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Solution structure and binding 
specificity of the p63 DNA binding 
domain
Andreas Enthart1,2,†, Christian Klein4, Alexander Dehner1,*, Murray Coles5, Gerd Gemmecker1, 
Horst Kessler1,2 & Franz Hagn1,2,3

p63 is a close homologue of p53 and, together with p73, is grouped into the p53 family of transcription 
factors. p63 is known to be involved in the induction of controlled apoptosis important for 
differentiation processes, germ line integrity and development. Despite its high homology to p53, 
especially within the DNA binding domain (DBD), p63-DBD does not show cooperative DNA binding 
properties and is significantly more stable against thermal and chemical denaturation. Here, we 
determined the solution structure of p63-DBD and show that it is markedly less dynamic than p53-
DBD. In addition, we also investigate the effect of a double salt bridge present in p53-DBD, but not in 
p63-DBD on the cooperative binding behavior and specificity to various DNA sites. Restoration of the 
salt bridges in p63-DBD by mutagenesis leads to enhanced binding affinity to p53-specific, but not 
p63-specific response elements. Furthermore, we show that p63-DBD is capable of binding to anti-
apoptotic BclxL via its DNA binding interface, a feature that has only been shown for p53 so far. These 
data suggest that all p53 family members - despite alterations in the specificity and binding affinity - are 
capable of activating pro-apoptotic pathways in a tissue specific manner.

Due to its prominent role in apoptosis, the tumor suppressor protein p53 has been called the ‘guardian of the 
genome’1 and studied in great detail for several decades2,3. However, the discovery of protein homologues, named 
p634 and p735, led to the concept of a family of transcription factors. The high level of sequence similarity in the 
DNA binding domain (DBD) allows p63 and p73 to trans-activate p53-responsive genes resulting in cell-cycle 
arrest and apoptosis6,7. While p53 has specialized on tumor suppression, its “ancestor”8–10 p63 plays a predomi-
nant role in the regulation of epithelial cell development11,12 and germ line protection13. Mutations in the p63 gene 
in humans lead to diseases such as Hay-Wells syndrome14, cleft-lip, split-hand/split-foot15, ADULT syndrome16 
and EEC syndrome14,17. Knockout of p63 in mice leads to truncated limbs and an underdeveloped skin8,18, result-
ing in a drastically reduced lifespan. The p63 protein was also reported to be involved in cancer, apoptosis and 
chemo sensitivity19–21.

All members of the p53 family have the same modular architecture with an N-terminal transactivation 
domain, a 60% homologous core DNA-binding domain (DBD) that is followed by a tetramerization domain and 
a regulatory C terminus22,23. Despite the similarity of their DNA-binding domains, p53 and p63 differ in their 
DNA binding properties24; p53 binds to its target DNA in a highly cooperative manner, whereas p63 lacks coop-
erativity24 and consequently binds to its target DNA sequences considerably more weakly. Several isotypes of p63 
and p73 have a conserved C-terminal extension of 100 residues, consisting of a SAM domain24 and a regulatory 
domain25, that is not present in human p53 and that might be a protein-protein interaction module with regula-
tory function26,27. In addition, N-terminally truncated isoforms of p63 and p73 (Δ​N) were identified that are not 
capable of transcriptional transactivation and that have an anti-apoptotic role as antagonists of their full-length 
counterparts4,28.
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In contrast to p63-DBD, the thermostability of wild type and mutant p53-DBDs has been studied in detail29. 
Many oncogenic mutations within p53-DBD are known to affect its thermodynamic stability and prevent proper 
folding and DNA binding29. Several studies tried to rescue the mutant protein and stabilize the wild-type p53-DBD 
conformation30–32. These attempts and others using semi-rational design33 resulted in protein variants with up to 
30 °C increased thermal stabilities. More recently, small molecules have been discovered to stabilize p53-DBD 
in a wild-type conformation34,35. With a thermal stability of 65 °C (as compared to 43 °C for p53-DBD wt)  
p63-DBD might serve as a template for a more structure-based stabilization approach. Recent crystal structures 
of p63-DBD bound to various DNA response elements36,37 showed that p63-DBD interacts with DNA in a similar 
manner than p53-DBD. However, no high-resolution structure has been available for p63-DBD in its apo form as 
well as no information on the dynamics of this protein domain.

