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NMR spectroscopy

An experimental technique
that identifies molecules by the
specific pattern in the chemical
shift of specific atoms.
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Genetic variation in metabolic
phenotypes: study designs and

Karsten Suhre'? and Christian Gieger®

More than 100 years ago, Archibald Garrod realized
that “inborn errors of metabolism” are “merely extreme
examples of variations of chemical behaviour which are
probably everywhere present in minor degrees” and that
this “chemical individuality [confers] predisposition to
and immunities from the various mishaps which are
spoken of as diseases”'~*. Disruptions in metabolic pro-
cesses are associated with many common diseases, such
as type 2 diabetes and cardiovascular disorders. Some
disease-associated changes in metabolic phenotypes
are causative and therefore constitute potential points
of therapeutic intervention; other changes in metabolite
levels are a consequence of the disease and thereby rep-
resent possible prognostic or diagnostic biomarkers of
disease. Successful diagnosis, therapy and prevention
of complex disorders thus requires a systems-wide
understanding of the interactions between genetic, envi-
ronmental and lifestyle factors in the resulting metabolic
phenotype.

Modern bioanalytical techniques that have been built
on recent advances in NMR spectroscopy, mass spectrom-
etry and high-performance liquid-phase chromatography
(HPLC) can now provide quantitative readouts for hun-
dreds of small molecules that are detected in large sets of
biological samples obtained from epidemiological popu-
lation studies. At present, more than 4,200 compounds
have been annotated in human metabolite databases®.
Such a wide-ranging metabolic characterization of

Abstract | Many complex disorders are linked to metabolic phenotypes. Revealing genetic
influences on metabolic phenotypes is key to a systems-wide understanding of their
interactions with environmental and lifestyle factors in their aetiology, and we can now
explore the genetics of large panels of metabolic traits by coupling genome-wide association
studies and metabolomics. These genome-wide association studies are beginning to unravel
the genetic contribution to human metabolic individuality and to demonstrate its
relevance for biomedical and pharmaceutical research. Adopting the most appropriate
study designs and analytical tools is paramount to further refining the genotype—phenotype
map and eventually identifying the part played by genetic influences on metabolic
phenotypes. We discuss such design considerations and applications in this Review.

biological samples generates a wealth of phenotypic data
that has never been accessible before and has given birth
to the emerging field of metabolomics. Wide-ranging
metabolic phenotypes can be analysed in association
with genetic variance, disease-relevant phenotypes
and lifestyle and environmental parameters, allowing
dissection of the relative influences of these factors.

Now, genome-wide association studies (GWASs)
can be carried out with broad panels of metabolite con-
centrations (TABLE 1). Using this largely hypothesis-free
approach, common genetic variants in genes encoding
enzymes and transporter proteins have been identified
that can have substantial influences on human metabolic
traits. These so-called genetically influenced metabotypes
(GIMs) are starting to be combined with the increas-
ing knowledge of disease-associated genetic loci to
uncover new complex risk factors of common diseases
and to provide functional insights into the pathophysi-
ology of related disorders. Knowledge of the genetic
basis of human metabolic individuality is a key ingredient
of emerging gene-based personalized therapies, includ-
ing pharmacogenomics® and nutrigenomics®’. BOX 1
and TABLE 2 present emerging insights from the study
strategy.

To gain the most from this emerging approach, it
is necessary to use appropriate study designs and ana-
Iytical tools. In this Review, we describe the metabolic
phenotype, the experimental methods that are available
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Table 1 | Published genome-wide association studies with large panels of metabolic traits

Sample Platform used

type

Serum Targeted LC-MS/MS
and FIA-MS/MS

Plasma Trans-esterification of
lipids followed by gas
chromatography

Plasma Targeted LC-MS/MS

and serum

Serum Targeted FIA-MS/MS

Urine Targeted 'H NMR

Plasma Non-targeted *H NMR

andurine  and targeted
FIA-MS/MS

Serum Non-targeted LC-MS/
MS and GC-MS

Serum NMR with automated
metabolite annotation

Plasma Targeted LC-MS/MS

Metabolic panel

Lipids, carbohydrates and
amino acids

Omega 3 and omega 6 fatty
acids

Sphingolipids
Lipidomics-oriented panel

Manual annotation against
alibrary of known chemical
shifts

Unidentified chemical shifts
(NMR); lipidomics-oriented
panel (FIA-MS/MS)

Metabolome-wide coverage
of 60 metabolic pathways

Mainly serum lipid extracts,
amino acids and some other
metabolites

Phospholipids and
sphingolipids

Number of study Number of traits Number of reported  Refs

participants and loci

study description

284 (KORA* study,only 363 4 21

males, age >55years)

1,075 (INCHIANTI* 6 2 22

study); 1,076 (GOLDN®

study)

4,400 (five European 33 5 23

populations)

1,809 (KORA study); 163 9 16

422 (TwinsUK! study)

862 (SHIPT study, 59 5 14

males); 1,039 (SHIP

study, females); 992

(KORA study)

142 (MolTWIN* study); 526 peaks 3 (NMR, urine); 13

62 (MolOBB* study) (NMR); 163 (mass 1 (NMR, plasma); 2 (mass
spectrometry) spectrometry, plasma)

1,768 (KORA study); 276 37 15

1,052 (TwinsUK study)

8,330 (Finnish 216 31 10

population)

4,034 (five European 115 phospholipids; 25 (phospholipids); 24

populations)

33 sphingolipids

10 (sphingolipids)

The ‘Number of reported loci’ corresponds to those associations that meet the individual studies’ criteria of genome-wide significance. *Kooperative
Gesundheitsforschung in der Region Augsburg, Germany. *A population-based epidemiological study in the older population living in the Chianti region of Tuscany,
Italy. SGenetics of Lipid Lowering Drugs and Diet Network (United States). |An adult twin registry in the United Kingdom. 'Study of Health in Pomerania, Germany.
#Two cohorts from the MolPAGE programme in the United Kingdom. FIA-MS/MS, flow injection analysis coupled with tandem mass spectrometry; GC-MS, gas
chromatography coupled with mass spectrometry; LC-MS/MS, liquid chromatography coupled with tandem mass spectrometry.

