
DNA functionally interacts with a variety of epigenetic 
marks, such as cytosine methylation (also known as 
5‑methylcytosine (5mC)) or histone modifications 
(FIG. 1a). The dynamic placement of these marks along 
the genome is essential for coordinating gene expres‑
sion programmes and for maintaining genome integrity 
in response to developmental or environmental cues. 
Technological advances in the past decade have enabled 
high-resolution measurements of various epigenetic 
marks at a genome-wide scale1,2 (FIG. 1b). The computa‑
tional integration of these measurements has led to the 
construction of so‑called chromatin state maps (FIG. 1c), 
which provide an operational definition for the term 
‘epigenome’. These integrated maps are believed to give 
a good description of the functional state of the genome 
in a given cell type and at a specific time-point. Large 
initiatives are underway to collect reference epigenomes 
for different tissues, developmental stages, disease states 
and environmental treatments3–5. This information has 
already been instrumental in elucidating key chromatin 
changes during cellular differentiation, disease pathol‑
ogy and for functionally annotating causal variants from 
human genome-wide association mapping studies5–7.

Reference epigenomes are usually derived from cells 
of a single individual or from a pool of several indi‑
viduals and therefore do not capture inter-individual 
epigenomic variation at the population level. Genetic 
polymorphisms or differential environmental exposure 
can alter chromatin states and lead to transient or per‑
manent changes in gene expression. Chromatin states 
therefore represent important molecular phenotypes 
that mediate how different genotypes are translated 
into observable traits or how environmental signals are 

translated into genomic function. There is substantial 
interest in the biomedical, agricultural and evolutionary 
communities to try to understand the factors that cause 
population epigenomic variation. Various epidemiologi‑
cal studies have begun to address this problem by search‑
ing for specific environmental causes8,9. Complimentary 
to these approaches, a number of recent genetic studies 
have tried to quantify the heritable basis underlying 
population epigenomic variation and to delineate its 
cis- and trans-regulatory architecture (FIG. 1d; TABLE 1).

These recent genetic studies vary widely in scope: 
they consider different species, sample sizes, methodo‑
logical approaches, measurement technologies and units 
of analysis. Here, we provide a critical review of these 
emerging efforts. Our Review focuses on the propor‑
tion of the epigenome that is found to be under genetic 
control, the relative contributions of cis- and trans-acting 
factors, their average effect sizes and mechanisms of 
action. We also highlight important conceptual and 
technical issues in the construction of chromatin state 
maps and in the interpretation of genetic associations 
detected in these studies, particularly in plants, in which 
epigenomic variation can be determined both by genetic 
and epigenetic inheritance. Scaling up current studies to 
include more epigenetic marks, cell types and individu‑
als promises to provide deeper insights into the heritable 
basis underlying population epigenomic variation and 
will clarify its implications for biomedical, agricultural 
and evolutionary research.

Chromatin state maps define epigenomes
Genomic DNA is tightly packed in cells, and the basic 
unit of DNA packaging is called the nucleosome. 

1Quantitative Epigenetics, 
European Research Institute 
for the Biology of Ageing, 
University Medical Center 
Groningen, Antonius 
Deusinglaan 1, 
Groningen NL‑9713 AV, 
The Netherlands.
2Institute for Computational 
Biology, Helmholtz Center 
Munich, Ingolstädter 
Landstrasse 1, Neuherberg 
85764, Germany
3Population Epigenetics and 
Epigenomics, Technical 
University of Munich, Liesel-
Beckmann-Strasse 2, Freising 
85354, Germany.
4Institute for Advanced Study, 
Technical University of 
Munich, Lichtenbergstrasse 
2a, Garching 85748, 
Germany.

Correspondence to F.J.  
frank@johanneslab.org

doi:10.1038/nrg.2016.45
Published online 9 May 2016

Chromatin state maps
Computationally integrated 
genome-wide measurements 
of different epigenetic marks.

Epigenome
The complete set of epigenetic 
marks at every genomic 
position in a given cell at a 
given time.

Genetic sources of population 
epigenomic variation
Aaron Taudt1, Maria Colomé-Tatché1,2 and Frank Johannes3,4

Abstract | The field of epigenomics has rapidly progressed from the study of individual reference 
epigenomes to surveying epigenomic variation in populations. Recent studies in a number of 
species, from yeast to humans, have begun to dissect the cis- and trans-regulatory genetic 
mechanisms that shape patterns of population epigenomic variation at the level of single 
epigenetic marks, as well as at the level of integrated chromatin state maps. We show that this 
information is paving the way towards a more complete understanding of the heritable basis 
underlying population epigenomic variation. We also highlight important conceptual 
challenges when interpreting results from these genetic studies, particularly in plants, in which 
epigenomic variation can be determined both by genetic and epigenetic inheritance.
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Approximately 150 bp of DNA wrap around a histone 
octamer, which consists of two copies of each of the core 
histones (H2A, H2B, H3 and H4). In addition to direct 
modifications of DNA in the form of 5mC, core histones 
can be subjected to a variety of chemical modifications 
of their amino acid residue tails10 (FIG. 1a). Genome-
wide maps of 5mC and various histone modifications 

can be readily obtained with array or next-generation 
sequencing (NGS) technologies coupled with bisulfite 
conversion or immunoprecipitation assays1,2 (FIG. 1b).

To date, more than 100 histone modifications have 
been described11,12. This large number has led to the idea 
of an epigenetic code13,14 — a layer of information that is 
encoded by recurring patterns of epigenetic marks. This 
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Figure 1 | Main steps in population epigenomic analysis. a | DNA is 
tightly packaged in cells and is functionally modified by a variety of 
epigenetic marks, such as cytosine methylation (5mC) or post-translational 
changes in histone proteins. The co‑occurrence of specific epigenetic marks 
in a genomic region defines its functional state. Of note, histones in closed 
chromatin also contain repressive marks (not shown). b | The genome-wide 
distribution of different epigenetic marks can be measured using 
next-generation sequencing (NGS) technologies. Shown are the read-tracks 
from NGS measurements of N different epigenetic marks along the genome. 
c | The computational challenge is to infer distinct chromatin states for each 
genomic position. These chromatin states are defined by the joint presence 
and absence patterns of the different epigenetic marks. With N marks there 

can be 2N possible combinatorial states. The colour code on the bottom 
denotes each unique state. This analysis leads to the construction of 
chromatin state maps. d | Shown are the chromatin state maps of M diploid 
individuals. Individuals differ in their chromatin states in three genomic 
regions. These differential chromatin states (DCSs) can originate from DNA 
sequence polymorphisms, environmental factors or from stochastic 
changes. DCS2 is caused by a single-nucleotide polymorphism (SNP2), 
DCS3 is caused by exposure to environmental factor E4 and DCS1 is the 
result of stochastic processes in the mitotic maintenance of the chromatin 
state at that locus. The statistical challenge is to try to identify these causal 
factors from millions of measured SNPs and a large number of 
environmental factors.
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Table 1 | Overview of genetics studies of population epigenomic variation*

Organism Population Tissue N ind. N marks Method FDR 
control

cis 
(kb)

% 
assoc.

