
More than 100 years ago, Archibald Garrod realized 
that “inborn errors of metabolism” are “merely extreme 
examples of variations of chemical behaviour which are 
probably everywhere present in minor degrees” and that 
this “chemical individuality [confers] predisposition to 
and immunities from the various mishaps which are 
spoken of as diseases”1–3. Disruptions in metabolic pro-
cesses are associated with many common diseases, such 
as type 2 diabetes and cardiovascular disorders. Some 
disease-associated changes in metabolic phenotypes 
are causative and therefore constitute potential points 
of therapeutic intervention; other changes in metabolite 
levels are a consequence of the disease and thereby rep-
resent possible prognostic or diagnostic biomarkers of  
disease. Successful diagnosis, therapy and prevention  
of complex disorders thus requires a systems-wide 
understanding of the interactions between genetic, envi-
ronmental and lifestyle factors in the resulting metabolic 
phenotype.

Modern bioanalytical techniques that have been built 
on recent advances in NMR spectroscopy, mass spectrom-
etry and high-performance liquid-phase chromatography 
(HPLC) can now provide quantitative readouts for hun-
dreds of small molecules that are detected in large sets of 
biological samples obtained from epidemiological popu-
lation studies. At present, more than 4,200 compounds 
have been annotated in human metabolite databases4. 
Such a wide-ranging metabolic characterization of 

biological samples generates a wealth of phenotypic data 
that has never been accessible before and has given birth 
to the emerging field of metabolomics. Wide-ranging 
metabolic phenotypes can be analysed in association 
with genetic variance, disease-relevant phenotypes 
and lifestyle and environmental parameters, allowing  
dissection of the relative influences of these factors.

Now, genome-wide association studies (GWASs) 
can be carried out with broad panels of metabolite con-
centrations (TABLE 1). Using this largely hypothesis-free 
approach, common genetic variants in genes encoding 
enzymes and transporter proteins have been identified 
that can have substantial influences on human metabolic 
traits. These so‑called genetically influenced metabotypes 
(GIMs) are starting to be combined with the increas-
ing knowledge of disease-associated genetic loci to 
uncover new complex risk factors of common diseases 
and to provide functional insights into the pathophysi-
ology of related disorders. Knowledge of the genetic  
basis of human metabolic individuality is a key ingredient 
of emerging gene-based personalized therapies, includ-
ing pharmacogenomics5 and nutrigenomics6,7. BOX 1 
and TABLE 2 present emerging insights from the study 
strategy.

To gain the most from this emerging approach, it 
is necessary to use appropriate study designs and ana-
lytical tools. In this Review, we describe the metabolic 
phenotype, the experimental methods that are available 
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NMR spectroscopy
An experimental technique 
that identifies molecules by the 
specific pattern in the chemical 
shift of specific atoms.
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Abstract | Many complex disorders are linked to metabolic phenotypes. Revealing genetic 
influences on metabolic phenotypes is key to a systems-wide understanding of their 
interactions with environmental and lifestyle factors in their aetiology, and we can now 
explore the genetics of large panels of metabolic traits by coupling genome-wide association 
studies and metabolomics. These genome-wide association studies are beginning to unravel 
the genetic contribution to human metabolic individuality and to demonstrate its 
relevance for biomedical and pharmaceutical research. Adopting the most appropriate 
study designs and analytical tools is paramount to further refining the genotype–phenotype 
map and eventually identifying the part played by genetic influences on metabolic 
phenotypes. We discuss such design considerations and applications in this Review.
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High-performance 
liquid-phase 
chromatography
(HPLC). A chromatographic 
technique used to separate a 
complex mixture of metabolites. 
Often used in combination with 
mass spectrometry.

Metabolomics
The field of identifying 
metabolites in a biological 
sample using techniques  
such as NMR spectrometry 
and liquid- or gas-phase 
chromatography coupled  
with mass spectroscopy. 
‘Metabonomics’ is often 
synonymously used in 
connection with NMR-based 
experiments.

Metabolic traits
Quantitative measures of the 
concentrations of a specific 
metabolite.

Genetically influenced 
metabotypes
(GIMs). Associations between a 
genetic variant and a metabolic 
phenotype.

for high-throughput metabolic phenotyping and their 
application to larger human population studies. We then 
show how recently found genetic variants with metabolic 
traits provide new insights into the aetiology of com-
plex diseases. We focus on the design considerations that 
need to be kept in mind in future studies.

What is a metabolic phenotype?
Evidence that the metabolome is at least in part 
genetic. The metabolic phenotype (or metabotype) of  
an individual can be viewed as the ensemble state  
of the concentrations of all endogenous small mol-
ecules (metabolic traits) in all body organs and bodily 
fluids. In relation to a disease, a metabolic trait may be 
a functional intermediate trait or merely a correlated 
biomarker. In contrast to the genotype of an individual, 
which remains almost identical over their lifespan, the 
metabotype substantially varies with time and is influ-
enced by a wide range of environmental and lifestyle 
factors, including fasting and feeding states, time of day 
and menstrual cycle. A study that applied a wide range 
of physiological challenges to participants demonstrated 
that challenges increase the variability of certain metab-
olite profiles among volunteers with similar character-
istics. Discrete metabotypes could thereby be identified 
that would not have been distinguishable under normal 
fasting conditions8. Thus, every metabolomic charac-
terization of a biosample represents a snapshot of a 

part of that individual’s present metabolic state at that 
particular time.

Therefore, one may ask whether the concept of an 
individual metabolic phenotype is actually meaningful 
in the context of population-based studies. To assess 
this, it is useful to estimate how much of the population 
level variance is driven by genetic factors and how much 
is driven by environmental factors. A longitudinal study 
of plasma and urine samples from identical and non-
identical twin pairs showed that the human metabolome 
is controlled by both genetic and environmental fac-
tors9. An analysis of Finnish twin pairs also found high 
heritability for certain metabolic phenotypes, measured 
on a different metabolomics platform10. What is impor-
tant to note here is that every metabolite has specific 
properties: most of them are very sensitive to environ-
mental influences, and their concentrations may vary 
over timescales of minutes, hours or days. Nevertheless, 
their biochemical processing is controlled by enzymes 
and transporters, and thus they are influenced by the 
genetic variation that affects the expression or function 
of these proteins.