Here we present the solution structure of the 26kD p63 DNA binding domain (p63-DBD, residues 
Ser114-Thr345) solved by NMR spectroscopy. A structural comparison between p63-DBD and a recent complex 
structure with DNA revealed pronounced structural changes upon DNA binding. A structural comparison with 
p53-DBD shows a high degree of similarity between the two homologues. Further, we compared the binding spe-
cificities of p63-DBD and p53-DBD to various DNA response elements and anti-apoptotic BclxL. The presence of 
a double salt bridge in p53-DBD leads to increased binding affinity for all response elements and the introduction 
of this double salt bridge into p63-DBD restores high-affinity binding to p53 promoter sites, highlighting the 
general role of a double salt bridge for selective DNA recognition within the p53 family members.

Results
Solution NMR structure of p63-DBD.  In contrast to p53-DBD, p63-DBD can be produced in E. coli at 
37 °C as a soluble protein in large amounts (see methods section). We were able to obtain up to 20 mg of purified 
isotope-labeled p63-DBD per liter of M9 medium for our structural studies. Using NMR methods we could 
further complement our resonance assignment (Fig. 1a)38 for all backbone and side chain atoms, with the excep-
tion of the segment S233–V238 (S262–V267 according to SwissProt accession code Q9H3D4), where the corre-
sponding backbone amide signals could not be observed in the 2D-[15N, 1H] TROSY spectrum, most likely due 
to unfavorable exchange processes. NOE-derived distance restraints extracted from a set of 2D and 3D NOESY 
spectra (Fig. 1b), chemical shift-derived backbone torsion angle restraints (Fig. 1c) and 3JHNH◽ and 3JNH◽ coupling 

Figure 1.  NMR structure of p63 DNA binding domain (DBD). (a) 2D-[15N, 1H]-TROSY spectrum of p63-
DBD. (b) Example strips taken from a 15N-edited 3D NOESY spectrum. (c) Secondary chemical shift data. 
Boxes indicate the location of secondary structure elements in the final structure. (d) Topology diagram of p63-
DBD based on chemical shift, coupling constants and NOE data. (e) Stereo view of the lowest-energy structural 
ensemble (20 structures) of the p63-DBD with a backbone atom r.m.s.d. of 0.35 Å among ordered residues. The 
secondary structural elements are labeled. All β​-sheets are shown in light green, α​-helices in red, the 310 helix in 
orange and unstructured regions in grey. (f) Structural comparison between apo-p63-DBD (determined here, 
orange) and p63-DBD bound to DNA (blue, pdb id: 3qym)36. The two structures show a backbone r.m.s.d. of 
1.1 Å. (g) Helix 3 undergoes a pronounced change in location upon binding to DNA. In the complex structure, 
this helix moves towards the DNA by around 3.3 Å. This conformational change leads to a repositioning of the 
side-chains of Arg 311, which enables specific DNA binding. Other DNA-binding residues, like Arg 279 and 
Arg304 are being slightly reoriented in the complex with DNA to engage in specific interactions. In the NMR 
structure Lys 149 is oriented toward the solvent in an extended manner and is thus available for establishing 
specific contacts to DNA. This crucial side-chain is not resolved in the crystal structure.
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constants were used for structure calculations (Table 1). The final ensemble consisting of the 20 lowest-energy 
structures (Fig. 1e) is well defined with an RMSD of 0.35 Å for all backbone atoms and 0.79 Å for all non-hydro-
gen atoms (Table 1). The overall structure of p63-DBD adopts an immunoglobulin fold; i.e. an 11-stranded β​
-sandwich (Fig. 1d,e). The sandwich consists of four β​-strands (1, 4, 6 and 9) that are exposed to the solvent at 
one side, and of β​-strands 2 and 3 (capped by helix 2) and 5, 7, 8, 10 and 11 on the other, of which at least strands 
10 and 11 are shielded from the solvent by the N-terminus. The long loop linking β​5 to β​6 contains two helices, 
a 310-helix (helix 1, residues 194–199) and an α​-helix (helix 2, residues 205–211). Helix 3 (residues 308–324) is 
located above β​-strands 2 and 3 and represents the main DNA binding interface in the p53-DBD homologue. On 
the other side of the DNA contact area there is an extended loop region (L9) of 15 residues length; a well-defined 
and highly conserved structural feature between β​-sheets 9 and 1039,40