% cis % trans % var. cis % var. 
trans

Refs

Integrated chromatin states

Human Natural LCL 70 1‡‡ GWA-cis 0.1 20 0.64 100 NT ~30–40 NT 35

Human Natural LCL 14 5 AT NR NR NR 100 NT NR NT 36

Human Natural LCL 19§ 5 Other 
method

NR NR NR 100 NT NR NT 7

Human Natural LCL 10 4 GWA-cis 0.2 1 NR 100 NT NR NT 37

Human Natural LCL 64 5 GWA-cis 0.1 3 4.22 100 NT NR NT 42

Human Natural LCL 47 3 GWA-cis 0.1 250 8.1|| 100 NT ~40 NT 38

Human Natural LCL 75 3 GWA-cis 0.1 2¶ 10–15# 100 20950** NR NR 39

Rat RIL Heart 
and liver

30 2 LM 0.05 104 NR 69.24, 
75.28‡‡

30.76, 
24.72‡‡ 

NR NR 45

Yeast RIL NA 96 1‡ LM 0.01 100 NR 7.9 92.1 NR 33 47

Yeast RIL NA 94 1‡ LM 0.01 100 NR 15.7 84.3 NR NR 48

DNA methylation in humans

Human Natural CRBLM, 
FCTX, 
TCTX 
and pons

150 1 GWA NR 103 4–5.1 30–40 60–70 18–88§§ 18–88§§ 65

Human Natural CRBLM 153 1 GWA 0.05 103 8.71|||| 98 2 17–73 NR 66

Human Natural LCL 77 1 GWA 0.1 50 0.17 73 27 22–63 NR 67

Human Natural LCL 180§ 1 GWA-cis 0.3–0.4 100 0.12– 
0.38

100 NT 36–92¶¶ NT 68

Human Natural WB 201 1 GWA-cis NR 500 11.93|||| 100 NT NR NT 69

Human Natural LCL 133§ 1 GWA-cis 0.05 100 5.1–5.8 100 NT 30 ¶¶,## NT 70

Human Natural FIB, 
T cells 
and LC

66– 
111

1 GWA-cis 0.1 5 3.4–7.8 100 NT 10–90 NT 71

Human Natural HPI 89 1 GWA 0.05 500 2.57 96.8 3.2 NR NR 72

Human Natural FIB 62 1 GWA-cis 0.05 250 2|||| 100 NT NR NT 73

Human Natural LCL 133§ 1 GWA 0.05 103 1.8–2.6 100 NT 23–97¶¶ NT 74

Human Natural LCL 34§ 1 GWA-cis NR 200 NR 100 NT 26|||| NT 64

Human Natural WB 697 1 GWA 0.01 103 15 99.4 0.6 NR NR 75

DNA methylation in plants

Maize Natural 
and RIL

Leaf 51 1 GWA-cis 
and LM

0.05 2 51 100 NT NR NT 83

A. thaliana Natural 
and RIL

Leaf and 
MSIT

152 1 GWA 0.01 NR 16–35 26 74 NR NR 81

Soybean RIL Leaf 83 1 LM NR CHR 91 97.5 2.5 51§§,## 51§§,## 84

A. thaliana Natural WR 155 1 GWA 0.05*** 100 21‡‡‡, 
18||||,§§§

31‡‡‡, 
45||||,§§§

69‡‡‡, 
55||||,§§§

~10##,‡‡‡, 
~20||||,##,§§§

~50##,‡‡‡, 
~20||||,##,§§§

82

A. thaliana, Arabidopsis thaliana; Assoc., association; AT, allele transmission mapping; CHR, chromosome; CRBLM, cerebellum; FCTX, frontal cortex; FDR, false 
discovery rate; FIB, fibroblasts; GWA, genome-wide association mapping; GWA-cis, genome-wide association mapping that tests only for associations in cis; 
HPI, human pancreatic islets; ind., individuals; LC, lymphoblastoid cells; LCL, lymphoblastoid cell lines; LM, linkage mapping; MSIT, mixed-stage inflorescence 
tissue; NA, not available; NR, not reported; NT, not tested; RIL, recombinant inbred lines; TCTX, temporal cortex; WB, whole blood; WR, whole rosettes; var., 
variation. *Studies were selected if they included more than 10 individuals, used genome-wide methods for measuring epigenomic variation and applied mapping 
approaches to identify cis- and/or trans-acting genetic variants; a larger table with additional details on the types of marks studied is available as Supplementary 
information S3 (table). ‡Measurement of open chromatin only. §Data contains individuals from diverse populations. ||Percentage of so‑called variable chromatin 
modules that show association. ¶Trans is defined as >50 kb and <2 Mb. #Percent of associations in cis. **Number of distal quantitative trait loci (QTL) found when 
conditioning on detected cis-QTL; note that this number is not a percentage. ‡‡Heart and liver, respectively. §§Percent of variance explained by cis and trans loci 
combined. ||||Reported numbers refer to a conditional analysis in which variable probes were pre-selected. ¶¶Numbers are based on within-population analysis. 
##Average estimate. ***FDR was only applied to CHH methylation analysis; reported number for gene-body methylation is based on results without FDR control. 
‡‡‡Refers to the analysis of gene body methylation. §§§Refers to the analysis of CHH methylation.
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code is potentially complex, as with 100 marks there are 
2100 ≈ 1.3 × 1030 possible combinations of modifications at 
any given nucleosome. Although at a mechanistic level 
there are chemical restrictions on the co‑occurrence of 
certain marks, the measured signal is an average over 
different cells and convoluted with noise, and spurious 
combinations may therefore be detectable. Nonetheless, 
integrative analysis of genome-wide maps based on a 
subset of all histone modifications have so far consist‑
ently revealed that only a small proportion of all possi‑
ble combinations exist in the epigenome5–7,15–31 (BOX 1; 
Supplementary information S1 (table)). This fact hints 
at strong biological restrictions on the placement of epi‑
genetic marks. Despite this reduction in complexity, the 
inference of integrative chromatin states from individual 
array or NGS measurements continues to pose major 
computational and conceptual challenges that have not 
been fully solved (BOX 1).