Intermediate phenotypes. GWASs have identified many 
risk loci for complex disorders. The number of asso-
ciations is increasing as more highly powered GWASs 
and meta-analyses are conducted. However, the effect 
sizes of genetic associations with complex disorders are 

Table 1 | Published genome-wide association studies with large panels of metabolic traits

Sample 
type

Platform used Metabolic panel Number of study 
participants and 
study description

Number of traits Number of reported 
loci

Refs

Serum Targeted LC–MS/MS 
and FIA–MS/MS

Lipids, carbohydrates and 
amino acids

284 (KORA* study, only 
males, age >55 years)

363 4 21

Plasma Trans-esterification of 
lipids followed by gas 
chromatography

Omega 3 and omega 6 fatty 
acids

1,075 (InCHIANTI‡ 
study); 1,076 (GOLDN§ 
study)

6 2 22

Plasma 
and serum

Targeted LC–MS/MS Sphingolipids 4,400 (five European 
populations)

33 5 23

Serum Targeted FIA–MS/MS Lipidomics-oriented panel 1,809 (KORA study); 
422 (TwinsUK|| study)

163 9 16

Urine Targeted 1H NMR Manual annotation against 
a library of known chemical 
shifts

862 (SHIP¶ study, 
males); 1,039 (SHIP 
study, females); 992 
(KORA study)

59 5 14

Plasma 
and urine

Non-targeted 1H NMR 
and targeted  
FIA–MS/MS

Unidentified chemical shifts 
(NMR); lipidomics-oriented 
panel (FIA–MS/MS)

142 (MolTWIN# study); 
62 (MolOBB# study)

526 peaks 
(NMR); 163 (mass 
spectrometry)

3 (NMR, urine);  
1 (NMR, plasma); 2 (mass 
spectrometry, plasma)

13

Serum Non-targeted LC–MS/
MS and GC–MS

Metabolome-wide coverage 
of 60 metabolic pathways

1,768 (KORA study); 
1,052 (TwinsUK study)

276 37 15

Serum NMR with automated 
metabolite annotation

Mainly serum lipid extracts, 
amino acids and some other 
metabolites

8,330 (Finnish 
population)

216 31 10

Plasma Targeted LC–MS/MS Phospholipids and 
sphingolipids

4,034 (five European 
populations)

115 phospholipids; 
33 sphingolipids

25 (phospholipids);  
10 (sphingolipids)

24

The ‘Number of reported loci’ corresponds to those associations that meet the individual studies’ criteria of genome-wide significance. *Kooperative 
Gesundheitsforschung in der Region Augsburg, Germany. ‡A population-based epidemiological study in the older population living in the Chianti region of Tuscany, 
Italy. §Genetics of Lipid Lowering Drugs and Diet Network (United States). ||An adult twin registry in the United Kingdom. ¶Study of Health in Pomerania, Germany.  
#Two cohorts from the MolPAGE programme in the United Kingdom. FIA–MS/MS, flow injection analysis coupled with tandem mass spectrometry; GC–MS, gas 
chromatography coupled with mass spectrometry; LC–MS/MS, liquid chromatography coupled with tandem mass spectrometry.
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generally small, and information on the underlying bio-
logical processes is often lacking. Therefore, the focus of 
GWASs is now shifting increasingly away from studying 
associations with disease end points and towards study-
ing associations with intermediate traits that are known 
risk factors of disease (FIG. 1). Examples include GWASs 
for: blood triglyceride, cholesterol and bilirubin levels, 
which are risk factors for cardiovascular disease; fasting 

glucose levels and glucose levels after an oral glucose 
tolerance test, which are linked to diabetes; urate lev-
els, which are linked to gout; and liver enzymes, which 
are indicators of liver disease. These studies have shown 
that genetic association with quantitative traits that are 
functional intermediates of complex disorders are often 
more highly powered, and furthermore they can pro-
vide information on the biological underpinning of the 
disease association.

However, by studying only known risk factors of 
disease, it is unlikely that any new biological processes 
or pathways will be discovered that may be involved or 
disrupted in the aetiology of the disease. Because meta-
bolic phenotypes are important readouts of many bio-
logical processes, a largely hypothesis-free approach of 
GWASs with large panels of metabolic traits (metabo-
lomics) may be used to respond to this challenge. One 
hundred and fifty years of biochemical research have 
created a wealth of knowledge on the biological proper-
ties of most metabolites and also on the pathways that 
link these metabolites in healthy or diseased individuals. 
The metabolic trait in a GWAS thus has the role of an 
intermediate phenotype that functionally links genetic 
variation to disease-predisposing factors and then to 
complex disease end points. The examples shown in 
BOX 1 and TABLE 2 demonstrate this potential.

Study design
Choice of metabolomics platform. FIGURE 2 presents 
the main steps of a high-throughput metabolomics 
experiment together with design considerations for 
genetics-oriented metabolomics studies. Robust and 
high-throughput measurement capabilities are required 
to carry out GWASs with metabolomics. The technolo-
gies that are most often used in metabolomics experi-
ments are based on either mass spectrometry or NMR 
spectroscopy. Mass-spectrometry‑based methods char-
acterize a metabolite by its molecular mass, its specific 
fractionation pattern (tandem mass spectrometry) 
and its retention time when liquid-phase or gas-phase 
chromatography separation is used. The most widely 
implemented NMR-based method in metabolomics is 
1H NMR. A small molecule is identified here by a spe-
cific pattern (called the chemical shift) in the resonance 
spectrum of its protons when excited by an oscillating 
magnetic field.

The initial ‘raw’ quantitative readout of a metabolic 
feature is a specific pattern of peaks in a mass spectrum 
or an NMR spectrum and related information, such as 
the elution time, when using a chromatography method. 
Ascertaining the biochemical identity of the metabo-
lites that are represented by these raw data is sometimes 
an issue. Comparison with reference spectra that are 
obtained from pure substances or spiking experiments 
can provide such information. Nevertheless, many of 
the experimentally observed metabolites (or metabolic 
features) are currently not biochemically identified.  
We thus distinguish between peak-based (or feature-
based) metabolomics and metabolomics that uses anno-
tated metabolite concentrations of known (and possibly 
also unknown) biochemical identity.