High-performance
liquid-phase
chromatography

(HPLC). A chromatographic
technique used to separate a
complex mixture of metabolites.
Often used in combination with
mass spectrometry.

Metabolomics

The field of identifying
metabolites in a biological
sample using techniques
such as NMR spectrometry
and liquid- or gas-phase
chromatography coupled
with mass spectroscopy.
‘Metabonomics' is often
synonymously used in
connection with NMR-based
experiments.

Metabolic traits
Quantitative measures of the
concentrations of a specific
metabolite.

Genetically influenced
metabotypes

(GIMSs). Associations between a
genetic variant and a metabolic
phenotype.

for high-throughput metabolic phenotyping and their
application to larger human population studies. We then
show how recently found genetic variants with metabolic
traits provide new insights into the aetiology of com-
plex diseases. We focus on the design considerations that
need to be kept in mind in future studies.

What is a metabolic phenotype?

Evidence that the metabolome is at least in part
genetic. The metabolic phenotype (or metabotype) of
an individual can be viewed as the ensemble state
of the concentrations of all endogenous small mol-
ecules (metabolic traits) in all body organs and bodily
fluids. In relation to a disease, a metabolic trait may be
a functional intermediate trait or merely a correlated
biomarker. In contrast to the genotype of an individual,
which remains almost identical over their lifespan, the
metabotype substantially varies with time and is influ-
enced by a wide range of environmental and lifestyle
factors, including fasting and feeding states, time of day
and menstrual cycle. A study that applied a wide range
of physiological challenges to participants demonstrated
that challenges increase the variability of certain metab-
olite profiles among volunteers with similar character-
istics. Discrete metabotypes could thereby be identified
that would not have been distinguishable under normal
fasting conditions®. Thus, every metabolomic charac-
terization of a biosample represents a snapshot of a

part of that individual’s present metabolic state at that
particular time.

Therefore, one may ask whether the concept of an
individual metabolic phenotype is actually meaningful
in the context of population-based studies. To assess
this, it is useful to estimate how much of the population
level variance is driven by genetic factors and how much
is driven by environmental factors. A longitudinal study
of plasma and urine samples from identical and non-
identical twin pairs showed that the human metabolome
is controlled by both genetic and environmental fac-
tors’. An analysis of Finnish twin pairs also found high
heritability for certain metabolic phenotypes, measured
on a different metabolomics platform'. What is impor-
tant to note here is that every metabolite has specific
properties: most of them are very sensitive to environ-
mental influences, and their concentrations may vary
over timescales of minutes, hours or days. Nevertheless,
their biochemical processing is controlled by enzymes
and transporters, and thus they are influenced by the
genetic variation that affects the expression or function
of these proteins.

Intermediate phenotypes. GWASs have identified many
risk loci for complex disorders. The number of asso-
ciations is increasing as more highly powered GWASs
and meta-analyses are conducted. However, the effect
sizes of genetic associations with complex disorders are
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Box 1 | Emerging insights from GWASs with metabolomics

Several patterns are beginning to emerge from genome-wide association studies
(GWASs) with different metabolic panels, experimental methods and sample types.
See TABLE 1 for a summary of studies carried out so far and TABLE 2 for some examples
of findings with biomedical relevance. The points summarized here demonstrate the
use and potential of this experimental approach.

High allele frequencies and large effect sizes

The identified genetic variants are often frequent (>20%) and have exceptionally high
effect sizes, explaining 10-20% of the observed variance®®. These genetically influenced
metabotypes (GIMs) do not result in the full loss-of-function of metabolism-related
proteins (such as inborn errors of metabolism, in which metabolite concentrations can
reach toxic levels in homozygous individuals) but still lead to substantial modifications
in their efficiency. In most cases, the genetic variant is found in a gene that codes for an
enzyme, a transporter or some other kind of metabolism-related gene.

Overlap with disease associations

Many disease end points most probably induce, or are induced by, a metabolic
phenotype, which can be picked up in a GWAS with metabolomics (FIC. 1). For example,
the N-acetyltransferase 8 (NAT8) locus encodes an N-acetylase protein and is a known
risk locus for chronic kidney disease*. A study uncovered an association of the NAT8
locus with serum levels of N-acetylornithine® and also showed that N-acetylornithine
associates with estimated glomerular filtration rate (eGFR), providing new insights into
the aetiology of chronic kidney disease.

Links to pharmacoogenomics

Similarly, many GIMs are associated with response to drug treatment. For example, the
solute carrier organic anion transporter family, member 1B1 (SLCO1B1) locus associates
with risk of statin-induced myopathy?. In a recent GWAS with metabolomics, it was
found to associate with a series of fatty acids, including tetradecanedioate and
hexadecanedioate'. This information can potentially be used to support the redesign
of the respective drugs, for instance by using tetradecanedioate and hexadecanedioate
as functional readouts in biochemical assays of drug side effect®.

Replication of GWASs with individual metabolic traits

Associations from previous GWASs with clinically relevant traits, such as serum fasting
glucose®, bilirubin®**°, urate*' and dehydroisoandrosterone sulfate* levels can be
replicated in a single GWAS with a large panel of metabolic traits*.

Refinement of associations with bulk traits

Metabolic traits can also provide a more detailed representation of a ‘bulk’ trait. For
instance, lipase, hepatic (LIPC) associates with blood triglyceride levels®, which are bulk
measures of a complex mixture of lipid traits. In a GWAS with metabolic traits, this locus
was found to associate with a number of glycerophosphatidylethanolamines?:, therefore
refining the association with the metabolic trait, which may ultimately be of clinical
benefit.