Chromatin states (BOX 1) define a language that effi‑
ciently summarizes information across different marks 
and enables comprehensive comparisons across tissues, 
developmental stages and individuals. Large-scale initi‑
atives have made extensive use of those definitions and 
have produced reference epigenomes for various cell 
types and conditions in model and non-model species 
(Supplementary information S1 (table)). Comparisons 
of these reference epigenomes have provided several 
insights into epigenomic variation. A major insight is 
that chromatin states corresponding to enhancer ele‑
ments are most variable between tissue types5,20 and 
developmental time points31,32, whereas chromatin 
signatures corresponding to transcribed regions, tran‑
scription start sites (TSSs) or repressed regions are less 
variable5. Certain elements termed cREDS (cis-regula‑
tory elements with dynamic signatures) are found with 
a strong promoter signature in one tissue but with an 
enhancer signature in other tissue types5,33, thus blur‑
ring the distinction between enhancer and promoter 
sequence elements34.

Population genetics of epigenomes
Our knowledge of the extent to which tissue-specific 
combinatorial chromatin states are variable at the popu
lation level and the extent to which they are influenced 
by genetic variation is mainly limited to a few small-scale 
studies in humans7,35–39 (TABLE 1). These studies profiled 
several common histone modifications in lymphoblas‑
toid cell lines of individuals whose genomes were also 
sequenced as part of the 1000 Genomes Project. The 
modifications include mostly active marks (mono
methylated histone H3 lysine 4 (H3K4me1), trimethy
lated H3K4 (H3K4me3), acetylated H3K27 (H3K27ac), 
H4K20me1, and H3K36me3), but also one repressive 
mark (H3K27me3), and were chosen on the basis 
of their important role in determining tissue- and 
development-specific gene expression programmes40. 
The genomic distribution of these marks is heavily 
biased toward genes. On average, ~63% of the modifica‑
tions map within or in close proximity to exons (<5 kb) 
and together cover 25% of the total human genome 
(numbers were generated based on data from REF. 7).

Box 1 | Definitions of chromatin states

Since the proposition of the existence of a ‘histone code’ in 2000 (REFS 13,14), 
considerable effort has been spent to decipher this code, and many computational 
approaches have been developed to integrate single marks into chromatin state maps. 
Different conceptual ideas of a chromatin state underlie the different approaches. The 
original notion of a histone code13,14 is based on a molecular view that assumes that 
histone modifications (or epigenetic marks in general) are either present or absent 
at any given position in the genome in a binary manner, so that their combined 
presence and absence patterns define distinct combinatorial chromatin states15,24,28,31,137. 
A second view takes into account the continuous nature of the ChIP–seq (chromatin 
immunoprecipitation followed by sequencing) signal and defines chromatin signatures 
on the basis of the signal shape rather than by the binary presence or absence of every 
mark16,138. A third view defines probabilistic chromatin states6,19,20,23,26 (also called fuzzy 
chromatin states28), which have probabilities associated with finding each mark in a 
given state, meaning that one state can be a superposition of multiple combinatorial 
patterns with different probabilities. A fundamental problem of chromatin-state-calling 
algorithms is to infer the ‘true’ number of states. Although it is reasonable to assume 
that the number of states increases with the number of epigenetic marks, our review of 
the literature shows that there is no clear trend (see the figure, part a; Supplementary 
information S1 (table)). There are several reasons for this: first, different experimental 
techniques and analytical approaches investigate the epigenome at different 
resolutions, with higher resolution potentially leading to more chromatin states; 
second, the number of chromatin states is a function of the investigated marks (a set 
of uncorrelated marks has more states than a set of correlated or redundant marks); 
third, the majority of computational methods treat the number of chromatin states as 
anxinput rather than an output of the analysis, so that chromatin states reflect previous 
knowledge of chromatin. Another interesting question is the percentage of the genome 
that is covered with epigenetic marks or, conversely, is devoid of any marks. Our review 
of the literature shows that the percentage of empty epigenome decreases when more 
marks are measured (see the figure, part b; Supplementary information S1 (table)). 
Indeed, one experiment involving 53 marks by Filion et al.23 showed that essentially no 
part of the genome is permanently without epigenetic modifications.
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Histone quantitative trait 
loci
(hQTL). Genetic loci that 
contribute to variation in 
histone modification states 
and/or levels in cis or trans.

Expression quantitative 
trait loci
(eQTL). Genetic loci that 
contribute to variation in 
expression levels of mRNA in 
cis or trans.

Genetic effects on chromatin states in cis. Kasowski et al.7 
used 5 of these histone modifications to construct inte‑
grated chromatin state maps in 19 individuals. Using prob‑
abilistic chromatin states as units of analysis, they showed 
that genomic regions corresponding to bivalent enhan
cers (defined by the authors as having H3K4me1 and 
H3K27me3), weak enhancers (defined as H3K4me1) 
and weak enhancers in transcribed regions (defined as 
H3K4me1 and H3K36me3) were most variable between 
individuals. Inter-individual differences were mainly in 
the form of state transitions from an enhancer state to a 
repressive state (for example, Polycomb-associated state 
H3K27me3 or empty state; see BOX 1), or vice versa. State 
transitions of this type reflect what is typically seen dur‑
ing cellular differentiation31, suggesting that intra- and 
inter-individual epigenomic variation converge on the 
same genomic regions. Moreover, changes in H3K4me1 
density have been found to be the best predictor of 
changes in long-range chromatin interactions, indicating 
that enhancer variation may also translate into variation 
in higher-order chromatin structure41.

Focusing on a subset of these histone marks (TABLE 1), 
a number of larger studies (involving up to 75 individ‑
uals) used association mapping approaches to identify 
cis-regulatory single-nucleotide polymorphisms (SNPs) 
— that is histone quantitative trait loci (hQTL) — within 
several kilobases of these modifications37–39,42. Rather than 
working with combinatorial states, they analysed each 
histone modification separately. Only a small proportion 
of the tested sites seem to be associated with local SNPs 
(1.1–15%; TABLE 1), whereas causative variants often affect 
multiple histone modifications at once in a manner that 
is consistent with their combinatorial occurrence in the 
genome (FIG. 2a,b). Perhaps not unexpectedly, the effects 
of these hQTL are not limited to histone modifications 
but extend to other correlated molecular phenotypes, 
such as local nucleosome positioning and chromatin 
accessibility37. Such coordinated, multi-layered chro‑
matin changes can span several thousand base pairs and 
provide a mechanism by which hQTL act as expression 
quantitative trail loci (eQTL) to proximal genes without 
actually being located in coding regions36,37.