Box 1 | Emerging insights from GWASs with metabolomics

Several patterns are beginning to emerge from genome-wide association studies 
(GWASs) with different metabolic panels, experimental methods and sample types.  
See TABLE 1 for a summary of studies carried out so far and TABLE 2 for some examples 
of findings with biomedical relevance. The points summarized here demonstrate the 
use and potential of this experimental approach.

High allele frequencies and large effect sizes
The identified genetic variants are often frequent (>20%) and have exceptionally high 
effect sizes, explaining 10–20% of the observed variance15. These genetically influenced 
metabotypes (GIMs) do not result in the full loss-of-function of metabolism-related 
proteins (such as inborn errors of metabolism, in which metabolite concentrations can 
reach toxic levels in homozygous individuals) but still lead to substantial modifications 
in their efficiency. In most cases, the genetic variant is found in a gene that codes for an 
enzyme, a transporter or some other kind of metabolism-related gene.

Overlap with disease associations
Many disease end points most probably induce, or are induced by, a metabolic 
phenotype, which can be picked up in a GWAS with metabolomics (FIG. 1). For example, 
the N-acetyltransferase 8 (NAT8) locus encodes an N‑acetylase protein and is a known 
risk locus for chronic kidney disease36. A study uncovered an association of the NAT8 
locus with serum levels of N‑acetylornithine15 and also showed that N‑acetylornithine 
associates with estimated glomerular filtration rate (eGFR), providing new insights into 
the aetiology of chronic kidney disease.

Links to pharmacoogenomics
Similarly, many GIMs are associated with response to drug treatment. For example, the 
solute carrier organic anion transporter family, member 1B1 (SLCO1B1) locus associates 
with risk of statin-induced myopathy5. In a recent GWAS with metabolomics, it was 
found to associate with a series of fatty acids, including tetradecanedioate and 
hexadecanedioate15. This information can potentially be used to support the redesign 
of the respective drugs, for instance by using tetradecanedioate and hexadecanedioate 
as functional readouts in biochemical assays of drug side effect37.

Replication of GWASs with individual metabolic traits
Associations from previous GWASs with clinically relevant traits, such as serum fasting 
glucose38, bilirubin39,40, urate41 and dehydroisoandrosterone sulfate42 levels can be 
replicated in a single GWAS with a large panel of metabolic traits15.

Refinement of associations with bulk traits
Metabolic traits can also provide a more detailed representation of a ‘bulk’ trait. For 
instance, lipase, hepatic (LIPC) associates with blood triglyceride levels43, which are bulk 
measures of a complex mixture of lipid traits. In a GWAS with metabolic traits, this locus 
was found to associate with a number of glycerophosphatidylethanolamines21, therefore 
refining the association with the metabolic trait, which may ultimately be of clinical 
benefit.

Identification of true positives in GWASs with clinically relevant end points
A combination of a GWAS with metabolomics and data from previous GWASs can 
identify promising new candidate SNPs and provide new insights into the functional 
background of these associations. For example, although two early GWASs44,45 reported 
an association of SNP rs174548 (near FADS1) with serum low-density lipoprotein (LDL) 
cholesterol, high-density lipoprotein (HDL) cholesterol and total cholesterol levels, 
these associations were not considered as potential candidates for replication in those 
studies. Gieger et al.21 later identified an association of rs174548 with a number  
of glycerophospholipids in a GWAS with metabolomics, and on the basis of the fact that 
glycerophospholipids are major constituents of LDL and HDL particles, they argued 
that FADS1 may be a true positive-lipid-associated locus, a prediction that was later 
confirmed in a large study with over 40,000 individuals46.
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Metabolic individuality
The metabolic capacities of an 
individual, as defined by the 
ensemble of all functional 
genetic variants (genetically 
influenced metabotypes) in 
their metabolism-related genes. 
Historically, Garrod introduced 
the term ‘chemical individuality’ 
to represent this concept.

Metabolome
The ensemble of all small 
molecules (metabolites) that 
are processed by the body’s 
enzyme and transporter 
proteins.

Glycerophosphati
dylethanolamines
Glycerophospholipids with 
ethanolamine head groups. 

The most notable advantage of mass-spectrome-
try‑based methods compared with NMR methods is 
their higher sensitivity. However, this advantage comes 
at the cost of more complex demands in terms of sam-
ple preparation and in carrying out the actual meas-
urement, thereby providing many potential sources for 
experimental errors and uncontrolled-for variances 
in the resulting data sets. NMR-based measurements, 
however, do not require the extraction of metabolites 
and leave the samples intact for further analysis. Also, 
absolute quantification with mass-spectrometry‑based 
methods requires external reference standards for 
most of the measured metabolites, whereas NMR-
based methods provide quantification with one or 
two references. Furthermore, the reproducibility of 
NMR experiments is excellent, whereas batch effects 
are often observed when mass spectrometry experi-
ments are conducted at different times. Both methods 
thus have their strengths and weaknesses. If resources 
permit, a combination of both would be optimal.

The measurement set-ups of these platforms are 
complex and can rarely be fully replicated by any 
independent laboratory. In a pilot study that deter-
mined 423 unique metabolite concentrations in blood 
samples from identical study participants using three 
different commercial platforms, 50 metabolites were 
quantified on more than one platform. The median 
correlation coefficient, R, between the platforms was 
0.61. In three cases, no correlation was found, indi-
cating that the different techniques may actually be 
measuring different metabolites in these cases. For 
other metabolites, a very strong correlation (up to 
R = 0.95) was observed11. Even if described in great 
detail, subtle differences in machine set-up and sam-
ple processing may have a great impact on certain 
metabolic readouts. It is therefore essential to compare 
and to harmonize measurements taken from identical 
samples across platforms and to ensure that the final 
metabolomics readouts are within a well-defined range 
of experimental error. When investigating the same 
genetic association using identical samples on differ-
ent platforms, the differences in the strength of the 
resulting association signals are solely dependent on 

the experimental errors incurred by these platforms. 
Therefore, the data from the platform that displays the 
strongest association to the genetic variant is likely to 
be the most accurate.