p63-DBD undergoes pronounced conformational changes upon binding to DNA.  Our NMR 
structure of apo-p63-DBD and a previous crystal structure of the p63-DBD-DNA complex36 provide the oppor-
tunity to analyze structural changes occurring upon binding to DNA (Fig. 1f). The overall immunoglobulin fold 
is preserved in both structures with a pairwise RMSD of 1.1 Å. In the NMR structure, we can clearly see a 310 helix 
(H1) consisting of residues 194 to 199 that is not well defined in the crystal structure. Furthermore, loop 1 (L1) is 
not completely resolved in the crystal structure. In the NMR structure this loop adopts a similar conformation as 
seen in p53-DBD, where a lysine residue (Lys149) points toward the solvent and is available for interaction with 
DNA (Fig. 1g). In addition, helix 3 (H3) is one turn longer in solution than in the crystal structure. Dynamics 
in this C-terminal region of the protein is enhanced (Supplementary Fig. 2), presumably leading to a reduced 
resolution in the crystal structure. Importantly, there are marked structural differences within the DNA binding 
interface of p63-DBD. Helix 3, one of the main interaction sites with DNA, experiences changes in its position 
upon DNA binding of around 3.5 Å (Fig. 1f,g). By this conformational change, helix 3 inserts itself into the major 
groove of the bound DNA. This results in repositioning of Arg311 side chain for subsequent interaction with the 
DNA phosphate backbone. Other DNA-binding residues in p63, like R279 and R303, also experience a slight 
change in position and orientation leading to a specific interaction with DNA (Fig. 1g).

Optimized packing in the hydrophobic core of p63-DBD leads to high thermal stability.  The 
p53 family of transcription factors shows high sequence conservation between both isoforms and among differ-
ent species (Fig. 2a). Accordingly, there is high structural conservation among the family members. A particular 
region of interest is helix 2 (H2) that harbors a Glu-Arg sequence element. These two charged residues form a 
double salt bridge upon p53-DBD dimerization induced by DNA binding41,42. In addition to several p53-DBD 
structures and two p63-DBD structures in complex with DNA36,37 solved up to date, we here provide additional 
structural information on apo-p63-DBD in solution. A comparison of these structures shows that both proteins 
adopt a similar β​-barrel immunoglobulin fold with exactly the same number of β​-strands and α​-helices (Fig. 2b) 

SA <​SA>​r
RMSD from distance restraints (Å)2 

  all (554) 0.029 ±​ 0.003 0.027

  intra-residue (10) 0.023 ±​ 0.008 0.025

  inter-residue sequential (42) 0.021 ±​ 0.002 0.023

  medium range (89) 0.033 ±​ 0.001 0.033

  long range (335) 0.032 ±​ 0.001 0.029

  hbond (78) 0.012 ±​ 0.001 0.010

RMSD from dihedral restraints (652) 0.12 ±​ 0.01 0.11

RMSD J-coupling restraints (Hz) (48) 0.82 ±​ 0.02 0.78

H-bond restraints average (Å/deg) (78) 2.12 ±​ 0.2/16.0 ±​ 7.2 2.13 ±​ 0.1/13.3 ±​ 6.6

H-bond restraints min-max (Å/deg) 1.42–2.58/5.3–38.2 1.83–2.56/1.5–35.7

Deviations from ideal covalent geometry

  Bonds (Å ×​ 10−3) 4.88 ±​ 0.18 7.34

  Angles (deg) 0.73 ±​ 0.03 0.73

  Impropers (deg) 3.58 ±​ 1.08 1.53

Ramachandran Map regions (%)3 88.9/9.6/0.7/0.8 88.4/10.6/0.0/1.0

Atomic RMSD (Å)4 in Structured areas6 SA vs. <​SA>​ SA vs. <​SA>​r
Backbone All Backbone All

0.35 ±​ 0.06 0.79 ±​ 0.09 0.42 ±​ 0.09 0.90 ±​ 0.18

Table 1.  NMR structural statistics of apo p63-DBD. 1SA, 20 final structures; <​SA>​, mean structure; <​SA>​r,  
the structure obtained by regularising the mean structure under experimental restraints. 2Numbers in brackets 
indicate the number of restraints of each type. 3Determined using the program PROCHECK 3.5.1. 4Based on 
heavy atoms superimpositions. 5Structured areas: 164–251, 263–292 and 300–362. 6RMSD for superimposition 
over ordered residues.