Waszak et al.38 and Grubert et al.39 recently demon‑
strated that similar coordinated changes also explain 
more distal eQTL that influence their target genes from 
several megabases away (FIG. 2c). They superimposed 
hQTL and eQTL results on a reference Hi‑C map and 
found that distal associations coincide with long-range 
chromatin contacts between distal enhancers and 
proximal promoters residing within the same topologi
cal domain. Chromatin states at these contact points 
are highly correlated probably owing to their physical 
proximity. As a result of these state correlations, hQTL 
at distal enhancers tend to also associate with chromatin 
states at proximal promoters as well as with expression 
levels of genes corresponding to these promoters (FIG. 2).

The mechanisms by which single SNPs can achieve 
such complex cis-regulatory control remain largely elu‑
sive. The most promising model posits that SNP alleles 
disrupt transcription factor binding sites (TFBSs) 
in enhancers and/or promoters and thereby induce 

allele-specific changes in the chromatin environment. 
This causal model is supported by direct experimental 
evidence showing that the de novo insertion of tran‑
scription factor binding motifs is sufficient to estab‑
lish active chromatin states, at least for some classes 
of transcription factors43. However, TFBS-disrupting 
SNPs seem to account for only a fraction of the detected 
hQTL; the remainder require further experimental 
molecular analysis.

Genetic effects on chromatin states in trans. With sam‑
ple sizes of up to only 75 individuals, these pioneering 
studies of integrated chromatin state maps were clearly 
underpowered to extend association analysis beyond 
cis-regulatory regions. Mutations in trans-acting tran‑
scription factors or in chromatin control genes, such 
as histone methyltransferases, may be an important 
source of population epigenomic variation. Numerous 
clinical studies report genome-wide alterations in 
DNA methylation and histone modification patterns 
in cancer cells44; these alterations frequently co‑occur 
with somatic mutations in key chromatin control genes. 
Mice with mutations in histone methyltransferase dis‑
play similar widespread epigenomic dysregulation and 
highly deleterious phenotypes. However, weak alleles of 
these trans-acting factors can be viable and potentially 
segregate in populations.

Evidence for this comes from population epigenomic 
analyses in rats and yeast. Rintisch et al.45 profiled 
H3K4me3 and H3K27me3 in heart and liver tissue 
from recombinant inbred lines (RILs) derived from 
two different inbred rat strains. Using linkage analysis, 
they showed that up to 30% of all detected associations 
were in trans (>10 Mb). One notable example was a 
trans-acting hQTL that affected histone modification 
states at 833 target locations throughout the genome. 
This hQTL hotspot contained WD repeat domain 5 
(WDR5), a protein-coding gene required for global and 
gene-specific K4me3 (REF. 46), which could potentially 
account for these pleiotropic effects. Similarly pro‑
nounced trans associations have been observed in QTL 
studies of open chromatin regions (OCRs), a proxy for 
active histone marks, in yeast RILs47,48. Trans-acting loci 
(>100 kb) accounted for the majority (~88%) of all SNP–
OCR associations, explained on average 30% of the vari
ation in OCR patterns and were enriched for chromatin 
remodellers and transcription regulators. These results 
suggest that a systematic analysis of the trans effects on 
integrated chromatin states in humans may uncover 
additional genetic determinants.

The fact that cis- and trans-acting SNPs influence 
chromatin state variation implies that this variation is, 
at least partly, heritable at the population level (BOX 2). 
Genome-wide surveys of several human parent–
offspring trios show that the patterns of open chro‑
matin and histone modifications in lymphoblastoid 
cell lines are more similar among related individuals 
than unrelated individuals7,36,49. Beyond these descrip‑
tive observations there are currently no estimates of 
the proportion of chromatin state variation that can 
be attributed to heritable and non-heritable sources. 
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A more quantitative understanding of the heritable basis 
of population epigenomic variation comes from more 
focused studies of DNA methylation in humans and 
plants. These studies employ much larger sample sizes, 
which enable robust statistical inferences.

Population genetics of 5mC in humans
Cytosine methylation is a widely conserved epigenetic 
mark50,51 with major roles in the regulation of gene 
expression and the silencing of transposable elements 
and repeat sequences52,53. In humans, the majority 
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Figure 2 | Single-nucleotide polymorphisms affecting chromatin states 
produce signatures of molecular pleiotropy. a | Shown are the 
next-generation sequencing read-tracks of histone modifications: 
monomethylated histone H3 lysine 4 (H3K4me1), acetylated H3K27 
(H3K27ac), trimethylated H3K4 (H3K4me3) and H3K27me3 for three diploid 
individuals with single-nucleotide polymorphism (SNP) genotypes (AA, AB 
and BB). Specific combinations of these epigenetic marks in a given 
genomic region define distinct chromatin states. The combination of 
H3K4me1 and H3K27ac defines ‘active enhancers’, H3K4me1 alone defines 
‘weak enhancers’, H3K4me1, H3K4me3 and H3K27ac together define 
‘active promoters’, and the absence of any measured mark defines an 
‘empty state’. The SNP alleles (A and B) simultaneously affect the presence 
and absence patterns of multiple marks. These pleiotropic effects manifest 
as haplotype-specific chromatin states (bottom panel). b | The SNP induces 

chromatin state changes both in cis (within ~50 kb) and at a distal location 
(~1 Mb). The AA genotype is homozygous for ‘active enhancer’ states in cis 
and homozygous for the ‘active promoter’ state at the distal locus. For the 
heterozygous AB genotype the ‘active enhancer’ state is associated with 
the A allele in cis and the ‘active promoter’ state at the distal locus; the 
B allele is associated with the ‘empty state’ both in cis and at the distal locus. 
Finally, the BB genotype is homozygous for ‘empty state’ in cis as well as at 
the distal locus. c | The cis and distal regions interact through chromatin 
looping in a haplotype-specific manner. Interactions between ‘active 
enhancers’ (in cis) and distal ‘active promoters’ lead to haplotype-specific 
gene expression. In the absence of these interactions, gene expression is 
blocked. It is through these interactions that the SNP has molecular 
pleiotropic effects on chromatin states (both in cis and at the distal locus) 
and gene expression levels.
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CpG islands
Genomic regions with a high 
percentage of CpGs and a large 
observed-to‑expected CG ratio.

(70–80%) of all CpG dinucleotides are methylated across 
tissues, with unmethylated CpGs being mainly confined 
to CpG islands in promoter-proximal regions. However, 
the methylation status of ~20% of all CpGs is dynam‑
ically modified during cellular differentiation, mainly 
at distal enhancers, and contributes to tissue-specific 
gene expression programmes54,55. These changes are 
coordinated at the level of chromatin states and involve 
substantial crosstalk with various histone modifications, 
such as H3K9me and H3K4me56,57.