Identification of true positives in GWASs with clinically relevant end points

A combination of a GWAS with metabolomics and data from previous GWASs can
identify promising new candidate SNPs and provide new insights into the functional
background of these associations. For example, although two early GWASs*** reported
an association of SNP rs174548 (near FADS1) with serum low-density lipoprotein (LDL)
cholesterol, high-density lipoprotein (HDL) cholesterol and total cholesterol levels,
these associations were not considered as potential candidates for replication in those
studies. Gieger et al.”* later identified an association of rs174548 with a number

of glycerophospholipids in a GWAS with metabolomics, and on the basis of the fact that
glycerophospholipids are major constituents of LDL and HDL particles, they argued
that FADS1 may be a true positive-lipid-associated locus, a prediction that was later
confirmed in a large study with over 40,000 individuals*®.

generally small, and information on the underlying bio-
logical processes is often lacking. Therefore, the focus of
GWASs is now shifting increasingly away from studying
associations with disease end points and towards study-
ing associations with intermediate traits that are known
risk factors of disease (FIC. 1). Examples include GWASs
for: blood triglyceride, cholesterol and bilirubin levels,
which are risk factors for cardiovascular disease; fasting

REVIEWS

glucose levels and glucose levels after an oral glucose
tolerance test, which are linked to diabetes; urate lev-
els, which are linked to gout; and liver enzymes, which
are indicators of liver disease. These studies have shown
that genetic association with quantitative traits that are
functional intermediates of complex disorders are often
more highly powered, and furthermore they can pro-
vide information on the biological underpinning of the
disease association.

However, by studying only known risk factors of
disease, it is unlikely that any new biological processes
or pathways will be discovered that may be involved or
disrupted in the aetiology of the disease. Because meta-
bolic phenotypes are important readouts of many bio-
logical processes, a largely hypothesis-free approach of
GWAS:s with large panels of metabolic traits (metabo-
lomics) may be used to respond to this challenge. One
hundred and fifty years of biochemical research have
created a wealth of knowledge on the biological proper-
ties of most metabolites and also on the pathways that
link these metabolites in healthy or diseased individuals.
The metabolic trait in a GWAS thus has the role of an
intermediate phenotype that functionally links genetic
variation to disease-predisposing factors and then to
complex disease end points. The examples shown in
BOX 1 and TABLE 2 demonstrate this potential.

Study design

Choice of metabolomics platform. FICURE 2 presents
the main steps of a high-throughput metabolomics
experiment together with design considerations for
genetics-oriented metabolomics studies. Robust and
high-throughput measurement capabilities are required
to carry out GWASs with metabolomics. The technolo-
gies that are most often used in metabolomics experi-
ments are based on either mass spectrometry or NMR
spectroscopy. Mass-spectrometry-based methods char-
acterize a metabolite by its molecular mass, its specific
fractionation pattern (tandem mass spectrometry)
and its retention time when liquid-phase or gas-phase
chromatography separation is used. The most widely
implemented NMR-based method in metabolomics is
"H NMR. A small molecule is identified here by a spe-
cific pattern (called the chemical shift) in the resonance
spectrum of its protons when excited by an oscillating
magnetic field.

The initial ‘raw’ quantitative readout of a metabolic
feature is a specific pattern of peaks in a mass spectrum
or an NMR spectrum and related information, such as
the elution time, when using a chromatography method.
Ascertaining the biochemical identity of the metabo-
lites that are represented by these raw data is sometimes
an issue. Comparison with reference spectra that are
obtained from pure substances or spiking experiments
can provide such information. Nevertheless, many of
the experimentally observed metabolites (or metabolic
features) are currently not biochemically identified.
We thus distinguish between peak-based (or feature-
based) metabolomics and metabolomics that uses anno-
tated metabolite concentrations of known (and possibly
also unknown) biochemical identity.
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Table 2 | Selected loci of genetic association with metabolic traits that also associate with end points of biomedical relevance

Gene locus and SNP  Associated metabolic trait

GCKR; rs780094

ENPEP; rs2087160

NAT2;rs1495743

NATS8; rs13391552

SLC2A9; rs4481233

Function of gene product

Regulates glucokinase in liver and

Functions in the catabolic pathway of the
renin—angiotensin system and regulates

Participates in the detoxification of
hydrazine and arylamine drugs

N-acetyltransferase; N-acetylornithine

Disease association

Type 2 diabetes related
traits®; Crohn’s disease*

Blood pressure®®

Coronary artery disease®;
bladder cancer’!

Chronic kidney disease*?

P value

Glucose/mannose ratio 5.5x103

pancreatic islet cells
Amino-terminal-cleaved 6.5x10*
fibrinogen A-alpha peptide levels

blood pressure
1-methylxanthine/4-acetamidobu-  1.7x107*
tanoate ratio
N-acetylornithine levels 5.4x10722

associates with eGFR®
Urate levels 5.5x1073*  Urate transporter

Gout53755

In most cases, more than one metabolic trait associates with a genetic locus. Full association data are available from the GWAS-server. P values are taken from REF. 15.
Overlaps with disease associations are reported when the lead SNPs are in high linkage disequilibrium with the metabolite-associated SNPs (R?>0.8). eGFR, estimated
glomerular filtration rate; ENPEP, glutamyl aminopeptidase (aminopeptidase A); GCKR, glucokinase (hexokinase 4) regulator; NAT2, N-acetyltransferase 2; SLC2A9, solute
carrier family 2 (facilitated glucose transporter), member 9.

Metabolic individuality

The metabolic capacities of an
individual, as defined by the
ensemble of all functional
genetic variants (genetically
influenced metabotypes) in

their metabolism-related genes.

Historically, Garrod introduced

the term ‘chemical individuality’

to represent this concept.

Metabolome

The ensemble of all small
molecules (metabolites) that
are processed by the body's
enzyme and transporter
proteins.

Glycerophosphati-
dylethanolamines
Clycerophospholipids with
ethanolamine head groups.

The most notable advantage of mass-spectrome-
try-based methods compared with NMR methods is
their higher sensitivity. However, this advantage comes
at the cost of more complex demands in terms of sam-
ple preparation and in carrying out the actual meas-
urement, thereby providing many potential sources for
experimental errors and uncontrolled-for variances
in the resulting data sets. NMR-based measurements,
however, do not require the extraction of metabolites
and leave the samples intact for further analysis. Also,
absolute quantification with mass-spectrometry-based
methods requires external reference standards for
most of the measured metabolites, whereas NMR-
based methods provide quantification with one or
two references. Furthermore, the reproducibility of
NMR experiments is excellent, whereas batch effects
are often observed when mass spectrometry experi-
ments are conducted at different times. Both methods
thus have their strengths and weaknesses. If resources
permit, a combination of both would be optimal.

