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ABSTRACT 

Mass spectrometry imaging (MSI) is a powerful molecular imaging technique. In 

microprobe MSI, images are created through a grid-wise interrogation of individual 

spots by mass spectrometry across a surface. Classical statistical tests for within-

sample comparisons fail as close-by measurement spots violate the assumption of 

independence of these tests, which can lead to an increased false-discovery rate. 

For spatial data this effect is referred to as spatial autocorrelation. 

In this study we investigated spatial autocorrelation in three different matrix-assisted 

laser desorption/ionization MSI datasets. These datasets cover different molecular 

classes (metabolites/drugs, lipids, and proteins) and different spatial resolutions 

ranging from 20 µm to 100 µm. Significant spatial autocorrelation was detected in all 

three datasets and found to increase with decreasing pixel size. 

To enable statistical testing for differences in mass signal intensities between regions 

of interest within MSI datasets, we propose the use of Conditional Autoregressive 

(CAR) models. We show that by accounting for spatial autocorrelation, discovery 

rates (i.e. the ratio between the features identified and the total number of features) 

could be reduced between 21% and 69%. The reliability of this approach was 

validated by control mass signals based on prior knowledge. 

In light of the advent of larger MSI datasets based on either an increased spatial 

resolution or 3D datasets, accounting for effects due to spatial autocorrelation 

becomes even more indispensable. Here we propose a generic and easily applicable 

workflow to enable within-sample statistical comparisons. 
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INTRODUCTION 

Mass spectrometry imaging (MSI) is a molecular imaging technology that 

allows visualizing distributions of molecules in surfaces, such as biological tissue 

specimens or inorganic materials. In microprobe mode, the most common MSI mode, 

images are created through distinct measurements in a raster grid with a defined 

mesh-size across the sample’s surface using different in situ ionization techniques.1 

MSI is applied in many areas, including material science, microbiology, biomedical 

research, and pharmacological studies.2 

In all these paradigms it can be of interest to investigate if the abundance of 

ions significantly differs between two regions of interest (ROI). For this purpose, there 

exist several techniques ranging from simple box plot evaluation to multivariate 

methods such as Principal Component Analysis (PCA; Table S-1). Amongst these 

techniques, statistical hypothesis testing, such as a t-test (Text S-1), offers an 

objective way to determine significant differences in ion intensities. However it is 

known that pixels within a MSI dataset are not independent from each other and 

hence violate the assumption of independence that is made by most statistical tests.3  

This dependency between pixels can for instance be caused by real biological 

effects of molecular interaction between nearby cells or by experimental factors such 

as diffusion of analytes through tissue washes which can introduce artificial spectral 

correlation between pixels.4 As a consequence of this spatial correlation between 

pixels, classical statistical inference may suffer from an increased false positive-rate 

(i.e. detection of features that are truly not different in the two conditions); especially 

since the length scales of these effects are becoming more and more accessible with 
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improvements in spatial resolution of mass spectrometers, where recent commercial 

systems achieve even subcellular 5 µm pixel sizes.5 

This inapplicability of classical statistical tests is still an unresolved problem in 

MSI. But given the rigorousness of statistical testing, there is a strong need in MSI for 

new statistical procedures that enable within-sample statistical comparisons by 

accounting for the inherent dependency between pixels. 

In this study we show that the failure of classical statistical tests in MSI is due 

to an effect, which is known as ‘spatial autocorrelation’. Spatial autocorrelation refers 

to the correlation among values of a single variable strictly attributable to their 

relatively close positions on a two-dimensional surface, thereby introducing a 

deviation from the independent observations assumption of classical statistics.6 In 

statistics, spatial analysis is used to describe and analyze data, which is affected by 

spatial dependency. The presence of spatial autocorrelation can be assessed using 

coefficients such as Moran’s I (Text S-1).7  Moreover, spatial regression models can 

be used to model spatial dependence of correlated values in order to test for 

differences in their mean.8-9 Both procedures have in common that values at any 

given location are analyzed accounting for their dependency on the neighboring 

values. 