www.nature.com/scientificreports/

4Scientific Reports | 6:26707 | DOI: 10.1038/srep26707

and a pairwise RMSD of 1.5 Å. The protein cores of both p53 and p63 are compactly folded as proven by {1H}-15N 
heteronuclear NOE experiments (Supplementary Fig. 2), which report dynamics in the ns-ps time scale. It adopts 
low to negative values for very flexible parts of the protein and higher values for rigid and compactly folded parts. 
In both proteins the folded part is equally rigid with only the termini being more flexible. Despite these similari-
ties in secondary and tertiary structure both proteins differ markedly in their thermal stability. The melting point 
of p53-DBD with 43 °C is more than 20 °C below that of p63-DBD (65 °C) as monitored by far-UV CD-detected 
thermal transitions (Fig. 2c). The availability of structural information of both p53-DBD family members allows 
us to analyze the molecular details of protein stability in each case. Previous work based on mutational data 
and sequence analysis of more stable p53-DBD orthologs resulted in engineered p53-DBD variants with higher 

Figure 2.  Structural homology and stability of p63-DBD and p53-DBD. (a) Multiple sequence alignment of 
p53-family proteins. Secondary structural elements in p63-DBD are indicated. p53-DBD and p63-DBD share 
a 55% sequence identity. (b) The solution structures of p63-DBD (left) and p53-DBD (right) show the same 
structural topology and secondary structure content. (c) CD-detected thermal unfolding traces of both proteins 
reveal a large difference in thermal stability between p63-DBD (red, 65 °C) and p53-DBD (blue, 43 °C).  
(d) Packing of amino acid side chains in the hydrophobic core of p63 (red) and p53 (blue). Spheres within 
p53-DBD indicate unfavorable cavities. (e) The protein core of p63-DBD is tightly packed by hydrophobic side 
chains. Labeled amino acids correspond to positions in p53-DBD that have been mutated by rational design. (f) 
p53-DBD is less tightly packed with hydrophobic amino acids. The indicated amino acids have been mutated to 
the corresponding residues in p63-DBD in order to enhance protein stability.
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thermodynamic stability29,33,40,43,44. According to reports by Fersht and colleagues43,44, most stabilizing mutations 
within p53-DBD are located in the hydrophobic core. We therefore investigated the packing quality of hydro-
phobic residues in the protein core of both proteins (Fig. 2d). In order to relax the protein structure and alleviate 
unfavorable side-chain conformations biased by differences in structure calculation methods, we performed an 
energy minimization and a 100ps-molecular dynamics simulation run with the p53-DBD NMR structure40 and 
the p63-DBD solution structure presented here. An analysis of both structures indicated that p53-DBD con-
tains cavities in the hydrophobic core (red arrows in Fig. 3d, right panel), whereas these are absent in p63-DBD. 
Furthermore, in contrast to p63, p53-DBD contains a number of unfavorable polar residues in its core that cannot 
form pairwise polar interactions. These imperfections in the hydrophobic core of p53 have been discovered and 
exploited for semi-rational design33,44 in order to develop p53-DBD variants with enhanced stability for structural 
studies. Strikingly, most amino acid changes in these stabilized p53 variants represent the same amino acid types 
as present at the corresponding positions in p63 (Fig. 2e,f). Residues in p53 located at the protein surface got 
replaced by charged residues (N268D, R299 in p63) and residues located in the hydrophobic core are replaced by 
more bulky hydrophobic or size-optimized side chains (M133L, L162 in p63; V203A, A234 in p63; Y236F, F267 
in p63; T253I, I284 in p63). This result emphasizes the crucial role of a compactly packed hydrophobic core for 
protein stability.

The presence of a double salt bridge governs DNA binding specificity.  In its active form, p63 binds 
specifically to DNA as a homo-tetramer, in which each dimeric protein subunit binds to two basically identical 
DNA half-sites with a linker of varying length45. The DNA binding domain of p53 was shown to bind specifically 
to one half-site of this DNA sequence as a homo-dimer24. In previous studies, the lack of cooperativity of DNA 
binding in p63 was associated with the absence of an inter-dimer double salt bridge (Arg209 and Leu210 instead 
of Arg180 and Glu181 present in p53)41. Further, it was found that this cooperativity affects the binding prop-
erties to various promoter sites, leading to either apoptosis or cell-cycle arrest46,47. We investigated the binding 
affinities of p53-DBD, p63-DBD and p63-DBD variants where the missing double salt bridge was either restored 
(L210E) or completely disrupted (L210R). As substrates we used fluorescein labeled (FL) p53 consensus sequence 
(con2 ×​ 5), the p21 and Bax DNA element and a more p63 specific Jag-1 response element, whose gene encodes 
for Jagged1, a ligand of the Notch receptor48, linked to cell proliferation and differentiation. p53-DBD exhibits the 
highest affinity for all tested DNA response elements (Fig. 3), highlighting the role of the double salt bridge for 
high-affinity binding. p63-DBD shows an almost 10-fold lower affinity for the con5 ×​ 2 p53 consensus sequence 
and 2-fold lower affinity for the other promoter sequences tested. However, when the double salt bridge was 