At this point, the choice of the metabolomics pro-
vider should be considered: relying on in‑house meth-
ods has the advantage of providing full control over 
the measurements, but this comes with the require-
ment of having to build up and to maintain such a 
platform. Using a commercial provider is an alterna-
tive that can bring metabolomics experiments within 
the reach of groups that do not have access to local 
metabolomics core facilities. Potential drawbacks of 
this approach are the generally rather limited access 
to details of the implemented methods and also fewer 
options available for tweaking the experimental set-up 
during the measurement process. Intermediate options 
are the use of commercial metabolomics kit technolo-
gies or out-licensing of proprietary know-how and 
software protocols on local platforms.

Choosing which metabolites and tissues to study. 
Targeted methods study specific (known) metabolites 
and thereby provide more precise measurements and 
are easy to replicate but are limited to analysing only a 
subset of preselected compounds. Non-targeted metab-
olomics offers a wider and largely hypothesis-free 
approach but also increases the need to manage mul-
tiple testing during analysis (see below). Additionally, 
targeted metabolomics methods are able to provide 
absolute quantification by comparison to isotope-
labelled external standards, whereas non-targeted 
methods often only provide semi-quantitative traits, 
such as ion counts per sampling time, which may vary 
extensively between experiments. This is, in principle, 
not a problem in GWASs, in which the experiment 
identifier can be added as a covariate to the statisti-
cal model to correct for such batch effects. However, 
it could limit the usability of the metabolomics  
data in other (non-genetic) studies.

In the choice of the metabolites to study, there is 
generally a trade-off to be made between a wide and 
largely non-targeted panel, which often comes at the 

Table 2 | Selected loci of genetic association with metabolic traits that also associate with end points of biomedical relevance

Gene locus and SNP Associated metabolic trait P value Function of gene product Disease association

GCKR; rs780094 Glucose/mannose ratio 5.5 × 10−53 Regulates glucokinase in liver and 
pancreatic islet cells

Type 2 diabetes related 
traits38; Crohn’s disease49

ENPEP; rs2087160 Amino-terminal-cleaved 
fibrinogen A‑alpha peptide levels

6.5 × 10−13 Functions in the catabolic pathway of the 
renin–angiotensin system and regulates 
blood pressure

Blood pressure50

NAT2; rs1495743 1‑methylxanthine/4‑acetamidobu-
tanoate ratio

1.7 × 10−40 Participates in the detoxification of 
hydrazine and arylamine drugs

Coronary artery disease43; 
bladder cancer51

NAT8; rs13391552 N‑acetylornithine levels 5.4 × 10−252 N‑acetyltransferase; N‑acetylornithine 
associates with eGFR15

Chronic kidney disease52

SLC2A9; rs4481233 Urate levels 5.5 × 10−34 Urate transporter Gout53–55

In most cases, more than one metabolic trait associates with a genetic locus. Full association data are available from the GWAS-server. P values are taken from REF. 15. 
Overlaps with disease associations are reported when the lead SNPs are in high linkage disequilibrium with the metabolite-associated SNPs (R2 > 0.8). eGFR, estimated 
glomerular filtration rate; ENPEP, glutamyl aminopeptidase (aminopeptidase A); GCKR, glucokinase (hexokinase 4) regulator; NAT2, N‑acetyltransferase 2; SLC2A9, solute 
carrier family 2 (facilitated glucose transporter), member 9.
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Q–Q plots
A graphical method for 
comparing probability 
distributions. In genome-wide 
association studies, it is used 
to verify whether the P values 
are normally distributed; an 
over-representation of low 
P values indicates possible true 
positive associations.

cost of lower data quality, and a narrower targeted 
panel, which comes at the cost of missing potentially 
interesting metabolites. The decision of which method 
to use should factor in how much and which additional 
phenotype information is available on the individual 
samples and whether this information can be enriched 
by a specific targeted metabolomics panel. Bearing in 
mind that no single technique allows the measurement 
of all metabolites in one go, a non-targeted approach is 
currently more promising as it may allow the discov-
ery of new associations with hitherto uncharacterized 
metabolites.

Study population and size. Most GWASs with metabo-
lomics have so far been conducted in the general popula-
tion, with participants mostly of Caucasian origin. It is 
therefore likely that many genetic effects that are specific 
to different ethnicities have not yet been discovered, call-
ing for extended studies in other populations. It should 
be noted that some genetic variants in metabolism-
related genes depict sexual dimorphisms12 and need to 
be considered in study design and interpretation. Using 
samples from family-based studies and twin studies may 
allow for the familial component of variation in metabo-
lite levels to be measured in addition to the heritability 
contribution13. If longitudinal data are available, the asso-
ciations can be checked to verify that the genetic contri-
bution to the metabolic phenotype of the individuals  
remains stable over a longer time period14.

Most of the large-scale studies with metabolic traits 
conducted so far originated from epidemiological stud-
ies that had previously collected and stored sample 
aliquots. This strategy of collecting samples for future 
analysis in large national cohorts and bio-banks, with-
out the knowledge of the precise analysis techniques 
to be applied on them, made possible many of the 
present GWASs with metabolomics. The collection of 
such samples needs to be continued and extended by, 
for example, collecting the most extensive variety of 
samples, as it is not clear today on which, and on how 
many, different platforms these samples shall eventu-
ally be analysed. Aliquot numbers should be high, and 
individual volumes should be small to avoid thawing 
cycles. Harmonization of standard operation protocols 
(SOPs) for sample collection across centres is needed, 
and the impact of laboratory-specific differences, such 
as variation in centrifugation time and speed, needs to 
be assessed.