This study here addresses for the first time spatial autocorrelation in MSI data 

by using spatial statistics. First, we investigate the presence of spatial autocorrelation 

in three representative datasets. Then, we propose Conditional Autoregressive 

(CAR) models, which have already been applied in biomedical MRI studies, as 

statistical solution for within-sample statistical comparisons.10 
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EXPERIMENTAL SECTION 

Mass spectrometry imaging datasets 

All three datasets were acquired using matrix-assisted laser 

desorption/ionization (MALDI) mass spectrometry imaging (MSI).  

The first dataset is from a drug imaging experiment at 80 µm lateral resolution 

in a transgenic gastric cancer mouse model to investigate the distribution of the anti-

cancer drug erlotinib (Tarceva®, Roche; 393.17 g/mol) and metabolic changes in the 

tumor.11 The experimental details are described in the Supplementing Information 

(Text S-2). 

Two additional MSI datasets from mouse brains were obtained from previously 

published studies. The first, termed “CSD mouse brain dataset”, is a protein MSI 

dataset recorded at 100 µm spatial resolution from a coronal brain section of a 

transgenic mouse model which expresses a CaV2.1 α1 subunit gene mutation that 

was found in patients with familial hemiplegic migraine type 1.12 The mouse was 

sacrificed after induction of multiple cortical spreading depressions (CSDs) by 

repeated topical application of KCl through a borehole in the right cortex, which left 

the contralateral hemisphere cortex unaffected.13
 CSD is considered the 

electrophysiological correlate of migraine aura.14-15  The second MSI mouse brain 

dataset was obtained from a sagittal section of a wild-type (control) mouse brain at 

high spatial resolution (20 µm) using dithranol for lipid detection.5 

Details of all three datasets are summarized in Table 1. 
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Data processing of the drug imaging and CSD mouse brain datasets 

Co-registration of the MSI data with the histological image of the tissue 

sections was done within the FlexImaging 4.1 software (Bruker Daltonics). For both, 

the drug imaging and CSD mouse brain datasets, regions of interest (ROI) were 

defined solely based on histological features of the tissue, resulting in annotated 

areas for the tumor and the epithelial layer of the mucosa in the drug imaging dataset 

(Figure 1A and 1B), and in annotated areas for the left and right cortex (CSD-affected 

hemisphere) in the CSD mouse brain dataset (Figure 2A).  

The ROIs’ spectra were then pre-processed in ClinProTools 2.2 (Bruker 

Daltonics). This included baseline subtraction (TopHat: 10%) and normalization of 

the spectra to their total ion count (TIC). The resolution was set to 2000 for the drug 

imaging dataset and to 800 for the CSD mouse brain dataset. Peaks were picked on 

the total average spectrum with a signal to noise threshold of 5.00 and a relative 

intensity threshold to the base peak of 1%. 

The pre-processed peak intensity table was then further analyzed in the R 

statistical environment. 

Statistical analysis of the drug imaging and CSD mouse brain datasets 

All following statistical terms and methods used in this study are described in 

detail in the Supporting Information Text S-1. 

As strong tailing was observed in the intensity distributions for many features 

in the drug imaging dataset and normal distribution is required for subsequent 

statistical procedures, it was log-transformed. 
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For both, the drug imaging and the CSD mouse brain MSI datasets, the 

processed mass signals were tested for intensity differences between regions of 

interest using the Student t-test (Text S-1). Resulting p-values were subsequently 

adjusted by the Benjamini-Hochberg procedure, a procedure that aims at controlling 

the false discovery rate when multiple tests are performed simultaneously (Text S-

1).16 Adjusted p-values ≤ 0.05 were considered significant. 

Moran’s I is used as an indicator of the presence of a spatial autocorrelation in 

the data (Text S-1).17 Values below zero are indicative of a negative autocorrelation, 

above zeros of a positive autocorrelation, and zero of the absence of a spatial pattern 

(Figure 1E). Here it was calculated using unit weights for neighbors within a 

Euclidean distance (i.e. the straight-line distance between two points) of 2 pixel units 

(‘spdep’ package). Spatial spectral correlations between pixels were calculated using 

Pearson’s correlation across all features (Text S-1) 17 

Data processing and analysis of the high-resolution sagittal mouse brain 

dataset 

Co-registration of the MSI data with the histological H&E image of the tissue 

sections was done within the FlexImaging 4.1 software (Bruker Daltonics). Then the 

data were uploaded to SCiLS Lab 2015a (SCiLS Lab, Bremen, Germany) where it 

was TIC-normalized and lipid peaks were picked using the mean spectrum (peak 

width = ± 0.15 Da). The peak intensities per pixel were then exported as imzML file 

and imported into Matlab R2015a (The MathWorks, Natick, MA, USA) for final data 

analysis. Spectral correlations between pixels were calculated using Pearson’s 

correlation. Moran’s I as indication for spatial autocorrelation was calculated using 

unit weights for neighbors within a Euclidean distance of 2 pixel units.17 Simulation of 
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lower resolution images were done using the imresize function of the Image 

Processing Toolbox and ‘nearest’ as interpolation method. 