The measurement set-ups of these platforms are
complex and can rarely be fully replicated by any
independent laboratory. In a pilot study that deter-
mined 423 unique metabolite concentrations in blood
samples from identical study participants using three
different commercial platforms, 50 metabolites were
quantified on more than one platform. The median
correlation coefficient, R, between the platforms was
0.61. In three cases, no correlation was found, indi-
cating that the different techniques may actually be
measuring different metabolites in these cases. For
other metabolites, a very strong correlation (up to
R=0.95) was observed''. Even if described in great
detail, subtle differences in machine set-up and sam-
ple processing may have a great impact on certain
metabolic readouts. It is therefore essential to compare
and to harmonize measurements taken from identical
samples across platforms and to ensure that the final
metabolomics readouts are within a well-defined range
of experimental error. When investigating the same
genetic association using identical samples on differ-
ent platforms, the differences in the strength of the
resulting association signals are solely dependent on

the experimental errors incurred by these platforms.
Therefore, the data from the platform that displays the
strongest association to the genetic variant is likely to
be the most accurate.

At this point, the choice of the metabolomics pro-
vider should be considered: relying on in-house meth-
ods has the advantage of providing full control over
the measurements, but this comes with the require-
ment of having to build up and to maintain such a
platform. Using a commercial provider is an alterna-
tive that can bring metabolomics experiments within
the reach of groups that do not have access to local
metabolomics core facilities. Potential drawbacks of
this approach are the generally rather limited access
to details of the implemented methods and also fewer
options available for tweaking the experimental set-up
during the measurement process. Intermediate options
are the use of commercial metabolomics kit technolo-
gies or out-licensing of proprietary know-how and
software protocols on local platforms.

Choosing which metabolites and tissues to study.
Targeted methods study specific (known) metabolites
and thereby provide more precise measurements and
are easy to replicate but are limited to analysing only a
subset of preselected compounds. Non-targeted metab-
olomics offers a wider and largely hypothesis-free
approach but also increases the need to manage mul-
tiple testing during analysis (see below). Additionally,
targeted metabolomics methods are able to provide
absolute quantification by comparison to isotope-
labelled external standards, whereas non-targeted
methods often only provide semi-quantitative traits,
such as ion counts per sampling time, which may vary
extensively between experiments. This is, in principle,
not a problem in GWASs, in which the experiment
identifier can be added as a covariate to the statisti-
cal model to correct for such batch effects. However,
it could limit the usability of the metabolomics
data in other (non-genetic) studies.

In the choice of the metabolites to study, there is
generally a trade-off to be made between a wide and
largely non-targeted panel, which often comes at the
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Figure 1| The metabolic trait as an intermediate phenotype. The general concept (a)
and an example using information from actual genome-wide association studies
(GWASs) with metabolic traits'>?! (b). The association of a genetic variant is strongest
with its closest intermediate phenotype (IP; for example, the association of fatty acid
desaturase 1 (FADS1) with its product—substrate pair; also see BOX 2 and REF. 47),
although the association with the clinical end point may not even be detectable at a level
of genome-wide significance (P=0.021 for FADS1 with coronary heart disease*®). The
ensemble of all genetic associations with metabolic traits defines our metabolic
individuality and thereby our predisposition to disease®. ABO, ABO blood group; ALPL,
alkaline phosphatase, liver/bone/kidney; C20:3, dihomolinolenate; C20:4, arachidonic
acid; Eny, environmental factor; FUT1 fucosyltransferase 1; HDL, high-density
lipoprotein; LDL, low-density lipoprotein; LIPC, lipase, hepatic; PUFA, polyunsaturated

fatty acid; TG, thyroglobulin.

Q-Q plots

A graphical method for
comparing probability
distributions. In genome-wide
association studies, it is used
to verify whether the P values
are normally distributed; an
over-representation of low
Pvalues indicates possible true
positive associations.

cost of lower data quality, and a narrower targeted
panel, which comes at the cost of missing potentially
interesting metabolites. The decision of which method
to use should factor in how much and which additional
phenotype information is available on the individual
samples and whether this information can be enriched
by a specific targeted metabolomics panel. Bearing in
mind that no single technique allows the measurement
of all metabolites in one go, a non-targeted approach is
currently more promising as it may allow the discov-
ery of new associations with hitherto uncharacterized
metabolites.

REVIEWS

Study population and size. Most GWASs with metabo-
lomics have so far been conducted in the general popula-
tion, with participants mostly of Caucasian origin. It is
therefore likely that many genetic effects that are specific
to different ethnicities have not yet been discovered, call-
ing for extended studies in other populations. It should
be noted that some genetic variants in metabolism-
related genes depict sexual dimorphisms'* and need to
be considered in study design and interpretation. Using
samples from family-based studies and twin studies may
allow for the familial component of variation in metabo-
lite levels to be measured in addition to the heritability
contribution". If longitudinal data are available, the asso-
ciations can be checked to verify that the genetic contri-
bution to the metabolic phenotype of the individuals
remains stable over a longer time period™.

Most of the large-scale studies with metabolic traits
conducted so far originated from epidemiological stud-
ies that had previously collected and stored sample
aliquots. This strategy of collecting samples for future
analysis in large national cohorts and bio-banks, with-
out the knowledge of the precise analysis techniques
to be applied on them, made possible many of the
present GWASs with metabolomics. The collection of
such samples needs to be continued and extended by,
for example, collecting the most extensive variety of
samples, as it is not clear today on which, and on how
many, different platforms these samples shall eventu-
ally be analysed. Aliquot numbers should be high, and
individual volumes should be small to avoid thawing
cycles. Harmonization of standard operation protocols
(SOPs) for sample collection across centres is needed,
and the impact of laboratory-specific differences, such
as variation in centrifugation time and speed, needs to
be assessed.

