-
cyanins in tomato species.

Genome-scale profiling of anthocyanin biosynthesis has
already been reported for Arabidopsis using the mutant
pap1-D, which over-expresses the AtMYB75/PAP1 gene and
induces over expression of bHLH42 (AtTT8), which is up-reg-
ulated by AtMYB75 (Tohge et al., 2005). We performed
cross-species comparisons of up-regulated genes in high-an-
thocyanin mutants and transgenic plants (Figure 6). This
approach suggested conservation of the transcriptional net-
works that enable up-regulation of genes involved in the first
steps of the anthocyanin biosynthetic pathway (early biosyn-
thetic genes), which are common to most angiosperms, and
some late biosynthetic genes, namely 3-O-glucosyl and 5-O-
glucosyltransferase genes. This is in contrast to reports of
the levels of target gene expression in mutants affected in
the activity of the regulatory genes (Quattrocchio et al., 1993;
Winkel-Shirley, 2001; Schwinn et al., 2006; Purdy et al.,
2013). However, in such mutants, expression of early biosyn-
thetic genes may be complemented by the activity of other
MYB regulators, such as members of the MYB family (sub-
group 7). This means that early biosynthetic genes may be
mis-scored as not regulated by the MBW complex, of which
DEL and ROS1 are part (Zhang et al., 2014).

As anthocyanin acyl acceptors are not exactly the same in
Arabidopsis (anthocyanin-3-O-glucoside) and Solanaceous
species (anthocyanin-3-O-rutinoside), differences may be
observed in late biosynthetic genes such as glycosyltrans-
ferases and acyltransferases for the two species. The dual
functionality of SIFdAAT1 in catalysing the transfer of caf-
feoyl, p-coumaroy! or feruloyl moieties to either a flavonol
or an anthocyanin in Del/Ros1tomato appears to be unique
amongst characterized BAHD acyltransferases (Table 4 and
Figure 5). For example, in Arabidopsis, the enzyme that
acylates anthocyanin-3-0-glucoside is specific for antho-
cyanins as acyl acceptors (Luo et al., 2007). Further cross-
species comparisons suggested that the anthocyanins
characterized in this study are conserved among Solana-
ceous species. Although phenylacylated anthocyanidin ruti-
nosides are found in a few other distantly related plant
species, it is likely that, in these species, decorating enzymes
(particularly acyltransferases) have evolved by convergence
and consequently may have rather different properties to
SIFdAT1 and the other anthocyanin acyltransferases con-
served in Solanaceous species (Pichersky and Lewinsohn,
2011). Unusually, several phenylacylated flavonol deriva-
tives accumulated in Del/Ros1 purple tomatoes. Interest-
ingly, although flavonol-3-O-rutinosides are one of the
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common flavonol glycosides (Table 3), flavonol-3-O-(4'""-
phenylacylated)-rutinosides, which are products of
SIFdAT1, are very uncommon in the plant kingdom.
SIFdAT1 may accept several acyl donors (caffeoyl, p-cou-
maroyl, cinnamoyl, sinapoyl or feruloyl CoAs) and use
anthocyanin-3-0O-rutinosides and also flavonol-3-O-rutino-
sides as acyl acceptors.

This analysis showed that ectopic expression of two
components of the MBW complex, i.e. Ros1 (Myb) and Del
(bHLH) resulted in up-regulated expression of genes
involved in phenylpropanoid metabolism, flavonoid/antho-
cyanin biosynthesis and anthocyanin decoration. It is likely,
based on the inducible nature of expression of Del/Ros1 by
the E8 promoter, that all genes with very significantly
enhanced expression are direct targets of the transcription
factors. Comparison to metabolomic and transcriptomic
data from the pap7-D mutant of Arabidopsis indicates that
Del/Ros1 in tomato switch on the same genes of general
phenylpropanoid metabolism and flavonoid biosynthesis
as PAP1 does, together with bHLH transcription factors
(GLABRA3 (GL3), ENHANCER OF GLABROUS 3 (EGL3) and
AtTT8)), in Arabidopsis (Tohge et al., 2005). Differences in
induced expression of genes encoding anthocyanin-deco-
rating enzymes were observed between tomato and Ara-
bidopsis, but this reflects the different decoration of
anthocyanins in these two species. Interestingly, Del/Ros1
induced expression of genes early in the flavonoid biosyn-
thetic pathway as well as later steps, implying that these
transcription factors turn on all the genes required for con-
version of p-coumaroyl CoA to anthocyanins. Amongst the
genes encoding decorating enzymes, those encoding glyco-
syltransferases are highly conserved with those from other
angiosperm species, implying that A3GIcT, A5GIcT and
A3Glc6”RhaT evolved relatively early before the divergence
of the Solanaceae family. In Solanaceous species such as
tobacco, which lacks 5-0O-glycosylation of its anthocyanins,
the gene encoding the A5GIcT has probably been lost. In
contrast, the gene encoding SIFAAT1 appears to have
arisen after divergence of the Solanaceae, and must have
recruited the MBW complex to control its expression, once
its specificity had been determined. In addition, the speci-
ficity of this enzyme, particularly for acyl acceptors, may be
useful in terms of engineering new colours and other func-
tionalities of flavonoids in the future.