Statistical analysis using the Conditional Autoregressive (CAR) model 

In order to test whether a feature shows a statistically significant difference in 

intensity levels between two ROIs, we employed a regression model with Gaussian 

Conditional Autoregressive (CAR) errors. In this study we used the CAR model 

implementation in the ‘spautolm’ function from the ‘spdep’ package, a well-

established toolkit for spatial statistics.18-19 To statistically analyze features within a 

MSI dataset, we propose to follow the algorithm described below and summarized in 

Figure 4. 

For a CAR regression model, a neighborhood matrix W containing the list of 

neighbors for each location has to be provided. In W, off-diagonal elements wij are 

set to one, which is pixel i is neighbor of j, if the Euclidean distance between the two 

pixels i and j is smaller or equal than a pre-specified threshold d. As no assumptions 

can be made a priori about the extent of the relevant pixel neighborhood, our 

algorithm is initiated with d1=1 (i.e. with a first-order Markov scheme), a commonly 

used neighborhood structure in spatial statistics.20 At each iteration, the distance 

cutoff d is then increased by one unit, which progressively leads to accounting for the 

influence of a larger number of neighbors. To exclude the influence of tangent ROIs 

(as observed here for the upper cortex in the CSD mouse brain dataset; Figure 2A), 

we restricted the neighborhood to pixels from the same ROI.  

Then, a CAR model is fit for each feature and the corresponding p-value 

recorded. The p-value represents the significance of intensity differences between 

the regions while accounting for spatial autocorrelation. At the end of each iteration, 
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the list of p-values is compared to the list obtained using the previous threshold 

through two different statistical tests: a paired t-test (Text S-1) and a McNemar’s chi-

squared test (Text S-1). The first test checks for significant changes between the 

means of the two lists, hence for global changes. The second is performed on the 

dichotomized (significant/non-significant) lists of p-values to test whether the two lists 

have the same behavior in terms of declaring the set of features as significant (i.e. 

equality of discovery rates in the two lists); thus checking for local, but relevant, 

changes at the border of significance. The algorithm stops once both tests do not 

detect a significant (P > 0.05) difference between the recent list of p-values (di) and 

the one before (di-1); in that case, dmax=di-1. We found that the two tests complement 

each other and increase the power of detecting relevant differences between the 

lists. 

At the end of this process, for each feature, a list of p-values (one for each 

specific threshold up to dmax) is compiled. The penultimate step of the workflow 

consists of selecting, for each feature, the p-value corresponding to the distance d 

that led to the best-fitted model. This is done by selecting the model with the lowest 

Akaike Information Criterion (AIC), an estimate of the information loss associated to a 

model (Text S-1). This AIC-based selection leads to a list containing one p-value per 

feature. In the last step, the Benjamini-Hochberg correction is applied to this list.16 

Alternatively, the correction is applied to the p-values obtained from the CAR models 

with the highest threshold dmax. 
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RESULTS AND DISCUSSION 

Mass spectrometry imaging (MSI) is a powerful tool to study the spatial 

distribution of molecules in surfaces. For single-sample analyses it can be of interest 

to investigate if the abundance of some mass signal significantly differs between 

some regions of interest (ROI). For this purpose there exist several techniques. Each 

of these has its strength and disadvantages (Table S-1). For example, visual 

examination is used in boxplots, and arbitrary thresholds are used in PCA and 

discriminant analysis to determine the discriminatory power of a feature. However, 

this is prone to subjectivity of the investigator. In contrast, statistical hypothesis 

testing offers the most objective way to determine significant differences in ion 

intensities. It has been reported that for intra-sample statistical comparisons, a very 

high fraction of seemingly significant differences indicates an unusually high false 