Another source of valuable study material for GWASs
with metabolomics is clinical case-control studies.
Including individuals with disease in such studies allows
the investigation of potentially extreme metabolic phe-
notypes and the discovery of genetic associations that
are only revealed under disease conditions. However,
ensuring SOPs are followed in a clinical setting can be
more challenging than in an epidemiological study. For
example, whereas blood and urine samples taken under
standardized conditions are generally available from
epidemiological population studies, such conditions are
more difficult to meet in a clinical setting. In particu-
lar, samples from cases and controls need to be treated
identically as certain metabolites may be very suscep-
tible to slight deviations from standard protocol. Strict
SOPs need to be implemented, with a strong focus on
homogeneous sample treatment, including sample stor-
age at -80°C and sample aliquoting at collection time to
avoid any thawing of the samples between storage and
measurement.

A recent study of 2,820 individuals that used non-
targeted liquid chromatography coupled with tandem
mass spectrometry (LC-MS/MS) and gas chromatog-
raphy coupled with mass spectrometry (GC-MS) iden-
tified 37 genetic loci with genome-wide significance®.
Q-Q plots from that study suggest that more than 500
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Workflow =====-p Considerations ==========3 Choices

Study Population
cledlgn Study type
Sample type
Sample Standard operating protocols
collection Fasti
asting state
Sample quantities
Sample Temperature
SHEEEE Aliquoting
Biobanking
Sample Metabolite extraction

Plebarhion Derivatization

v

Sample Method
anelyets Identification

Provider
Data Covariates
analysis

Statistical analysis

Initial data processing

v

Data Functional

interpretation Biochemical

Medical

For example, Caucasian, Asian, African
For example, population-based, twins study, clinical studies

For example, blood, urine, saliva

Compatibility between study centres
For example, fasting, non-fasting, controlled nutritional challenges

Serum, plasma, small volumes to avoid thawing

—80°C, liquid nitrogen
200 pl for mass spectrometry, 1 ml for NMR, avoid thawing cycles

Manual, automated

For example, polar, charged

Changing biochemical properties for better measurement

IH NMR, LC-MS/MS, GC-MS/MS
Targeted, non-targeted, quantitative

Proprietary, core facility, fee-for-service

Age, gender, body mass index, medication, lifestyle
For example, linear model, using ratios, advanced statistics

Log-normal scaling, principal-component transformation

For example, GRAIL, overlay with eQTL data
KEGG, HMDB

GWAS catalogue, pharmacogenomics database

Figure 2 | Workflow and considerations. The basic steps of a high-throughput metabolomics experiment and design
considerations for a genome-wide association study (GWAS) with metabolic traits. eQTL, expression quantitative trait
locus; GC-MS/MS, gas chromatography-tandem mass spectrometry; GRAIL, Gene Relationships Across Implicated
Loci; HMDB, Human Metabolome Database; KEGG, Kyoto Encyclopedia of Genes and Genomes; LC-MS/MS, liquid

chromatography-tandem mass spectrometry.

loci show signals of association and may be confirmed
as GIMs in more highly powered studies in the future.
Nicholson et al."* present a power analysis for studies
of a similar design (see figure 5 in that paper), estimat-
ing that associations with effect sizes down to R*=0.01
are detectable with 80% power using samples sizes of
around N=6,000. However, the current experimental
coverage of the metabolome in GWASs is still incom-
plete, and metabolic characterization of various sample
types (other than blood and urine) and metabolic
states (other than overnight fasting) is scarce. Even
small studies conducted under conditions that have
not previously been studied can therefore be expected
to provide new associations of high biomedical interest.

Data analysis
Here we describe the main steps in data analysis. TABLE 3
highlights some important analytical challenges.

Initial data processing. Initial data processing should
include investigation of any hidden internal structure
in the data, such as dependence on measurement run
day, and validation of the metabolite data against related
traits that have been measured by independent meth-
ods, such as blood triglyceride and glucose levels or
urine creatinine'*. Extreme outliers should be removed
in a general GWAS to avoid spurious associations with
rare genetic variants. Note, however, that these outli-
ers may correspond to diseased states and can be useful
in more focused studies. As larger metabolite pan-
els are used in more highly powered GWASs that can
test gene variants with lower minor allele frequencies,
hitherto unknown inborn errors of metabolism may
be discovered. For such applications, it is then neces-
sary not to remove outliers to identify associations
between extreme metabotypes and rare genetic vari-
ants. However, false-positive rates are then expected
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Table 3 | Analytical challenges
Challenge

How to deal with a high correlation
between metabolic traits

How to analyse metabolomics data
using multivariate methods

How to process raw metabolomics
data and how to handle extreme
outliers or missing data points

How to analyse related but not
identical traits jointly that originate
from different experimental
techniques in a meta-analysis

How to analyse metabolomics data
from different bio-samples jointly
in a meta-analysis and replication

How to identify true positives
below the genome-wide
significance threshold

How to identify causative genes
and functional variants

How to derive causality between
genetic variants and disease end
points

How to overlay metabolomics
data with data from other ‘omics’
experiments

Description and examples

Bonferroni correction is often too strict; Benjamin—
Hochberg may not apply as traits correlate in complex
ways

Analysis of ratios between metabolite pairs is a powerful
bivariate method that provides a direct biochemical
interpretation

Distribution of metabolomics data is not always normal;
missing values may be due to failed detection or true
absence; extreme outliers may be genuine but may also
generate many false associations

Glucose can be measured by NMR, and some mass
spectrometry methods provide the sum of hexoses;
individual lipid species can be measured by dedicated
lipidomics methods, whereas others determine bulk
parameters, such as the sum of all carbon atoms and
degree of desaturation in the lipid side chain (or chains)

Some metabolites are differently preserved in blood
plasma and serum; platforms may differ in extraction
protocols

An association between a metabolite and a SNP in an
enzyme that metabolizes that metabolite is more likely to
be a true positive

This is a general problem in genome-wide association
studies, but it may be facilitated in the case of metabolic
traits by using biochemical connections between the
metabolic trait and biochemically related genes at a locus

A metabolic phenotype may be a functionalintermediate
trait or a correlated biomarker