Figure 3.  Influence of a double salt bridge on the interaction between p63-DBD and various promotor 
sites. p53-DBD forms an Arg-Glu’– Arg’-Glu double salt bridge between the two monomers in the dimer. In 
p63-DBD the glutamate is replaced by a leucine residue, thus reducing its affinity to all DNA promotor sites. The 
affinity is further reduced by mutation of the leucine to another arginine, but significantly enhanced if mutated 
to glutamate. Four different promotor sites were used: p53 specific con2 ×​ 5, p21, Bax and p63 specific Jag-1.
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introduced into p63 (L210E), a gain in affinity was observed for all dsDNA sites. The opposite tendency holds true 
for the L210R variant of p63-DBD (Fig. 3), which most likely disrupts homo-dimerization due to charge repul-
sion. Among the tested DNA sites, the p63-specific response element of Jag-1 and Bax were less affected by these 
amino acid substitutions, leading to the assumption that these response elements do not  rely on the formation 
of a double salt bridge.

To evaluate the DNA-binding properties of both p53-DBD and p63-DBD in solution, we used NMR titration 
experiments to extract chemical shift differences within both proteins upon the addition of DNA (Fig. 4). We 
added the double-stranded 16 base-pair con2 ×​ 5 DNA consensus sequence (5′​-TTAGGA CATG TCCATC-3′​)45  
stepwise to U-[2H,15N]-labeled p63-DBD or p53-DBD. The 2D-[1H;15N]-TROSY spectra showed line broaden-
ing even at low DNA concentrations (0.1–0.5eq). Only one set of signals with broad lines was observed in the 
spectra of p53-DBD and p63-DBD (Fig. 4a), strongly suggesting that line broadening is caused by chemical 
exchange processes in the ms-μ​s time-scale. Nevertheless, reliable data could be extracted for most amino acids 
(Supplementary Fig. 1a). These data show that the DNA-binding interface of p63 is very similar to that of p5342. 
It consists of the C-terminal helix 3 as well as the β​-turn region (L9) following the β​-strand 9. However, we see 
marked differences between p53-DBD and p63-DBD at the dimerization site, where a double salt bridge in p53 
(Glu180 Arg181/Glu180’Arg181’) mediates protein-protein contacts. Large chemical shift perturbations in this region 
could only be observed with p53-DBD and are absent or less pronounced in p63-DBD (Fig. 4b). The NMR data 
are in good agreement with the affinities of p53-DBD and p63-DBD to DNA promoter sites where the double salt 
bridge generally leads to an increase in affinity.

The binding sites of p63 and p53 to BclxL are homologous.  As a response to apoptotic stimuli, 
p53 translocates to the outer mitochondrial membrane where it activates a transcription-independent apoptosis 
pathway49. The mechanism of this pathway is not fully understood, but it is known that p53 is capable of binding 
to several members of the Bcl2 family, such as BclxL50. This binding is suggested to activate the pro-apoptotic 
members Bax,51 Bak52 and Bad53 by promoting dissociation of anti-apoptotic members like Bcl2 and BclxL54. 
Recent studies revealed the binding site of BclxL to p53-DBD50,55,56, showing it to be different from the binding 
site for pro-apoptotic Bak55. Considering the high structural and functional similarity of p53- and p63-DBDs, we 
decided to characterize the binding of p63-DBD to BclxL. We used chemical shift perturbation experiments to 
probe the interaction between 15N-labeled p63-DBD and BclxL (Supplementary Fig. 1b). Our titration experi-
ments (Fig. 5) show that the DNA binding site in p63-DBD is mediating interaction with BclxL, similar to what 
has been observed previously for p5350,57. The induced chemical shift perturbations within p63-DBD are clustered 
around its DNA binding site. Additionally, some signals originating from residues at the DNA binding site com-
pletely disappear upon complex formation. This behavior is indicative of the formation of a larger complex and 
binding kinetics on the ms-μ​s time scale, which is often observed for interactions in the μ​M-affinity range. In line 
with the NMR data, a binding affinity between BclxL and p63-DBD of 38 ±​ 18 μ​M was obtained by fluorescence 
polarization (FP) experiments, which is lower than for p53-DBD (5.5 μ​M)50. These differences in binding affinity 
might also reflect a lower pro-apoptotic potential of p63 as compared to p53.