discovery rate.21 The reason is that classical statistical tests, including non-

parametric tests (i.e. tests that do not make any assumption about the distribution in 

the population; Text S-1) such as the Mann-Whitney U test, fail as the data does not 

fulfill the assumption of independence between observations.3 For spatial data, this 

effect is known as spatial autocorrelation.22 

In this study, spatial autocorrelation in matrix-assisted laser 

desorption/ionization (MALDI) mass spectrometry imaging (MSI) was studied in three 

datasets of different molecular classes and spatial resolution (Table 1). Two datasets 

illustrate a scenario where intensity differences of mass signals (features) need to be 

compared on a statistical level between certain regions of interest (ROI) within a 

sample. The first dataset is from an imaging experiment of the anti-cancer compound 

erlotinib in a gastric cancer mouse model. The aim of this experiment is to determine 

differences in drug and metabolite concentrations between the tumor and the 
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epithelial layer of the stomach mucosa (Figure 1B, 1G, and 1H). The second dataset 

is from a cortical spreading depression (CSD) experiment in a hemiplegic migraine 

mouse model. As the CSD is restricted to one hemisphere, it was of interest to study 

the proteomic changes in the CSD-affected cortex (right hemisphere) compared to 

the unaffected cortex (left hemisphere) (Figure 2A). The third dataset originates from 

a high-resolution measurement of a sagittal mouse brain section at 20 µm pixel size, 

which allows studying the effect of spatial autocorrelation as a function of distance 

between the measurement points (Figure 3). 

MSI data suffers from spatial autocorrelation 

An indication of spatial autocorrelation is a large fraction of significant features 

amongst all tested mass signals when comparing spectral information between intra-

sample ROIs using simple t-tests. This was 93.4% (99/106) in the drug imaging 

dataset and 55.4% (62/112) in the CSD dataset (Figures 1F and 2E). Although there 

is no ground truth available, especially for the CSD mouse brain these numbers 

seem high compared to only one significant feature reported before.13 In the drug 

imaging experiment, the significant difference of the alpha-cyano-4-hydroxycinnamic 

acid matrix cluster (HCCA, m/z 379.1, P=2.5e-4), which was homogenously sprayed 

on top the tissue, indicated a test susceptible for delivering false-positive results. 

This phenomenon is supported by statistical theory, which assumes 

independence between samples in a classical test. The effect under which such tests 

lose their accuracy in spatial data is described as spatial autocorrelation. There are 

statistical measures such as Moran’s I to test for the presence of spatial 

autocorrelation.17 Examples for the range of Moran’s I values are shown in Figure 1E. 
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For the drug imaging dataset, Moran’s test revealed significant spatial 

autocorrelation for 100% of the features (Table S-2), including erlotinib and the 

HCCA matrix (Figure 1D). Additionally, a high spatial spectral correlation was 

observed for each pixel to its 2-pixel unit neighborhood with an average correlation of 

0.9 (Figure 1C). Also the CSD mouse brain dataset was found to suffer from spatial 

autocorrelation: 94% of all features exhibited significant spatial autocorrelation (Table 

S-3) and the average correlation between neighboring pixels was 0.84 (Figure 2B). 

Spatial autocorrelation depends on spatial resolution 

We have shown that MSI data can be affected by spatial autocorrelation. The 

causes on spectral autocorrelation can be of biological and technical nature. Innate 

to a biological organism, molecules are related to each other on different scales 

ranging from macroscopic anatomy, over microscopic histology, to nanoscopic inter- 

and intra-cellular communication. Consequently, the scale of the employed molecular 

imaging technology determines the degree of observed biological spatial 

autocorrelation. Since in MSI the scale is microscopic, spectral autocorrelation is 

mostly determined biologically by histology On top of biological vicinity effects, 

spectral autocorrelation can be introduced by the technique itself. Examples in 

MALDI-MSI are analyte diffusion during tissue washes, solvent extraction and 

crystallization during matrix application, or laser oversampling (i.e. the laser diameter 

is bigger than the pixel size).4, 23-24 We hypothesize that dependent on the spatial 

resolution of the MSI system, the length scales of these effects become more or less 

accessible and hence spatial autocorrelation stronger or weaker, respectively. 