Genetic effects on 5mC in cis and trans: arrays. 
Population-level studies of DNA methylation in 
humans have heavily relied on the Illumina Infinium 
HumanMethylation450 BeadChip (450k) array or 
its predecessor the 27k array58. These platforms pro‑
vide cost-effective measurements of CpG methylation 

in large samples. The 450k array surveys 1.5% of the 
28 million CpGs in the human genome. Over 85% of 
measured sites fall into genes and promoter-proximal 
regions and cover nearly all CpG islands59. In one of the 
largest genetically informative studies to date, McRae 
et al.60 used the 450k array to profile DNA methylation in 
blood samples of 614 individuals from 117 families con‑
sisting of twin pairs, their parents and siblings. Treating 
methylation levels at individual CpG sites as quantita‑
tive traits, they estimated narrow-sense heritability val‑
ues ranging from 0 to 0.95 across the genome (mean 
~0.20), which is roughly consistent with smaller studies 
using different cell types61,62. Although this estimate may 
seem low, it is higher than the average heritability esti‑
mates obtained for gene expression levels63, indicating 
that inter-individual differences in CpG methylation are 
under stronger genetic  control7,36,49,60,64.

Box 2 | Sources of population epigenomic variation

Epigenomic variation at a locus can be treated as a quantitative trait. Heritability estimates can be obtained using 
classical variance components analysis using pedigree data (for example, parent–offspring, twins, and so on). In the 
absence of epigenetic inheritance, a non-zero heritability estimate (h2 > 0) implies that epigenomic variation at the locus 
is under genetic control by cis- or trans-acting sequence variants. Those variants should be detectable using association 
or linkage mapping methods, barring complicated genetic architectures. When epigenomic variation is not heritable 
(h2 = 0), variation could be the result of differential exposures to past or current environmental factors. Systematic 
identification of such environmental factors should be possible and is one goal of epigenome-wide association studies 
(EWAS)8. In the absence of causative environmental factors, epigenomic variation may be the outcome of stochastic 
somatic epimutations that lead to intra-individual tissue heterogeneity and inter-individual ‘epigenetic drift’ (REF. 139). 
Detection of such somatic epimutations will require advances in single-cell epigenomic sequencing technologies140.

In plant systems, epigenetic inheritance is well documented, which complicates the interpretation of detected genetic 
effects (see the figure, green boxes). For instance, detected cis associations do not necessarily imply genetic regulation 
but may simply be due to linkage disequilibrium (LD) between segregating epigenetic variants (epialleles) at the locus and 
sequence alleles of proximal single-nucleotide polymorphisms (SNPs; see BOX 3 for more details). Conversely, a lack of cis 
association in combination with non-zero heritability estimates could suggest that epialleles are heritable but have 
become disassociated from their underlying DNA sequence haplotypes as a result of high epimutation rates93. Unlike in 
mammalian systems, germline epimutations are frequent and stable enough in plants to provide a reservoir for heritable 
epigenomic variation (see the figure, green dashed lines). The often stated conclusion that epigenomic variation is under 
genetic control whenever cis-SNP associations are detected, or non-zero heritability estimates are found, is strictly only 
valid if epigenetic inheritance can be assumed absent. This assumption should always be checked against emerging 
experimental data.
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Several association mapping approaches have tried 
to identify specific cis- and trans-acting SNPs that 
account for the heritability in CpG methylation (that is, 
methylation QTL (meQTL))42,64–75. Despite major dif‑
ferences in cell types, data processing and analytical 
techniques, a remarkably consistent picture is emer
ging. One consistent observation is that only a modest 
proportion of all surveyed CpGs can be associated with 
meQTL at the genome-wide scale (0.12–15%). Of these 
meQTL, over 90% are strictly local and affect their tar‑
get sites from within several kilobases. The effect sizes 
of these meQTL are, however, considerable — they 
account for 10–97% of the variation in CpG methy
lation. Interestingly, genome-wide analysis shows that 
cis-meQTL are depleted in CpG islands compared to 
other regions42,65,71,72,74,75. This mirrors the distribution of 
site-specific heritability estimates, which are relatively 
low in CpG islands and higher with increased distance 
from CpG islands60. The main reason for this seems 
to be that CpG islands are constitutively hypomethy
lated across individuals, so there is little variation to 
be explained by genetic or environmental factors. This 
lack of variation is not only visible within populations 
but also between human populations64,68,70,74, suggest‑
ing that there are strong evolutionary constraints in the 
maintenance of CpG island-specific methylation levels.

By contrast, the most dynamic and variable methy
lated regions tend to lie outside of CpG islands60,73,76, often 
in regions that are poorly surveyed by the 450k array76,77, 
such as genic, active and weak enhancers annotated by 
the Epigenome Roadmap Project (Supplementary infor‑
mation S2 (figure)). This observation raises the question 
whether current array technologies provide a represent‑
ative picture of population-level methylome variation 
and its underlying genetic architecture. A very recent 
array-based platform, the Infinium MethylationEPIC 
BeadChip array, promises to mitigate these issues by 
surveying 850,000 CpG sites, including some annotated 
enhancers78. Ultimately, population-level sequencing 
approaches are required to gain deeper insights into the 
utility of these array platforms; several such approaches 
are emerging75,76.

Genetic effects on 5mC in cis and trans: NGS. Recently, 
McClay et  al.75 used methyl-CpG-binding domain 
(MBD) protein-enriched genome sequencing (MBD-seq) 
to determine the blood methylomes of 697 individuals. 
They interrogated ~3.2 million CpG sites throughout the 
genome, 15% of which could be associated with meQTL. 
This is about a two- to threefold increase compared to 
results from array-based studies, suggesting that genetic 
effects are much more prevalent than previously appre‑
ciated, and that current heritability estimates for CpG 
methylation are strongly biased downwards.

Similar to what has been reported in array-based 
studies, nearly all of the detected meQTL map in cis 
(TABLE 1). An estimated 75% of these cis-meQTL seem 
to involve simple mutations in the CpG dinucleotides 
themselves (that is, CpG‑SNPs), thus compromising 
their methylation potential. This observation is con‑
sistent with an earlier chromosome-wide survey of 

allele-specific methylation across 16 human cell lines 
using base-resolution measurements79. The putative 
CpG‑SNPs identified by McClay et al.75 are mainly 
located in Epigenome Roadmap Consortium annotated 
heterochromatin (enriched in H3K9me3) and ‘qui‑
escent’ regions (devoid of any measured mark)75, and 
they are probably not functional. However, a consider‑
able subset do correspond to active chromatin states, 
such as weak enhancers (H3K4me1), active enhancers 
(H3K4me1 and H3K27ac), active TSSs (H3K4me3 and 
H3K27ac), and show significant enrichment for genome-
wide association study (GWAS) variants within 200 bp of 
meQTL. A similar enrichment for active chromatin was 
seen in the remaining 25% of cis-meQTL that did not 
involve obvious CpG‑SNPs.