Chromatin immunoprecipitation- and sequencing-based
high-throughput technologies, such as genome-wide
gene expression, DNA methylation and microRNA data
should be integrated into the chain of intermediate traits
that lead from genotype to disease end point

Perspectives and needs

Data transformations, including the use of partial
correlations and principle component analysis to
de-convolute the data; however, associations with
transformed variables may become more difficult
to interpret biochemically

Use of dedicated multivariate methods — for
example, as described by Ferreira and Purcell*®
— possibly including biochemical pathway
information and machine learning

Log-normal transformation appears to be
reasonable in many cases; consider more complex
Box—Cox and principal-components analysis space
transformation; use of parameter-free tests that
are independent of an assumed distribution

Dedicated data analysis methods that account
for specific biochemical properties need to be
developed

Dedicated statistical methods that account for
specific differences between biosamples

Bayesian-style reasoning based on prior
information®’

Extend approaches based on ideas implemented
in GRAIL (Gene Relationships Across Implicated
Loci)®®

Mendelian randomization, in which effect sizes are
large enough

Gaussian graphical modelling®; other
network-based methods; more advanced
systems-biology methods

Additive linear model

A mathematical model used in
statistical association analysis;
here, it assumes a linear
additive effect of the minor
alleles on the metabolite
concentrations.

to be high, and replication must be done carefully. If
longitudinal data are available, the persistence of an
extreme metabolic phenotype can be verified in indi-
viduals over time, thus indicating whether it constitutes
a true extreme value (for an example, see the association
of SNP rs37369 with 3-aminoisobutyrate concentrations
in REF 14).

We recommend log-scaling of the data, as it has been
observed that metabolite concentrations are more often
close to log-normal distributions than to normal distri-
butions'>*¢. This is also coherent with testing metabo-
lite ratios (see below). More sophisticated methods of
initial data processing could include methods based on
principal components analysis (PCA) and are briefly
mentioned in TABLE 3. By transforming the data to PCA
space, it may be possible to reduce its dimensionality and
thus to reduce the multiple-testing burden. Also, outliers
may be spotted more readily on PCA plots. For this pur-
pose, specialized Web servers can be used'”. However,
biological interpretation of the association results also
becomes more challenging in PCA space.

Testing for associations between SNPs and metabolite
data. Testing for genetic association with metabolic
traits is basically done as for any other quantitative trait.
This is typically achieved by fitting an additive linear model
with the covariates age and gender to the metabolite data
and correcting for population stratification and fam-
ily structure using software such as PLINK', Merlin",
SNPTEST? or in-house R-scripts (see The R Project web-
site). Because some metabolic traits strongly vary with
parameters such as body mass index (BMI) and fasting
state, these should be added to the model as well. Ideally,
all measured metabolic traits would be tested for associa-
tion with all available phenotypic parameters, and then
all significantly associating parameters would be included
as covariates into the model. Also, when measurements
are done in batches or when samples come from distinct
study centres, this information should be included".
GWASs with metabolomics may return massive
amounts of information (far greater than GWASs with a
single or few traits), and this represents a computational
challenge. Selection of loci for further investigation
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Linkage disequilibrium

(LD). A nonrandom association
between neighbouring gene
variants; it is used to describe
a region of high correlation
between SNPs.

Glycerophospholipids
Glycerol-based phospholipids
are major constituents of the
membrane bi-layers and are
found in association with
low-density lipoprotein (LDL)
and high-density lipoprotein
(HDL) particles.

Sphingolipids
A class of lipids that contain a
backbone of sphingoid bases

requires implementation of clearly defined algorithms
that pick SNPs for follow-up on the basis of objective
criteria. However, manual curation of these loci is also
necessary to detect overlapping or independent signals.
This step should include viewing of all association data,
not just the top associating metabolite. Putative causa-
tive genes can often be spotted by examining the func-
tion of the genes that lie in the linkage disequilibrium (LD)
block around the lead SNP while bearing in mind the
characteristics of these metabolites. Criteria for report-
ing associations should not be different from other
GWASs, in that associations should meet genome-wide
significance after Bonferroni correction for all tested
loci and all traits, with replication in independent stud-
ies. Nevertheless, owing to the high correlation between
many metabolic traits, it is likely that this is a very con-
servative approach. Associations below the genome- and
metabolome-wide significance level should therefore
be made publically available for inclusion in future
meta-analyses studies (TABLE 3).

Because many of the individual metabolite meas-
ures are highly correlated, it may appear to be difficult
to determine what is really driving both the association
and the clinical risk changes. However, often the gene
that hosts the causative variant can be readily identified
owing to a match between the function of the gene and
the associated metabolic trait. In these cases, the most
parsimonious hypothesis is then that of a causal rela-
tionship in the direction gene > metabolite > disease
phenotype. Other metabolites that also associate at the
same locus are then most often identified as lying on
the same pathway as the leading metabolic trait. High
proportions of matches between gene function and asso-
ciating metabolite (or metabolites) have been detected
in a number of studies'*~'**'"**, and most associa-
tions were found to involve SNPs that are near enzyme,
transporter or other metabolism-related genes.

Replication across studies. A lack of replication between
studies of a few metabolic traits is sometimes observed.
This may in part be attributed to differences in sample
treatment, such as storage of blood samples at different
temperatures, but many other factors may come into
play that require investigation on a case-by-case basis.
For instance, 15 loci of genome-wide significance were
identified in a GWAS that involved 1,809 individuals and
used a metabolomics kit that quantifies 163 metabolic
traits, many of which are lipid-related species'®. However,
only 9 out of the 15 associations could be replicated in an
independent population of 422 individuals (with a signif-
icance level of 0.05 adjusted for 15 tests)'. Nevertheless,
a subsequent study that used the same metabolomics
platform on an independent population replicated 12 of
the 15 loci (with a significance level of 0.05 adjusted for
15 tests)'. The remaining three loci have been reported
in association with a similar trait by GWASs using dif-
ferent metabolomics platforms'>?. This indicates that
the genome-wide significance cut-off, accounting for all
tested SNPs and all tested metabolic traits, is indeed a
conservative threshold, as may be expected in the case of
traits that are in part highly correlated.