Consequently, we next investigated whether the degree of spatial 

autocorrelation depends on the selected spatial resolution of a MSI dataset. For this 

we used a third, 131,082 pixel MSI dataset of a sagittal mouse brain section 
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measured for the lipid mass range at a spatial resolution of 20 µm (Figure 3A). In 

order to test the spectral correlation as a function of distance, the correlation for each 

pixel was calculated to the pixels of layers with different Euclidean distances with 

respect to the center pixel (Figure 3B). 

The results show a continuous decrease of the overall correlation between 

pixels with an increasing distance, which corresponds to a lower resolution (Figure 

3D). The lower limit of correlation is determined by the average correlation between 

pixels, which was calculated to be 0.78 based on 10,000 randomly picked pixels. The 

reason for this high correlation baseline is inherent to the MSI technique, which are 

the detection of the most abundant and ionization-affine molecules, which result in 

similar spectral profiles. Another determinant of this lower limit of spatial correlation is 

the anatomy of the tissue. This means that even with an increasing distance between 

two pixels the correlation could increase again if the running pixels enter a region that 

is histologically and molecularly similar to the reference pixel. This effect is depicted 

in Figure 3C. 

This inherent spatial autocorrelation of spectral information is reflected also in 

the calculation of Moran’s I for different simulated spatial resolutions of the MSI 

dataset where the value of Moran’s I decreases with a decreasing spatial resolution 

(Figure 3E). 

While in this study only lower resolutions were simulated by in silico down-

sampling, Van de Plas et al. proposed a method for augmenting the resolution of MSI 

images through image fusion with images from high resolution optical microscopy, 

achieving pixel sizes down to 330 nm.8 It would be interesting to study the effect of 

image fusion on spatial autocorrelation since the method uses histology as a guide to 

make molecular predictions for non-extant MSI pixels. Certainly it would affect a 
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statistical test because –given a fixed ROI size and homogenous histology– the 

statistical power (i.e. the ability of a test to detect differences when there are true 

differences; see Text S-1) is influenced by the number of pixels, where a higher 

spatial resolution should lead to a higher statistical power and vice versa. However 

this holds only if the observations are independent to each other. If not, as observed 

in MSI data, this has to be corrected for when performing intra-sample statistical 

tests. 

Conditional Autoregressive Model (CAR) can correct for spatial autocorrelation 

in MSI data 

In order to test for statistically significant differences in intensity levels between 

two ROIs, while accounting for spatial autocorrelation of the observations, we employ 

a Gaussian Conditional Autoregressive (CAR) model (Text S-1).9 10 It is a supervised 

method that allows for testing of significant differences in the mean between two or 

more groups in spatial data and hence their definition beforehand (here the regions 

of interest) is necessary. In consequence, it cannot be used as other unsupervised 

methods (e.g. PCA or non-negative matrix factorization; Table S-1) to segment MSI 

datasets into different clusters based on multivariate molecular profiles. However, it 

shares with PCA the fact that it is parameter-free. It only assumes Gaussian 

distribution of values, which can be effectuated by data transformations in most 

scenarios. An example is the logarithm transformation we used for the drug imaging 

dataset. Although in this study only two ROIs per dataset were compared, the CAR 

model can be extended to any number of ROIs. 

The only crucial factor is the definition of the neighborhood of each pixel. As 

no assumptions can be made on the relevant neighborhood a priori, we propose to 

iteratively extend the neighborhood until there is no dataset-wide significant change 
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in the CAR-corrected p-values (Figure 4). For the CSD mouse brain dataset, the 

maximum extension was reached at a distance of 6 pixel units and for the drug 

imaging dataset at 2 pixel units (Figure 5A and 5C). Using these maximum distance 

cutoffs (dmax), significant observations could be reduced from 62 to 10 (83.9% 

reduction) in the CSD mouse brain dataset, and from 99 to 64 (35.4%) in the drug 

imaging dataset (Figure 5B and 5D).  

As we observed instability for some features with increasing distance –

evidence for this effect of an again upwards-correction of CAR corrected p-values 

can be observed for the average of all features between distance 3 and 6 in Figure 

5A, and for individual features in Figure S-1–, the stability of each feature’s CAR 

model was customized for by choosing the model with the lowest Akaike information 

criterion (AIC) within d1 and dmax. This way, the number of initially significant features 

condensed to 19 (69.4% reduction) and 78 (21.2%) for the CSD and drug imaging 

datasets, respectively (Figure 5B and 5D). 