Another source of valuable study material for GWASs 
with metabolomics is clinical case–control studies. 
Including individuals with disease in such studies allows 
the investigation of potentially extreme metabolic phe-
notypes and the discovery of genetic associations that 
are only revealed under disease conditions. However, 
ensuring SOPs are followed in a clinical setting can be 
more challenging than in an epidemiological study. For 
example, whereas blood and urine samples taken under 
standardized conditions are generally available from 
epidemiological population studies, such conditions are 
more difficult to meet in a clinical setting. In particu-
lar, samples from cases and controls need to be treated 
identically as certain metabolites may be very suscep-
tible to slight deviations from standard protocol. Strict 
SOPs need to be implemented, with a strong focus on 
homogeneous sample treatment, including sample stor-
age at −80 oC and sample aliquoting at collection time to 
avoid any thawing of the samples between storage and 
measurement.

A recent study of 2,820 individuals that used non-
targeted liquid chromatography coupled with tandem 
mass spectrometry (LC–MS/MS) and gas chromatog-
raphy coupled with mass spectrometry (GC–MS) iden-
tified 37 genetic loci with genome-wide significance15. 
Q–Q plots from that study suggest that more than 500 
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Figure 1 | The metabolic trait as an intermediate phenotype.  The general concept (a) 
and an example using information from actual genome-wide association studies 
(GWASs) with metabolic traits15,21 (b). The association of a genetic variant is strongest 
with its closest intermediate phenotype (IP; for example, the association of fatty acid 
desaturase 1 (FADS1) with its product–substrate pair; also see BOX 2 and REF. 47), 
although the association with the clinical end point may not even be detectable at a level 
of genome-wide significance (P = 0.021 for FADS1 with coronary heart disease48). The 
ensemble of all genetic associations with metabolic traits defines our metabolic 
individuality and thereby our predisposition to disease3. ABO, ABO blood group; ALPL, 
alkaline phosphatase, liver/bone/kidney; C20:3, dihomolinolenate; C20:4, arachidonic 
acid; Env, environmental factor; FUT1 fucosyltransferase 1; HDL, high-density 
lipoprotein; LDL, low-density lipoprotein; LIPC, lipase, hepatic; PUFA, polyunsaturated 
fatty acid; TG, thyroglobulin.
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loci show signals of association and may be confirmed 
as GIMs in more highly powered studies in the future. 
Nicholson et al.13 present a power analysis for studies 
of a similar design (see figure 5 in that paper), estimat-
ing that associations with effect sizes down to R2 = 0.01 
are detectable with 80% power using samples sizes of 
around N = 6,000. However, the current experimental 
coverage of the metabolome in GWASs is still incom-
plete, and metabolic characterization of various sample  
types (other than blood and urine) and metabolic 
states (other than overnight fasting) is scarce. Even 
small studies conducted under conditions that have 
not previously been studied can therefore be expected 
to provide new associations of high biomedical interest.

Data analysis
Here we describe the main steps in data analysis. TABLE 3 
highlights some important analytical challenges.

Initial data processing. Initial data processing should 
include investigation of any hidden internal structure 
in the data, such as dependence on measurement run 
day, and validation of the metabolite data against related 
traits that have been measured by independent meth-
ods, such as blood triglyceride and glucose levels or 
urine creatinine14. Extreme outliers should be removed 
in a general GWAS to avoid spurious associations with 
rare genetic variants. Note, however, that these outli-
ers may correspond to diseased states and can be useful 
in more focused studies. As larger metabolite pan-
els are used in more highly powered GWASs that can 
test gene variants with lower minor allele frequencies, 
hitherto unknown inborn errors of metabolism may 
be discovered. For such applications, it is then neces-
sary not to remove outliers to identify associations 
between extreme metabotypes and rare genetic vari-
ants. However, false-positive rates are then expected 
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Additive linear model
A mathematical model used in 
statistical association analysis; 
here, it assumes a linear 
additive effect of the minor 
alleles on the metabolite 
concentrations.

to be high, and replication must be done carefully. If 
longitudinal data are available, the persistence of an 
extreme metabolic phenotype can be verified in indi-
viduals over time, thus indicating whether it constitutes 
a true extreme value (for an example, see the association 
of SNP rs37369 with 3‑aminoisobutyrate concentrations 
in REF. 14).

We recommend log-scaling of the data, as it has been 
observed that metabolite concentrations are more often 
close to log-normal distributions than to normal distri-
butions15,16. This is also coherent with testing metabo-
lite ratios (see below). More sophisticated methods of 
initial data processing could include methods based on 
principal components analysis (PCA) and are briefly 
mentioned in TABLE 3. By transforming the data to PCA 
space, it may be possible to reduce its dimensionality and 
thus to reduce the multiple-testing burden. Also, outliers 
may be spotted more readily on PCA plots. For this pur-
pose, specialized Web servers can be used17. However, 
biological interpretation of the association results also 
becomes more challenging in PCA space.

Testing for associations between SNPs and metabolite 
data. Testing for genetic association with metabolic 
traits is basically done as for any other quantitative trait. 
This is typically achieved by fitting an additive linear model 
with the covariates age and gender to the metabolite data 
and correcting for population stratification and fam-
ily structure using software such as PLINK18, Merlin19, 
SNPTEST20 or in‑house R‑scripts (see The R Project web-
site). Because some metabolic traits strongly vary with 
parameters such as body mass index (BMI) and fasting 
state, these should be added to the model as well. Ideally, 
all measured metabolic traits would be tested for associa-
tion with all available phenotypic parameters, and then 
all significantly associating parameters would be included 
as covariates into the model. Also, when measurements 
are done in batches or when samples come from distinct 
study centres, this information should be included19.