Despite the technical issues that may affect repro-
ducibility, most associations can be replicated well, even
across metabolic traits that are different but related.
For example, the fatty acid desaturase 1 (FADSI) locus
was associated in a number of different studies with
various species of glycerophospholipids (including phos-
phocholines, phosphoethanolamines and phosphoino-
sitoles'>'5*') and sphingolipids*, and with omega 3 and
omega 6 fatty acids®; all of these species are related to
arachidonic acid (C20:4). Also, some loci are found
to associate with related traits in urine and blood, such as
N-acetyltransferase 2 (NAT2)""> and NATS8 (REFS 13,15).
As the number of GWASs with metabolic traits
increases, it will become increasingly challenging (and
informative) to combine such related, but not identical,
association data in a meta-analysis (TABLE 3).

Integration with biochemical information. The beauty
of the metabolic phenotype is that there is a rich knowl-
edge base regarding many endogenous human metabolic
pathways. In addition, more than 2,200 enzyme-coding
genes are annotated in the human genome. This allows
the corroboration of candidate associations with biologi-
cal and functional arguments. Therefore, it is possible
to analyse the association data from the point of view
of a biochemist. Genes that are related to enzymatic and
transport activities, and that are located in regions in LD
with the lead SNP, are prime candidates for harbouring
the causative variant. If such genes are present, research-
ers can then verify a biochemical link between these
genes and the metabolic traits, using databases such as
the Human Metabolome Database (HMDB)% and the
Kyoto Encyclopedia of Genes and Genomes (KEGG)?*.
Currently, this is mostly done manually; dedicated and
automated network analysis methods with statistical
evaluation tools need to be developed for this task.

Association of ratios. Many metabolites are, by nature,
highly correlated as they are interlinked by biochemi-
cal reactions in complex metabolic networks. A genetic
variant is, in most cases, in association with several, bio-
chemically related traits rather than a single metabolite
concentration. This ‘feature’ of the metabolic pheno-
type can be merely a consequence of the biochemical
correlation between the metabolites without any link
to a genetic cause. However, we found that testing all
possible ratios between metabolite concentrations in
a GWAS is a very powerful method for identifying
those correlations between metabolite pairs that have
a genetic underpinning. This hypothesis-free testing
of all metabolite ratios for association was first applied
by our group in a metabolome-wide association study
on diabetic mice?” and subsequently used in our first
GWAS?. If two metabolites constitute a product-sub-
strate pair of an enzymatic reaction, then ratios between
their concentrations are potential proxies of the corre-
sponding reaction rate. In our pilot study, we found
that the association of ratios between two metabo-
lites that are related to product-substrate pairs of the
FADSI reaction was many orders of magnitude stronger
than that of the concentrations of the two individual
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Box 2 | Ratios between product and substrate concentrations

The ratio between the concentration of a product and the concentration of its substrate
approximates the biochemical reaction rate under idealized steady-state assumptions,
and therefore the product/substrate ratio can be viewed as a proxy of the reaction rate.
It has been observed that using ratios as quantitative traits in a genome-wide
association study (GWAS) reduces the variance in the data set and increases the power
of the GWAS by several orders of magnitude?'. As a measure of this increase in the
strength of association, the ‘P gain’ was introduced. It is defined as the change in P value
when using ratios compared to the smaller of the two P values when using two
metabolite concentrations individually?. In many cases, this P gain is much larger than
the loss in statistical power incurred by the increased number of hypotheses tests. If
computational resources permit, we therefore recommend testing all possible ratios
between metabolites for association.

Here is an example. Fatty acid desaturase 1 (FADS1) encodes a key enzyme in the
metabolism of long-chain polyunsaturated omega 3 and omega 6 fatty acids. The minor
allele variant of the rs174547 SNP associates with a reduced efficiency of the fatty acid
delta-5 desaturase reaction®. The P value of the association with the product of the
FADS1 reaction, arachidonic acid (C20:4), is 1.7 x 107*°, and with the substrate,
dihomolinolenate (C20:3), the P value is 3.3 x 10~°. However, a test for association with
the ratio between the product and the substrate, C20:4/C20:3, results in a
strengthening of the association by 70 orders of magnitude and a P value of 3.6 x 1071
(P gain=4.8x10"°).

This can be explained by looking at the idealized reaction pathway for C20:4.
Assuming that other sources and sinks of C20:4 can be neglected when compared to
the FADS1 desaturation and the ELOVL2 elongation reactions, it reads:

kFADSl kELOVLZ

C20:3 C20:4 C22:4

The thereof derived differential equation is:
d

& [C20:4]=Kkpaps1[C20: 3] —kg v ,[C20:4]

Its solution under steady-state assumption is:

[C20:4] _ Keapsi
[C20:3] kgoviz

With the additional assumption that the elongation reaction does not depend on
genotype, it follows that the rate of the FADS1 reaction is proportional to the ratio
between the concentrations of its product and substrate.

metabolites (BOX 2). This association was highly sig-
nificant at a genome-wide level, even after Bonferroni
correction for the additional tests induced by the use
of ratios. Numerous subsequent studies confirmed
that using metabolite concentration ratios as proxies
for enzymatic reaction rates reduces the variance and
yields robust statistical associations®. In the case of
FADS], if the molecular function of that enzyme was
not already known, the association between the SNP
and the associated metabolites may have allowed the
deduction of its enzymatic activity of inserting a fourth
double bond into long-chain fatty acids. In a way, it is
the genetics that tells us which associations make sense
biochemically.

Therefore, even if computationally expensive, we
recommend testing all ratios between metabolite pairs
for association. The ratios should be log-scaled owing
to the relationship log(a/b) = -log(b/a), which means that
the association of a ratio and of its inverse then yields
identical results and thereby halves the multiple-testing
burden. Large increases in the strength of association

REVIEWS

are a signal for biochemically informative associations.
Petersen et al.?® showed that an increase in the strength
of association by a factor of ten times the number of
tested ratios is a conservative upper bound for signifi-
cance. Note, however, that a lack of such an increase does
not prove the contrary: an important metabolite may be
missing from the panel for technical reasons and thus
will not show up in a ratio.