We can only speculate about the difference in reduction rates, as the lack of a 

biological ground truth limits the options to test for validity of the results. A reason 

could be the well-known increased chemo-temporal dynamics of the metabolome 

compared to the slower, biosynthesis-driven proteome which would lead to a higher 

probability of observing significantly altered signals in the lower mass range. The 

second effect is that this probability has to be multiplied by the isotopic signals 

observed. These were only observed in the drug imaging dataset due to the higher 

experimental mass resolution, which was acquired using a reflectron ToF system. 

In an attempt to monitor CAR correction, we selected certain features as 

control based on prior knowledge. For the CSD mouse brain dataset it was known 

from a previous conducted study on five mice that intensities belonging to a modified 
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version of histone H4 (here detected at m/z 11,342; P=2.6e-10; Figure 2D) were 

significantly lower in the CSD-affected hemisphere whereas the unmodified version 

of H4 (here detected at m/z 11,304; P=1.3e-04; Figure 2C) was reported non-

significant, indicating a modification of H4 as response to CSD induction (Figure 2E).5 

The CAR correction led to full reproducibility of the results in line with the previous 

multi-sample study, since the modified H4 is still significant (P=0.009; red triangle, 

Figure 5C) and the unmodified version became non-significant (P=0.280) (blue 

triangle, Figure 5C). 

For the drug imaging dataset the control was the HCCA matrix (m/z 379.1; 

P=2.5e-04 before CAR) as it has been homogeneously applied during sample 

preparation. As expected, it became non-significant (P=0.068) in the CAR model with 

the lowest AIC (blue triangle, Figure 5A). Erlotinib (m/z 394.2; P= 7.1e-157) remained 

strongly significant (red triangle Figure 5A) and suggests a significant lower uptake of 

erlotinib in the tumor compared to the healthy mucosa (Figure 1D and 5A). However, 

positive results such as from erlotinib should be still taken with caution, as ionization 

bias can still be a source of spurious differential mass signals, which can be 

overcome by normalization strategies.25 

Role of ionization source 

As we have shown, the approach is generic for all kinds of MSI data, ranging 

from metabolites to protein datasets, from high to low spatial resolution experiments. 

Although all data investigated here originated from MALDI instrumentation, we 

surmise a direct applicability to other MSI techniques such as desorption electrospray 

ionization (DESI) and secondary ion mass spectrometry (SIMS) which all provide 

spatial data. SIMS and MALDI have a discrete acquisition of the pixels, DESI 

acquires the spectra continuously. As matrix-free method, DESI lacks the analyte 

Page 17 of 30

ACS Paragon Plus Environment

Analytical Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 

 18

diffusion caused by the matrix application. But similar to MALDI oversampling, signal 

carryover of analytes between proximate pixels has been reported in DESI and might 

be an additional source of spatial autocorrelation.25 If an estimate of the signal 

carryover or oversampling effect radius can be made the pixel neighborhood of the 

CAR models could be adjusted accordingly. 

Computational perspective 

The datasets presented here, with around 2,000 pixels after ROI definition, 

required only 32 MB of main memory for the distance matrix. However, next-

generation MSI instrumentation will deliver datasets with over 100,000 pixels. If only 

50% of the pixels go into the comparison of ROIs, the distance matrix will consume 

20 GB [space complexity O=f(n2); with n being the number of pixels]. The ‘spdep’ 

package is able to reduce the memory load through a list structure [O=f(m*n); with m 

being the average number of neighbors for all n pixels and m<<n]. List structures, 

however, come at the prize of a higher time complexity. Hence, to keep future spatial 

statistics for MSI data feasible on desktop PCs, we forecast the need for accelerated 

and memory-efficient implementations of neighborhood representations and CAR 

models using e.g. parallelization through GPUs.26 

We foresee this especially in the light of the advent of larger MSI datasets 

based on either an increased spatial resolution or 3D datasets. Particularly for the 

latter, within-sample comparisons based on voxels are expected to become more 

commonly performed which will make accounting for effects due to spatial 

autocorrelation even more indispensable. 
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CONCLUSIONS 

This is the first paper to describe the effect of spatial autocorrelation in MSI 

data. Besides creating awareness of spatial autocorrelation in MSI data, we propose 

a generic and easily applicable workflow as a statistical solution to statistically, and 

therefore objectively, determine significant differences in peak intensities between 

regions of interest using CAR regression models. The R code of this workflow 

together with the data and results (Tables S-2 and S-3) are provided as supporting 

information. 
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TABLES 

Table 1 Dataset descriptions. 