EXPERIMENTAL PROCEDURES
Plant growth

The generation and molecular characterization of the transgenic
plant material has been described in detail previously (Butelli
et al., 2008; Zhang et al., 2013). Tomato plants (MicroTom, Del/
Ros1 line N in MicroTom, M82 and S. pennellii) were handled as
described previously (Kochevenko et al., 2012). Whole fruits and
two tissues (flesh and peel) were harvested at two stages
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(breaker + 1 week and breaker + 4 weeks) (Zhang et al., 2013).
Four and two biological replicates harvested from individual
plants were used for metabolite profiling and RNA-seq expression
analysis, respectively.

Profiling of primary and secondary metabolites

Non-targeted metabolite profiling was performed by GC/MS as
described by Lisec et al. (2006), and by LC/MS by extracting
metabolites as described by Tohge and Fernie (2010) and analys-
ing these extracts as described by Rohrmann et al. (2011) and
Schwahn et al. (2014). Information concerning metabolite identifi-
cation is provided based on reporting suggestions for large-scale
metabolite datasets (Table S1) (Fernie et al., 2011).

RNA sequencing

EXPRESS Tag sequencing was performed as described by Ralla-
palli et al. (2014). Briefly, total RNA (3 pg) was used to generate
first-strand cDNA using an oligo(dT) primer comprising the P7
sequence lllumina (http://www.illumina.com/). Double-strand
cDNA was synthesized as described previously (Okayama and
Berg, 1982). Purified ¢cDNA was subjected to Covaris shearing
(http://covarisinc.com/) (intensity 5, duty cycle 20%, cycles/burst
200, duration 90 sec). End repairing and A-tailing of sheared
cDNA was performed as described by lllumina. Y-shaped adapters
were ligated to A-tailed DNA and subjected to size selection on
agarose gels. The libraries were sequenced on an Illumina Gen-
ome Analyzer lIx. The Illumina sequence library was quality fil-
tered using  rasTx-Toolkit  0.0.13  (http://hannonlab.cshl.
edu/fastx_toolkit/index.html) with parameters -q20 and -p50. The
sub-library was artefact-filtered using the rastx Toolkit. Quality-fil-
tered libraries were aligned ITAG2.3 S. lycopersicum cDNA
sequences (ftp://ftp.solgenomics.net/tomato_genome/annotation/
ITAG2.3_release/ITAG2.3_cdna.fasta) using Bowtie version 0.12.8
(Langmead et al., 2009). Unaligned reads from the previous step
were used to align to the tomato genome: (ftp://ftp.solge-
nomics.net/tomato_genome/annotation/ITAG2.3_release/ITAG2.3_
genomic.fasta) using BowTie version 0.12.8. The RNA-seq data has
been deposited in the National Center for Biotechnology Informa-
tion Gene Expression Omnibus (GEO) under accession number
GSE61014.

Isolation and purification of the anthocyanins

For isolation of the major anthocyanins in Del/Ros1 tomato fruit,
extracts were prepared from 5 g powdered tomato fruit using
50 ml of 50% aqueous MeOH and 25 ml of 100% MeOH. The
extract was clarified by paper filtration and then concentrated in a
rotary evaporator to a final volume of 20 ml and purified by prepar-
ative HPLC. HPLC conditions are described in Doc. S1, S2, S3.