It is likely that meQTL that are associated with 
active chromatin tag regulatory events and correlate 
with local variation in other epigenetic marks. The 
only study to date that could assess this directly is that 
by Banovich et al.42, who integrated 450k methylation 
data with histone modification measurements of the 
same individuals. Indeed they observe pleiotropic 
effects for meQTL on several histone modifications as 
well as on proximal gene expression levels. In particu‑
lar, 25% of the detected eQTL (146 eQTL; false dis‑
covery rate (FDR) = 10%35) were also called as meQTL 
and, in half of them, gene expression and methyla‑
tion levels were positively correlated. For the hQTL, 
40% and 48% of those associated with H3K27ac and 
H3K4me3, respectively, were also classified as meQTL 
(FDR = 10%37). This shows that these meQTL represent 
one facet of highly orchestrated genetic effects on local 
chromatin organization.

The causal mechanisms underlying cis-meQTL in 
regulatory regions are difficult to establish from obser‑
vational data, but are probably driven by differential 
transcription factor binding, similar to that described 
above for genetic effects on integrated chromatin state. 
McClay et al.75 find a highly significant overlap between 
the meQTL and the binding sites of the majority of the 
100 transcription factors that were profiled as part of 
the Epigenome Roadmap Consortium5. However, it 
remains unclear whether the data show that these tran‑
scription factors also exhibit haplotype-specific binding. 
This could only be properly assessed if transcription fac‑
tor binding measurements were available for the same 
individuals that were used in the meQTL studies. Using 
computational predictions, Banovich et al.42 estimate 
that TFBS-disrupting SNPs account for at most 15% of 
detected meQTL. However, differential transcription 
factor binding does not necessarily require mutations in 
TFBSs themselves. Recently, Domcke et al.80 described a 
class of methylation-sensitive transcription factors that 
bind only unmethylated motifs. In this case, differen‑
tial transcription factor binding may be a by-product 
of polymorphisms in the recognition sequences of 
methyltransferases or other binding proteins that dis‑
rupt maintenance methylation across larger genomic 
regions, thus affecting the methylation status of tran‑
scription factor binding motifs. Interestingly, NRF1 
(encoded by the nuclear respiratory factor 1 gene) is one 
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Differentially methylated 
regions
(DMRs). Regions of DNA that 
have different methylation 
patterns between samples 
or individuals.

Epialleles
Alternative chromatin states 
at a given locus. Typically, 
they refer to alternative DNA 
methylation states, although  
in principle they could also 
refer to changes in other 
epigenetic marks.

such methylation-sensitive transcription factor, and its 
target sites seem to be enriched proximal to the meQTL 
reported by McClay et al.75 It remains to be seen whether 
such events can provide the missing mechanisms 
underlying many of the detected cis-meQTL.

Delineating the functional basis of cis-meQTL is 
arguably even more challenging in plant populations, as 
differential methylation states can be inherited across 
generations independently of cis- and trans-acting 
sequence variants (BOX 2). As we will see, the presence 
of epigenetic inheritance has implications for pin‑
pointing specific regulatory mechanisms underlying 
cis associations and raises broader questions regarding 
the heritable basis of population epigenomic variation 
in plants.

Population genetics of 5mC in plants
Population genetic studies of DNA methylation in plants 
have been conducted in Arabidopsis thaliana81,82, maize83 
and soybean84. Although plant species differ widely in 
their total methylation content85, most likely owing to 
differences in genome size and organization85,86, pat‑
terns of intra-specific methylation variation seem to 
be broadly conserved81–84,87–90. Gene-rich euchromatic 
regions tend to be the most variable, whereas vari
ation in transposable element (TE)-rich heterochro‑
matic regions is largely suppressed81,83,91–93. The lack 
of variation in heterochromatic regions is consistent 
with robust silencing of TE sequences by small-RNA-
directed mechanisms52. Unlike mammalian genomes 
in which methylation differences at single CpG sites 
can have functional consequences80, no such effects 
have been documented in plants. Population variation 
in DNA methylation is therefore usually studied at the 
level of differentially methylated regions (DMRs) or aver‑
age methylation levels of various annotation units, as 
these seem to be more functional. Many mammalian 
studies also use the concept of DMRs; however, in the 
context of the genetic studies in mammals reviewed 
here, the units of analysis are typically individual CpGs 
rather than DMRs.

Genetic effects on 5mC in cis. In one of the first pop‑
ulation epigenomic studies in plants, Schmitz et al.81 
identified DMRs from whole-genome bisulfite sequen
cing data of 155 A. thaliana worldwide natural acces‑
sions (strains) and integrated this data with the full DNA 
sequences of the same lines. Clustering accessions based 
on DMRs grouped them according to genetic distance, 
an observation also made in maize83. One interpretation 
of this result is that DMRs are under strong genetic con‑
trol. Using genome-wide mapping analysis, 35% of the 
DMRs could be associated with meQTL, with 26% of 
all associations mapping in cis (within 100 kb). Slightly 
more prevalent cis effects (31–45% of all associations) 
were reported by Dubin et al.82, who analysed a simi‑
larly sized sample of A. thaliana natural accessions from 
the north and south of Sweden, although the authors 
used very different definitions of DMRs. In contrast 
to A. thaliana, cis associations seem to be far more 
frequent in natural populations of maize83 and RILs of 

soybean84. However, these latter studies either did not 
explicitly test for trans associations or used very liberal 
criteria for cis associations, which included the entire 
chromosome, making comparisons between genetic 
architectures difficult.

An emerging view suggests that many of the detected 
cis associations in plant populations are due to SNP 
alleles tagging nearby structural variants, such as TE 
insertions or repeats, that spread DNA methylation 
into flanking regions or facilitate siRNA-mediated 
silencing of downstream homologous sequences94,95. 
These structural variants not only affect DNA methy
lation but also establish allele-specific repressive chro‑
matin states. Spreading of DNA methylation from TE 
insertions into flanking genes has been identified as 
a common mechanism by which TEs can drive both 
adaptive and non-adaptive gene expression changes96,97. 
Interestingly, the spreading of DNA methylation from 
structural variant alleles seems to be partly stochastic 
and thus varies between individuals both in extent and 
stability94,95. This stochasticity could account for the fact 
that detected cis-meQTL explain, on average, only ~40% 
of the variation in DMRs (FIG. 2).