  
Drug 

imaging 

dataset 

CSD 

coronal 

mouse 

brain  

High-

resolution 

sagittal 

mouse brain  

ROIs to 

compare / 

purpose 

Erlotinib 

signal in 

tumor vs. 

mucosa 

Biochemical 

changes in 

CSD cortex 

vs. non-

CSD cortex 

Investigation 

of spatial 

autocorrelation 

as function of 

distance 

Spatial 

resolution 
80 µm 100 µm 20 µm 

Pixels 

Tumor: 

997 

Mucosa: 

1057 

CSD cortex: 

967 

Control 

cortex: 919 

Total: 131,082 

Mass 

range 
200-480 

3,000-

19,200 
300-1,000 

Molecular 

class 
Metabolites Proteins Lipids 

Number 

of 

features  

106  112 125 
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FIGURE LEGENDS 

Figure 1 Drug imaging dataset.  

 

(A) Microscopic image of the mouse stomach after hematoxylin and eosin (H&E) 

staining. (B) Histology was used to obtain regions of interest (ROI) such as the tumor 

area (G) and epithelial layer of the mucosa (H). Each feature was tested for 

significant intensity differences between the ROIs. Adjusted p-values of the t-tests 

are shown in (F) with insets highlighting the p-values of erlotinib and the alpha-

cyano-4-hydroxycinnamic acid (HCCA) matrix. (D) Mass spectrometry image of 

erlotinib and HCCA in both ROIs with level of spatial autocorrelation determined by 

Moran’s I. (E) Examples for Moran’s I values ranging from perfect dispersion (right), 

over random dispersion (left), to high spatial correlation (middle). (C) Spectral 

correlation between neighboring pixels confirms presence of spatial autocorrelation. 
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Figure 2 CSD coronal mouse brain dataset. 

 

(A) Microscopic image of the mouse brain after Nissl staining and histology was used 

to obtain cortical spreading depression-unaffected (blue) and affected (red) cortex 

regions. (E) Each feature was tested for significant intensity differences between both 

cortices. P-values are shown in with insets highlighting the p-values of histone H4 

and its modified version. Mass spectrometry image of distributions of histone H4 (C) 

and its modified version (D) with level of spatial autocorrelation determined by 

Moran’s I. (B) Spectral correlation between neighboring pixels confirm presence of 

spatial autocorrelation.  
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Figure 3 High-resolution sagittal mouse brain dataset. 

  

(A) Merged mass spectrometry image of two lipid signals in the sagittal mouse brain 

dataset. The yellow square is magnified in (B) which illustrates the different pixel 

layers used to calculate the spatial spectral correlation for each pixel, as shown in 

(D). (C) Spatial spectral correlation depends on anatomical features. This is 

highlighted by the correlation coefficients (shown in the color bar) between all pixels 

that lie on the trajectory from s to e (yellow line) with respect to the first pixel s. (E) 

Boxplots show Moran’s I values after downscaling each MS image to simulated 

pixels sizes of 20, 40, 60, 80, 100, and 200 µm. 
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Figure 4 Within-sample statistical tests workflow. 

 

Abbreviations used: CAR, conditional autoregressive model; AIC, Akaike information 

criterion. 
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Figure 5 Conditional autoregressive model-corrected p-values. 

 

Boxplots of conditional autoregressive (CAR) model-corrected p-values are shown as 

a function of the maximum distance of the neighborhood pixels for the drug imaging 

dataset (A) and the cortical spreading depression (CSD) mouse brain dataset (C). 

The course of individual features are shown in red and blue where triangles indicate 

the p-value obtained from the CAR model with the lowest Akaike information criterion 

and dots indicate the p-value obtained after a global stop of the algorithm due to non-

significant changes from one distance to the following one. Reduction rates in 

significant features for both approaches are visualized as pie charts for the drug 

imaging dataset (B) and for the CSD mouse brain dataset (D). 
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