GWASs with metabolomics may return massive 
amounts of information (far greater than GWASs with a 
single or few traits), and this represents a computational 
challenge. Selection of loci for further investigation 

Table 3 | Analytical challenges

Challenge Description and examples Perspectives and needs

How to deal with a high correlation 
between metabolic traits

Bonferroni correction is often too strict; Benjamin–
Hochberg may not apply as traits correlate in complex 
ways

Data transformations, including the use of partial 
correlations and principle component analysis to 
de‑convolute the data; however, associations with 
transformed variables may become more difficult 
to interpret biochemically

How to analyse metabolomics data 
using multivariate methods

Analysis of ratios between metabolite pairs is a powerful 
bivariate method that provides a direct biochemical 
interpretation

Use of dedicated multivariate methods — for 
example, as described by Ferreira and Purcell56 
— possibly including biochemical pathway 
information and machine learning

How to process raw metabolomics 
data and how to handle extreme 
outliers or missing data points

Distribution of metabolomics data is not always normal; 
missing values may be due to failed detection or true 
absence; extreme outliers may be genuine but may also 
generate many false associations

Log-normal transformation appears to be 
reasonable in many cases; consider more complex 
Box–Cox and principal-components analysis space 
transformation; use of parameter-free tests that 
are independent of an assumed distribution

How to analyse related but not 
identical traits jointly that originate 
from different experimental 
techniques in a meta-analysis

Glucose can be measured by NMR, and some mass 
spectrometry methods provide the sum of hexoses; 
individual lipid species can be measured by dedicated 
lipidomics methods, whereas others determine bulk 
parameters, such as the sum of all carbon atoms and 
degree of desaturation in the lipid side chain (or chains)

Dedicated data analysis methods that account 
for specific biochemical properties need to be 
developed

How to analyse metabolomics data 
from different bio-samples jointly 
in a meta-analysis and replication

Some metabolites are differently preserved in blood 
plasma and serum; platforms may differ in extraction 
protocols

Dedicated statistical methods that account for 
specific differences between biosamples

How to identify true positives 
below the genome-wide 
significance threshold

An association between a metabolite and a SNP in an 
enzyme that metabolizes that metabolite is more likely to 
be a true positive

Bayesian-style reasoning based on prior 
information57

How to identify causative genes 
and functional variants

This is a general problem in genome-wide association 
studies, but it may be facilitated in the case of metabolic 
traits by using biochemical connections between the 
metabolic trait and biochemically related genes at a locus

Extend approaches based on ideas implemented 
in GRAIL (Gene Relationships Across Implicated 
Loci)58

How to derive causality between 
genetic variants and disease end 
points

A metabolic phenotype may be a functional intermediate 
trait or a correlated biomarker

Mendelian randomization, in which effect sizes are 
large enough

How to overlay metabolomics 
data with data from other ‘omics’ 
experiments

Chromatin immunoprecipitation- and sequencing-based 
high-throughput technologies, such as genome-wide 
gene expression, DNA methylation and microRNA data 
should be integrated into the chain of intermediate traits 
that lead from genotype to disease end point

Gaussian graphical modelling59; other 
network-based methods; more advanced 
systems-biology methods
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Linkage disequilibrium
(LD). A nonrandom association 
between neighbouring gene 
variants; it is used to describe  
a region of high correlation 
between SNPs.

Glycerophospholipids
Glycerol-based phospholipids 
are major constituents of the 
membrane bi-layers and are 
found in association with 
low-density lipoprotein (LDL) 
and high-density lipoprotein 
(HDL) particles.

Sphingolipids
A class of lipids that contain a 
backbone of sphingoid bases

requires implementation of clearly defined algorithms 
that pick SNPs for follow‑up on the basis of objective 
criteria. However, manual curation of these loci is also 
necessary to detect overlapping or independent signals. 
This step should include viewing of all association data, 
not just the top associating metabolite. Putative causa-
tive genes can often be spotted by examining the func-
tion of the genes that lie in the linkage disequilibrium (LD) 
block around the lead SNP while bearing in mind the 
characteristics of these metabolites. Criteria for report-
ing associations should not be different from other 
GWASs, in that associations should meet genome-wide 
significance after Bonferroni correction for all tested 
loci and all traits, with replication in independent stud-
ies. Nevertheless, owing to the high correlation between 
many metabolic traits, it is likely that this is a very con-
servative approach. Associations below the genome- and 
metabolome-wide significance level should therefore 
be made publically available for inclusion in future  
meta-analyses studies (TABLE 3).

Because many of the individual metabolite meas-
ures are highly correlated, it may appear to be difficult 
to determine what is really driving both the association 
and the clinical risk changes. However, often the gene 
that hosts the causative variant can be readily identified 
owing to a match between the function of the gene and 
the associated metabolic trait. In these cases, the most 
parsimonious hypothesis is then that of a causal rela-
tionship in the direction gene → metabolite → disease 
phenotype. Other metabolites that also associate at the 
same locus are then most often identified as lying on  
the same pathway as the leading metabolic trait. High 
proportions of matches between gene function and asso-
ciating metabolite (or metabolites) have been detected 
in a number of studies10,13–16,21–24, and most associa-
tions were found to involve SNPs that are near enzyme,  
transporter or other metabolism-related genes.

Replication across studies. A lack of replication between 
studies of a few metabolic traits is sometimes observed. 
This may in part be attributed to differences in sample 
treatment, such as storage of blood samples at different 
temperatures, but many other factors may come into 
play that require investigation on a case‑by‑case basis. 
For instance, 15 loci of genome-wide significance were 
identified in a GWAS that involved 1,809 individuals and 
used a metabolomics kit that quantifies 163 metabolic 
traits, many of which are lipid-related species16. However, 
only 9 out of the 15 associations could be replicated in an 
independent population of 422 individuals (with a signif-
icance level of 0.05 adjusted for 15 tests)16. Nevertheless, 
a subsequent study that used the same metabolomics 
platform on an independent population replicated 12 of 
the 15 loci (with a significance level of 0.05 adjusted for 
15 tests)13. The remaining three loci have been reported 
in association with a similar trait by GWASs using dif-
ferent metabolomics platforms15,23. This indicates that 
the genome-wide significance cut-off, accounting for all 
tested SNPs and all tested metabolic traits, is indeed a 
conservative threshold, as may be expected in the case of 
traits that are in part highly correlated.

Despite the technical issues that may affect repro-
ducibility, most associations can be replicated well, even 
across metabolic traits that are different but related. 
For example, the fatty acid desaturase 1 (FADS1) locus 
was associated in a number of different studies with 
various species of glycerophospholipids (including phos-
phocholines, phosphoethanolamines and phosphoino-
sitoles15,16,21) and sphingolipids23, and with omega 3 and 
omega 6 fatty acids22; all of these species are related to 
arachidonic acid (C20:4). Also, some loci are found  
to associate with related traits in urine and blood, such as 
N-acetyltransferase 2 (NAT2)14,15 and NAT8 (REFS 13,15). 
As the number of GWASs with metabolic traits 
increases, it will become increasingly challenging (and 
informative) to combine such related, but not identical,  
association data in a meta-analysis (TABLE 3).