Further interpretation

Integration with other GWASs. Systematically overlay-
ing GIMs with associations from GWASs with disease
or disease-related end points allows the identification
of potentially true positives in the list of associations
that did not attain genome-wide significance. When
a genetic locus has been proved to harbour a functional
genetic variant by displaying a strong and replicated
association with a metabolic trait, then the likelihood
that a marginal association of that same variant (or a
variant in strong LD) with a clinical end point is due to
chance is much lower than it is for a variant that does
not show any other signal associations. Although a solid
statistical foundation of such a Bayesian-style argu-
mentation is lacking at present, a first approach could
be to combine the statistical association data from both
GWASs using classical meta-analysis methods*. More
research on how to combine association data from related
but non-identical traits is needed. Such methods would
also be needed for the meta-analysis of association data
from GWASs that use different metabolomics techniques.

Functional genomics and metabolomics

GIMs also have the potential to inform basic science.
The field of functional genomics aims to identify the
function of all genes in the human genome. To this
end, an association of a poorly characterized enzyme
or transporter gene with a metabolic trait may gener-
ate testable hypotheses on their substrate specificities.
Following up on the predicted function of solute carrier
family 16 member 9 (SLC16A9; also known as MCT9)
as a carnitine transporter, on the basis of its associa-
tion with serum carnitine concentrations, experiments
using radio-labelled carnitine and SLC16A9-expressing
Xenopus laevis oocytes showed that this transporter
is indeed a carnitine efflux pump'®. This concept can
also be inversed. For around one-third of all measured
metabolites, their biochemical identity is at present
unknown. Association of a well-characterized enzyme
or transporter gene with a metabolite of unknown iden-
tity may be used to infer its biochemical nature. We have
recently applied this approach to predict and experi-
mentally validate the identity of a number of unknown
metabolites, such as dipeptides, on the basis of their
association with the dipeptidase angiotensin-converting
enzyme (ACE)™.

Gene-envrionment interactions

In addition to biomedical and pharmacological applica-
tions, co-association of genetic variation with metabolic
traits and with certain lifestyles can also provide new
insights into the functional basis of gene-environment
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Garrod, A. E. The incidence of alkaptonuria a study 7.

interactions. For instance, the aryl hydrocarbon recep-
tor (AHR) locus was found to associate with coffee con-
sumption habits* in a large population study. The strong
association of this locus with serum caffeine concentra-
tions" in a much smaller study suggests that genetic dif-
ferences in caffeine metabolism are likely to be at the
basis of this genetically influenced lifestyle choice.

At present, most interactions of genetic variance with
environmental and lifestyle factors cannot be detected
on a genome-wide scale owing to limitations in the
statistical power of such studies. This problem may
be overcome by limiting the tests of statistical interac-
tion to genetic variants that are known to have a strong
impact on the processes of human metabolism and that
are linked to the relevant environmental or lifestyle fac-
tors. For instance, genetic variation in FADSI strongly
modifies polyunsaturated fatty acid (PUFA) metabo-
lism. Two independent studies showed that dietary
intake of PUFAs modulates the association between
genetic variation in FADSI and serum lipid levels®” and
thereby potentially also modifies the risk of cardiovas-
cular disease. This statistical interaction between genetic
variance and nutritional habits could only be identified
because these studies focused on a known GIM locus. It
would not have been statistically significant if it had been
searched for on a genome-wide scale.

Current challenges and future directions
Knowledge of the full set of genetic variation in human
metabolism will have a wide range of biomedical and
pharmaceutical applications. The GIMs identified in
GWASs can be used in clinical studies for association
with response to drug treatment or with the develop-
ment of particular complications during the course of
a disease or treatment. Follow-up investigation of the
GIMs in their biochemical context is likely to provide
a better understanding of the pathogenesis of common
diseases. Furthermore, it can be expected that knowledge
of the genetic basis of human metabolic individuality will
allow the separation of genetic and environmental fac-
tors in complex gene-environment interactions and will
provide a rational starting point for personalized and
gene-based health care and nutrition strategies. However,
there remain many analytical challenges for GWASs with
metabolomics, including those summarized in TABLE 3.

Lu, Y. et al. Dietary n-3 and n-6 polyunsaturated fatty 11.

Eventually, the epidemiological approach of a wide
range of patient phenotyping and sample collection,
using strict SOPs, needs to be translated to clinical stud-
ies, as studies that implement physiological challenges
may provide access to perturbed systems®. The most
useful approach for understanding the causal roles of
the metabolites (on the pathways from genetic vari-
ants to intermediate traits to disease end points) would
be to use prospective cohorts that allow for future dis-
ease risks to be evaluated on the basis of both genetic and
metabolic information.

Metabolic profiling of other biological samples,
including saliva, cerebrospinal fluid, synovial fluid, semen
and tissue homogenates, should be investigated in the
future but have so far not been used in high-throughput
population-based studies™. Studies in stool samples may
be particularly challenging. Here, the effect of the gut
microbiome on human metabolism needs to be taken
into account, and this requires the additional charac-
terization of the bacterial communities in the samples.
Technical studies investigating, for example, the impact
of differences between using serum and plasma* or of
storing samples at different temperatures and for differ-
ent times on the metabolite concentrations also need to
be extended, ideally across platforms and institutions.

To date, GWASs have mostly focused on common
variants from chip-based genotyping arrays. However,
with better coverage of low-frequency variants through
sequencing or dense imputation reference panels, more
associations with metabolites will most probably be
uncovered. In cases in which a metabolite can be identi-
fied as being functionally relevant and an intermediate
trait on a pathway to a complex disorder, its genetic asso-
ciation can be used to fine-map the underlying disease
risk locus to identify the disease-causing gene variant.
For example, Tukiainen et al.** were able to fine-map
known lipid loci using a dense marker set and detailed
metabolite profiles.

The future resides in the combination of data from
multiple ‘omics’ technologies. Inouye et al.*® presented
the first study of that kind by combining metabolomic,
transcriptomic and genomic variation in a large, pop-
ulation-based cohort. One of the big challenges here is
to combine all of these data in what may be termed a
genome-wide systems-biology approach.
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