Estimates in A. thaliana and maize suggest that 
about 20% and 50% of all cis-meQTL are attributable 
to flanking structural variants, respectively81,83. The 
regulatory mechanisms underlying the remaining cis 
associations remain elusive. One possibility is that a 
subset of cis effects is due to TFBS-disrupting SNPs, 
similar to what is observed in mammalian systems. 
Surprisingly, there has been no systematic effort, to 
date, to explore this possibility in plant population epi
genomic studies. In A. thaliana, this shortcoming may 
be due to the relatively high gene density per linkage 
disequilibrium (LD) block, which makes it difficult to 
pinpoint specific causal transcription factor binding 
motifs either by computational predictions or chro‑
matin immunoprecipitation followed by sequencing 
(ChIP–seq). Another possibility for the lack of regula‑
tory explanations is that cis associations in plant popu
lations may not involve any type of genetic regulation 
at all, but are simply a by-product of LD between SNP 
alleles and segregating, meiotically stable, methylation 
variants (epialleles). From association or linkage map‑
ping results alone, it is impossible to distinguish such 
cases of (passive) LD from active regulation, unless epi‑
genetic inheritance can be assumed absent or epialleles 
are known to be highly unstable (BOXES 2,3).

Genetic effects on 5mC in trans. Forward and reverse 
genetic screens in A. thaliana and maize have identified 
many strong trans-acting mutations in chromatin con‑
trol genes that affect DNA methylation levels genome-
wide98,99. These mutants have been instrumental for 
delineating the molecular pathways that govern de novo 
and maintenance methylation in different sequence con‑
texts. Although many of these mutants show relatively 
low fitness in the laboratory, mutant alleles for some of 
these genes seem to segregate in natural populations, 
and have been recovered as trans-acting meQTL82,91,100. 
An  instructive example comes from the mapping 
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Gene body methylation
(GBM). Average CG 
methylation levels over the 
body of genes.

analysis of CHH methylation (where H can be any base 
except G) in local populations of Swedish A. thaliana 
accessions. Dubin et al.82 found that two loss‑of‑function 
SNPs in a single gene, CHROMOMETHYLASE 2 
(CMT2), accounted for 23% of all detected trans effects 
(>100 kb). CMT2 encodes a homologue of the methyl
transferase CMT3 (REF.  101), which interacts with 
H3K9me to catalyse CHG and CHH methylation in 
heterochromatin-associated long TEs98. Interestingly, 
CMT2 has negligible trans effects on CHH methyla‑
tion levels in the worldwide accessions100, because the 
causative CMT2 alleles are either not present or occur 

at very low frequencies82. This observation suggests that 
epigenomic variation among plant populations can vary 
substantially on the basis of allele frequency differences 
at a few crucial chromatin-control genes.

Extensive trans effects have also been reported for 
gene body methylation (GBM) levels82 or for DMRs over‑
lapping genic sequences91, which account for 55–70% of 
all detected associations. Unlike in the case of CMT2, 
however, meQTL that affect GBM in trans seem to be 
much less pleiotropic, often only affecting a handful 
of target sequences. Regions in LD with these meQTL 
are enriched for transcription regulators, such as 

Box 3 | Population epigenomic consequences of epimutations

Four diploid individuals sampled from the 
population at two different time-points are shown 
(see the figure, part a). A meiotically stable 
differentially methylated region (DMR) regulates 
the expression of a downstream gene. The DMR is in 
linkage disequilibrium (LD) with a single-nucleotide 
polymorphism (SNP) at time tn (that is, SNP allele A 
is on the same haplotype as epiallele M, and B is on 
the same haplotype as U). In this case, the SNP will 
be detected as a methylation quantitative trait loci 
(meQTL), an expression QTL (eQTL) and possibly 
also as a QTL for higher-order complex traits, 
denoted here as a phenotype QTL (phQTL), without 
the SNP having any regulatory role in determining 
methylation, expression or phenotypes (see the 
figure, left panels of parts b and c). That is, all 
detected associations are simply a by-product of LD 
and incorrectly reflect the underlying biological 
reality (see the figure, part c). Since epialleles are 
subject to forward (U → M; α in the figure, part a) 
and backward (M → U; β in the figure, part a) 
epimutation rates that are several orders of 
magnitude higher than DNA mutations, LD between 
SNP and DMR breaks down rapidly over time93. 
At equilibrium (t∞), SNP alleles are expected to be 
completely disassociated from epialleles. The SNP is 
therefore no longer detected as meQTL, eQTL or 
phQTL (see the figure, right panel of part b). 
Nonetheless, DMRs continue to cause differential 
gene expression (and affect complex traits) but now 
do so independently of the genotype of the flanking 
SNP. In this way, epigenetic variation can contribute 
to the heritability of complex traits without these 
contributions being captured by SNP-based 
genome-wide association scans106. If epialleles 
affect fitness, selection can also shape epiallele 
frequencies at any time t (not shown). At t∞, these 
frequencies are given by the selection–epimutation 
equilibrium93,128,130,132. Epimutations with or without 
selection provide an evolutionary mechanism that 
can affect population epigenomic variation 
independently of genetic explanations. Recent 
population genetic models that account for 
forward–backward epimutations130,132 can be used 
to test this hypothesis against empirical 
site-frequency spectra of DMRs or differentially 
methylated positions (DMPs). This approach 
provides a formal framework for genome-wide 
scans of epigenetic selection in natural populations.
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Epimutation
Heritable stochastic change 
in chromatin state at a given 
position or region. In the 
context of cytosine 
methylation, epimutations are 
defined as heritable stochastic 
changes in the methylation 
status of a single cytosine or of 
a region or cluster of cytosines. 
Such changes do not 
necessarily imply changes in 
gene expression.

transcription factor genes, which could be causal and 
explain this specificity. Although gene body methylation 
typically has no clear phenotype94, it seems to be highly 
conserved on orthologues in various plant species and 
thus evolutionarily important102–104, or the indirect result 
of an evolutionarily important process. Consistent with 
this observation, analysis of Swedish A. thaliana popula‑
tions shows that GBM levels correlate with geographical 
and climatic variables, suggesting that they contribute 
to local adaptation. Indeed, northern Swedish acces‑
sions show increased GBM compared with southern 
accessions. This geographical divide is accompanied by 
allele-frequency shifts at most trans-acting meQTL, with 
‘increasing’ alleles for GBM being more frequent in the 
north than in the south. Hence, epigenetic adaptation 
seems to be mediated, in this case, by selection on a large 
number of trans-acting meQTL, which is supported 
by the fact that many of these loci fall into regions of 
previously characterized selective sweeps105.