Integration with biochemical information. The beauty 
of the metabolic phenotype is that there is a rich knowl-
edge base regarding many endogenous human metabolic 
pathways. In addition, more than 2,200 enzyme-coding 
genes are annotated in the human genome. This allows 
the corroboration of candidate associations with biologi-
cal and functional arguments. Therefore, it is possible 
to analyse the association data from the point of view 
of a biochemist. Genes that are related to enzymatic and 
transport activities, and that are located in regions in LD 
with the lead SNP, are prime candidates for harbouring 
the causative variant. If such genes are present, research-
ers can then verify a biochemical link between these 
genes and the metabolic traits, using databases such as 
the Human Metabolome Database (HMDB)25 and the 
Kyoto Encyclopedia of Genes and Genomes (KEGG)26. 
Currently, this is mostly done manually; dedicated and 
automated network analysis methods with statistical 
evaluation tools need to be developed for this task.

Association of ratios. Many metabolites are, by nature, 
highly correlated as they are interlinked by biochemi-
cal reactions in complex metabolic networks. A genetic 
variant is, in most cases, in association with several, bio-
chemically related traits rather than a single metabolite 
concentration. This ‘feature’ of the metabolic pheno-
type can be merely a consequence of the biochemical 
correlation between the metabolites without any link 
to a genetic cause. However, we found that testing all 
possible ratios between metabolite concentrations in 
a GWAS is a very powerful method for identifying 
those correlations between metabolite pairs that have 
a genetic underpinning. This hypothesis-free testing 
of all metabolite ratios for association was first applied 
by our group in a metabolome-wide association study 
on diabetic mice27 and subsequently used in our first 
GWAS21. If two metabolites constitute a product–sub-
strate pair of an enzymatic reaction, then ratios between 
their concentrations are potential proxies of the corre-
sponding reaction rate. In our pilot study, we found 
that the association of ratios between two metabo-
lites that are related to product–substrate pairs of the 
FADS1 reaction was many orders of magnitude stronger 
than that of the concentrations of the two individual 
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metabolites (BOX 2). This association was highly sig-
nificant at a genome-wide level, even after Bonferroni 
correction for the additional tests induced by the use 
of ratios. Numerous subsequent studies confirmed 
that using metabolite concentration ratios as proxies 
for enzymatic reaction rates reduces the variance and 
yields robust statistical associations28. In the case of 
FADS1, if the molecular function of that enzyme was 
not already known, the association between the SNP 
and the associated metabolites may have allowed the 
deduction of its enzymatic activity of inserting a fourth 
double bond into long-chain fatty acids. In a way, it is 
the genetics that tells us which associations make sense 
biochemically.

Therefore, even if computationally expensive, we 
recommend testing all ratios between metabolite pairs 
for association. The ratios should be log-scaled owing  
to the relationship log(a/b) = –log(b/a), which means that 
the association of a ratio and of its inverse then yields 
identical results and thereby halves the multiple-testing 
burden. Large increases in the strength of association 

are a signal for biochemically informative associations. 
Petersen et al.28 showed that an increase in the strength 
of association by a factor of ten times the number of 
tested ratios is a conservative upper bound for signifi-
cance. Note, however, that a lack of such an increase does 
not prove the contrary: an important metabolite may be 
missing from the panel for technical reasons and thus 
will not show up in a ratio.

Further interpretation
Integration with other GWASs. Systematically overlay-
ing GIMs with associations from GWASs with disease 
or disease-related end points allows the identification 
of potentially true positives in the list of associations 
that did not attain genome-wide significance. When  
a genetic locus has been proved to harbour a functional 
genetic variant by displaying a strong and replicated 
association with a metabolic trait, then the likelihood  
that a marginal association of that same variant (or a 
variant in strong LD) with a clinical end point is due to 
chance is much lower than it is for a variant that does 
not show any other signal associations. Although a solid 
statistical foundation of such a Bayesian-style argu-
mentation is lacking at present, a first approach could 
be to combine the statistical association data from both 
GWASs using classical meta-analysis methods29. More 
research on how to combine association data from related 
but non-identical traits is needed. Such methods would 
also be needed for the meta-analysis of association data 
from GWASs that use different metabolomics techniques.

Functional genomics and metabolomics
GIMs also have the potential to inform basic science. 
The field of functional genomics aims to identify the 
function of all genes in the human genome. To this 
end, an association of a poorly characterized enzyme 
or transporter gene with a metabolic trait may gener-
ate testable hypotheses on their substrate specificities. 
Following up on the predicted function of solute carrier 
family 16 member 9 (SLC16A9; also known as MCT9) 
as a carnitine transporter, on the basis of its associa-
tion with serum carnitine concentrations, experiments 
using radio-labelled carnitine and SLC16A9‑expressing 
Xenopus laevis oocytes showed that this transporter 
is indeed a carnitine efflux pump15. This concept can 
also be inversed. For around one-third of all measured 
metabolites, their biochemical identity is at present 
unknown. Association of a well-characterized enzyme 
or transporter gene with a metabolite of unknown iden-
tity may be used to infer its biochemical nature. We have 
recently applied this approach to predict and experi-
mentally validate the identity of a number of unknown 
metabolites, such as dipeptides, on the basis of their 
association with the dipeptidase angiotensin-converting 
enzyme (ACE)30.

Gene–envrionment interactions
In addition to biomedical and pharmacological applica-
tions, co‑association of genetic variation with metabolic 
traits and with certain lifestyles can also provide new 
insights into the functional basis of gene–environment 

Box 2 | Ratios between product and substrate concentrations

The ratio between the concentration of a product and the concentration of its substrate 
approximates the biochemical reaction rate under idealized steady-state assumptions, 
and therefore the product/substrate ratio can be viewed as a proxy of the reaction rate. 
It has been observed that using ratios as quantitative traits in a genome-wide 
association study (GWAS) reduces the variance in the data set and increases the power 
of the GWAS by several orders of magnitude21. As a measure of this increase in the 
strength of association, the ‘P gain’ was introduced. It is defined as the change in P value 
when using ratios compared to the smaller of the two P values when using two 
metabolite concentrations individually28. In many cases, this P gain is much larger than 
the loss in statistical power incurred by the increased number of hypotheses tests. If 
computational resources permit, we therefore recommend testing all possible ratios 
between metabolites for association.