Identification of acyl moieties and sugar moieties by
hydrolysis

For identification of acyl moieties, 20 ul of pure anthocyanin frac-
tions were subjected to alkaline hydrolysis with 250 pl of 10% KOH
for 30 min at room temperature. The hydrolysate was acidified to
pH 1.0 with 250 pl of 2 N HCI, and the saponification products were
extracted using three volumes ethyl acetate. For identification of
sugar moieties, 20 ul of pure anthocyanin fractions were subjected
to acid hydrolysis with 120 pl of 2 N HCI for 30 min at 95°C in a
sealed vial. After cooling of the hydrolysate in an ice bath, hydroly-
zedacyl moieties were extracted using 1 ml of 1-pentanol. The frac-
tions obtained were dried and resuspended for LC/MS. The LC/MS
method for profiling of hydrolysates is described in Doc. S1.
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NMR to identify anthocyanins

"H- and "®C-NMR spectra were acquired using a Bruker (https://
en.wikipedia.org/wiki/Bruker) DMX 500 NMR spectrometer operat-
ing at 500.13 MHz for '"H-NMR and 125.77 MHz for "C-NMR.
CD3;0D/CF5COOD (10:1) solutions containing approximately 1 mg
sample were run at 303 K under standard conditions and pulse
sequences ('H-NMR; *C-NMR; '*C-DEPT; gs-2Q-'H, 'H-COSY;
gs-'H, ™C-HSQC; gs-'H, ™C-HMBC; gs-'H, 'H-NOESY; gs-'H,
3C-TOCSY-HSQC) as previously described (Kaffarnik et al., 2005).
Reference chemical shifts were 3.30 and 49.00 ppm for residual
CHD,0D and CD;OD signals, respectively. 'H- and "*C-NMR spec-
tral data are shown in Doc. S2.

In vitro assay of recombinant SIFAAT1 protein

Enzymatic assay of SIFAAT1 (Solyc12g088170) using recombinant
protein was performed using a modification of the method
described by Luo etal. (2007). Full-length SIFdAT1 (Soly-
¢129088170) cDNA was amplified from Del/Ros1 tomato fruit
cDNA using primers SIFdATT-attB1 (5-GGGGACAAGTTTGTA-
CAAAAAAGCAGGCTGGATGAGCCAAATTACAACACAAAA-3) and
SIFdAT1-attB2 (5-GGGGACCACTTTGTACAAGAAAGCTGGGTCC-
TACTACTTTGGCACATAACTA-3').

PCR products were recombined with pDONR207 vectors Luo
et al., 2007 to create pENTR207-SIFdAT1. After sequence verifica-
tion, the entry clone was introduced into the N-terminal S-TAG
fusion vector pJAM1784 to create pJAM1784-SIFdAT1 (Luo et al.,
2007) . Recombinant protein expression and purification were per-
formed as described previously (Luo et al, 2007). The S-TAG
protein concentration was determined using an S-TAG rapid
assay kit (Novagen; http://www.merckmillipore.com/) according
to the manufacturer's instructions. Enzyme assays were per-
formed as described previously (Luo et al., 2007).

Acyl donors for in vitro assays (p-coumaroyl CoA, feruloyl
CoA, caffeoyl CoA, sinapoyl CoA and cinnamoyl CoA) were
purchased from TransMIT (http://www.plantmetachem.com/).
Quercetin-3-0O-rutinoside (rutin) and kaempferol-3-O-rutinoside
were purchased from Sigma (https://www.sigmaaldrich.com).
Delphinidin-3-O-rutinoside was purchased from EXTRASY-
NTHESE (http://www.extrasynthese.com/). The LC/MS method
used for the detection of enzymatic products is described in
Doc. S3.

Ectopic expression of SIFAAT1 in tobacco

The SIFAATT (Solyc12g088170) full-length ¢cDNA was amplified
using primers SIFdAT1-attB1 and SIFdAT1-attB2, and cloned into
a pBin19-GW binary vector (Butelli et al., 2012) by Gateway clon-
ing. The resulting plasmid was transferred to Agrobacterium
tumefaciens strain LBA4404 and used to transform tobacco (Nico-
tiana tabacum cv Samsun) as described previously (Luo et al.,
2008). Leaves of the transgenic line were harvested and used for
LC/MS analysis.
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