Heritable epimutations may partly drive population 
epigenomic variation. Despite the detection of meQTL 
in both cis and trans, the two largest plant population 
epigenomic studies to date show that only 18–35% of 
all DMRs can be associated with genetic variation at 
genome-wide scale (TABLE 1). An intriguing hypoth‑
esis is that this lack of association is the result of the 
sequence-independent segregation of alternative methy
lation states (epialleles)106. In plants, heritable epialleles 
frequently arise de novo through germline epimutation 
events; that is, through stochastic losses or gains of DNA 
methylation. These heritable epimutations seem to occur 
mainly at CpG dinucleotides and are highly dependent 
on genomic context93,107–109. Estimates in A. thaliana 
mutation accumulation lines indicate that the forward 
epimutation rate (that is, the rate of methylation gain) 
is about 2.56 × 10−4 and the backward epimutation rate 
(that is, the rate of methylation loss) is about 6.30 × 10−4 
per CpG site, per haploid methylome, per generation93. 
Because these rates are on average about five orders of 
magnitude higher than the known genetic mutation 
rate (~7 × 10−9) (REF. 110) they provide one mechanism 
by which epigenetic variants can become disassociated 
from their underlying DNA sequence haplotypes over 
evolutionary timescales93 (BOXES 2,3). The degree of dis‑
association depends on the precise epimutation rate, the 
age of the haplotype and the potential effect of epigenetic 
selection. Population epigenomic variation in plants 
could therefore be substantially shaped by epimutational 
processes. Although this biological hypothesis could 
certainly account for the modest proportion of genetic 
associations seen in genome-wide studies, it needs to be 
distinguished from more mundane technical explan
ations, such as low statistical power to detect meQTL, 
complex polygenic or epistatic genetic architectures, 
presence of causative rare alleles, and so on. These tech‑
nical difficulties potentially undermine many ecological 
studies, particularly in non-model organisms, that report 
evidence of epigenetic adaptation without ruling out the 
possibility that such effects are mediated by selection on 
(undetected) cis- or trans-acting genetic variation.

Because of these technical issues, several groups 
have tried to assess the effects of epigenetic inheri
tance on population epigenomic variation in more 
simplified experimental systems in which confound‑
ing effects of genomic variation have been reduced to 
a minimum111–122. Cortijo et al.117, for instance, showed 
that experimentally-induced DMRs in an isogenic 
A. thaliana population are remarkably stable and account 
for about 60% of the heritability of several plant com‑
plex traits. Interestingly, these experimentally-induced 
DMRs are also variable in natural populations of this 
species, suggesting that they are targets of epimutations 
in the wild and potentially also subject to natural selec‑
tion. Observations such as these pose deeper questions 
about the evolutionary mechanisms that generate popu
lation epigenomic variation in plants and have stimu‑
lated substantial theoretical work in recent years123–132. 
It is precisely the transgenerational dimension in plant 
population epigenomics that makes it fundamentally 
different, and arguably more challenging, than popula‑
tion epigenomics in other organisms in which epigenetic 
inheritance is negligible.

Relating meQTL to chromatin states. Unlike in humans, 
population studies of integrated chromatin states have 
not been carried out in plants. It therefore remains 
unclear how the cis- and trans-genetic associations for 
DNA methylation manifest at the level of chromatin 
organization. DNA methylation interacts with several 
chromatin marks in plants. In A. thaliana DNA methy
lation is associated with the presence of H3K27me1, 
H3K9me2 and H4K20me1 (REF. 24) and the absence 
of the H2A.Z histone variant133, and the RNA-directed 
DNA methylation and CMT2–CMT3 methylation 
maintenance pathways are dependent on the pres‑
ence of H3K9me57,134,135 and the absence of H3K4me3 
(REF. 57). In humans, reference epigenomes have been 
instrumental to relate meQTL analysis back to chro‑
matin state knowledge. Despite initial attempts to study 
reference epigenomes in plants15,24,29,30, no such large-
scale integrated reference epigenomes are currently 
available. Recently, Lane et al.136 called for the launch 
of a plant ENCODE (Encyclopedia of DNA Elements) 
project. This project would benefit from the large 
pre-existing epigenomic resources in plants and would 
be instrumental for dissecting the regulatory implica‑
tions of meQTL, as well as for contextualizing genetic 
associations from genome-wide mapping studies of 
plant complex traits.

Conclusions
A detailed understanding of the genetic basis of popu
lation epigenomic variation is just beginning to emerge. 
Important quantities, such as the heritability of epi
genomic variation at a locus, its distribution along the 
genome, or the effect sizes of cis- and trans-acting 
genetic variants, have so far only been partly studied in 
the context of DNA methylation, using relatively small 
sample sizes and tissue types. Although it may be pre‑
mature to draw major conclusions from these studies, a 
trend is beginning to emerge.
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Genotype–phenotype map
A map that describes the 
functional connections 
between genotype and 
phenotype. The concept of a 
genotype–phenotype map is 
widely used as a metaphor 
for the many ways in which 
genotypic information 
influences the phenotype of 
an organism.

One key observation from human methylation 
studies is that most functionally relevant changes in 
CpG methylation occur in regulatory elements, such as 
enhancers. These changes correlate with developmen‑
tal transitions within an individual but seem also to be 
hubs of within- and between-population epigenomic 
variation. Popular array technologies do not measure 
these regions sufficiently well to be able to draw solid 
conclusions regarding genome-wide patterns of inter-
individual differences and may therefore bias insights 
into the underlying genetic architecture. In light of 
recent methylome sequencing approaches, we hypothe‑
size that array-based studies probably underestimate the 
prevalence of genetic contributions and may have led to 
downward biased heritability estimates in the literature. 
The severity of this bias will need to be determined as 
sequencing approaches become economically more fea‑
sible to be applied to large samples with sufficiently high 
sequencing depth.

Nonetheless, most studies to date agree that inter-
individual differences in DNA methylation are mainly 
determined by cis-regulatory sequence polymorphisms, 
probably involving mutations in TFBSs with down‑
stream consequences on local chromatin environment. 
The sparsity of trans-acting polymorphisms in humans 
suggests that such effects are highly deleterious. Indeed, 
trans-acting factors are expected to be caused by muta‑
tions in chromatin control genes or other highly pleio
tropic regulators. If trans-acting variants do exist in 
human populations, they probably segregate as rare 
alleles or originate from somatic mutations and present 
with clinical phenotypes, as is the case in many cancers.

Trans effects on genome-wide DNA methy
lation states are much more common in plants. In 
fact, trans-acting variants are a major contributor to 
within- and between-population methylome variation 
and seem to contribute to local adaptation. The inter‑
pretation of cis associations in plants poses unique 
challenges. These challenges stem mainly from the 
fact that differential methylation states (epialleles) can 
be inherited meiotically for many generations, so that 
detected cis associations are simply a reflection of LD 
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