Here is an example. Fatty acid desaturase 1 (FADS1) encodes a key enzyme in the 
metabolism of long-chain polyunsaturated omega 3 and omega 6 fatty acids. The minor 
allele variant of the rs174547 SNP associates with a reduced efficiency of the fatty acid 
delta‑5 desaturase reaction15. The P value of the association with the product of the 
FADS1 reaction, arachidonic acid (C20:4), is 1.7 × 10−30, and with the substrate, 
dihomolinolenate (C20:3), the P value is 3.3 × 10−9. However, a test for association with 
the ratio between the product and the substrate, C20:4/C20:3, results in a 
strengthening of the association by 70 orders of magnitude and a P value of 3.6 × 10−101 
(P gain = 4.8 × 1070).

This can be explained by looking at the idealized reaction pathway for C20:4. 
Assuming that other sources and sinks of C20:4 can be neglected when compared to 
the FADS1 desaturation and the ELOVL2 elongation reactions, it reads:

kFADS1C20 : 3 C20 : 4 C22 : 4
kELOVL2

The thereof derived differential equation is:

d
dt

[C20 : 4] = kFADS1[C20 : 3] − kELOVL2[C20 : 4]

Its solution under steady-state assumption is:

[C20 : 4]
[C20 : 3]

kFADS1

kELOVL2
=

With the additional assumption that the elongation reaction does not depend on 
genotype, it follows that the rate of the FADS1 reaction is proportional to the ratio 
between the concentrations of its product and substrate.

R E V I E W S

NATURE REVIEWS | GENETICS	  ADVANCE ONLINE PUBLICATION | 9

© 2012 Macmillan Publishers Limited. All rights reserved



interactions. For instance, the aryl hydrocarbon recep-
tor (AHR) locus was found to associate with coffee con-
sumption habits31 in a large population study. The strong 
association of this locus with serum caffeine concentra-
tions15 in a much smaller study suggests that genetic dif-
ferences in caffeine metabolism are likely to be at the 
basis of this genetically influenced lifestyle choice.

At present, most interactions of genetic variance with 
environmental and lifestyle factors cannot be detected 
on a genome-wide scale owing to limitations in the 
statistical power of such studies. This problem may 
be overcome by limiting the tests of statistical interac-
tion to genetic variants that are known to have a strong 
impact on the processes of human metabolism and that 
are linked to the relevant environmental or lifestyle fac-
tors. For instance, genetic variation in FADS1 strongly 
modifies polyunsaturated fatty acid (PUFA) metabo-
lism. Two independent studies showed that dietary 
intake of PUFAs modulates the association between 
genetic variation in FADS1 and serum lipid levels6,7 and 
thereby potentially also modifies the risk of cardiovas-
cular disease. This statistical interaction between genetic 
variance and nutritional habits could only be identified 
because these studies focused on a known GIM locus. It 
would not have been statistically significant if it had been 
searched for on a genome-wide scale.

Current challenges and future directions
Knowledge of the full set of genetic variation in human 
metabolism will have a wide range of biomedical and 
pharmaceutical applications. The GIMs identified in 
GWASs can be used in clinical studies for association 
with response to drug treatment or with the develop-
ment of particular complications during the course of 
a disease or treatment. Follow‑up investigation of the 
GIMs in their biochemical context is likely to provide 
a better understanding of the pathogenesis of common 
diseases. Furthermore, it can be expected that knowledge 
of the genetic basis of human metabolic individuality will 
allow the separation of genetic and environmental fac-
tors in complex gene–environment interactions and will 
provide a rational starting point for personalized and 
gene-based health care and nutrition strategies. However, 
there remain many analytical challenges for GWASs with 
metabolomics, including those summarized in TABLE 3.

Eventually, the epidemiological approach of a wide 
range of patient phenotyping and sample collection, 
using strict SOPs, needs to be translated to clinical stud-
ies, as studies that implement physiological challenges 
may provide access to perturbed systems8. The most 
useful approach for understanding the causal roles of 
the metabolites (on the pathways from genetic vari-
ants to intermediate traits to disease end points) would  
be to use prospective cohorts that allow for future dis-
ease risks to be evaluated on the basis of both genetic and 
metabolic information.

Metabolic profiling of other biological samples, 
including saliva, cerebrospinal fluid, synovial fluid, semen 
and tissue homogenates, should be investigated in the 
future but have so far not been used in high-throughput  
population-based studies32. Studies in stool samples may 
be particularly challenging. Here, the effect of the gut 
microbiome on human metabolism needs to be taken 
into account, and this requires the additional charac-
terization of the bacterial communities in the samples. 
Technical studies investigating, for example, the impact 
of differences between using serum and plasma33 or of 
storing samples at different temperatures and for differ-
ent times on the metabolite concentrations also need to 
be extended, ideally across platforms and institutions.

To date, GWASs have mostly focused on common 
variants from chip-based genotyping arrays. However, 
with better coverage of low-frequency variants through 
sequencing or dense imputation reference panels, more 
associations with metabolites will most probably be 
uncovered. In cases in which a metabolite can be identi-
fied as being functionally relevant and an intermediate 
trait on a pathway to a complex disorder, its genetic asso-
ciation can be used to fine-map the underlying disease 
risk locus to identify the disease-causing gene variant. 
For example, Tukiainen et al.34 were able to fine-map 
known lipid loci using a dense marker set and detailed 
metabolite profiles.

The future resides in the combination of data from 
multiple ‘omics’ technologies. Inouye et al.35 presented 
the first study of that kind by combining metabolomic, 
transcriptomic and genomic variation in a large, pop-
ulation-based cohort. One of the big challenges here is 
to combine all of these data in what may be termed a 
genome-wide systems-biology approach.
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