Figure 4.  DNA binding of p63-DBD and p53-DBD. (a) Titration of 2H,15N-labeled p63-DBD (blue) with 0.5 
eq ds-con2 ×​ 5 DNA (red) monitored with 2D-[15N, 1H]-TROSY experiments. (b) Chemical shift perturbations 
(CSPs) mapped onto a dimeric structure of p63-DBD bound to a DNA half site (pdb id: 3qym36). Regions 
in p63-DBD that are most affected are colored in red. (c) Sample spectra of 2H,15N-labeled p53-DBD upon 
titration with 0.5 eq ds-con2 ×​ 5 DNA (blue vs. red contour lines). (d) CSPs mapped onto a crystal structure of 
dimeric p53-DBD bound to a decamer DNA site (pdb id: 2geq)42. In addition to the DNA-binding sites in p53-
DBD, helix 1 shows strong CSP effects upon DNA binding caused by the formation of a double salt bridge with 
the second p53-DBD monomer.
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Discussion
We have determined the solution structure of apo p63-DBD using NMR spectroscopy (Fig. 1) and characterized 
the interaction with various DNA binding sites (Figs 3 and 4) and the anti-apoptotic Bcl2-familiy member BclxL 
(Fig. 5). p63-DBD adopts an almost identical structure as p53-DBD (Fig. 2b). However, there are differences in 
DNA binding specificity and in its thermodynamic stability that render p63 an attractive target to understand the 
structural basis of DNA binding specificity and protein stability among the p53 protein family.

Despite the availability of structural information and DNA binding data, the target gene specificity of p63 is 
not yet clear. Transactivation of p53 target genes regulating cell-cycle arrest by p63 have been demonstrated by 
in vivo DNA binding assays58 and ChIP experiments with E1A-expressing mouse embryo fibroblasts revealed 
p63 binding to pro-apoptotic p53 target genes as well as MDM2, whose expression leads to p53 degradation59. 
Another factor is the occurrence of truncated p63 variants lacking their N-terminal transactivation (TA) domain 
(Δ​Np63). These variants adopt a transcription-repressive role4 and are able to inhibit transcription of p53 target 
genes. Furthermore, p63 and p73 contain a C-terminal SAM26 and regulatory domain25 that influence their capa-
bility to transcribe target genes. Another layer of complexity is added by the presence13 of different oligomeric 
states, where the dimer seems to be the transcription-inactive and the tetramer the active species. The formation 
of tetramers and the resulting p63 DNA-binding activation is promoted by phosphorylation13.

It has been demonstrated that p63 and p73 knockout does not affect transcription of genes regulating 
cell-cycle arrest, like p2159. However, p63 and p73 seem to be required for efficient induction of pro-apoptotic 
p53-dependent genes. These results indicate that apoptosis-related genes are specifically regulated within the 
entire p53 family. On the other hand, p63-mediated epithelial development is not affected by p53 knockout. Our 
DNA binding assays (Fig. 3) indicate interaction of p53 and p63 with DNA response elements involved in cell 
cycle arrest, apoptosis and development to varying extents. It has been previously reported that p53 DNA binding 
relies on the establishment of a double salt bridge41, a specific feature of p53. We therefore introduced a double 

Figure 5.  Interaction of p63-DBD with BclxL. (a) Fluorescence polarization of fluorescein-labeled BclxLΔ​
TM (without its insoluble transmembrane helix) upon titration of p63DBD yielding a KD of 38 ±​ 18 μ​M. 
Triplicate measurements were done to estimate standard error. (b) 2D-[15N; 1H] TROSY experiments of 200 μ​M 
p63-DBD alone (black) and in presence of a twofold excess of BclxLΔ​TM (red). (c) 1H, 15N averaged chemical 
shift perturbations (CSPs) of p63-DBD extracted from the spectra shown in (b). (d) Projection along the 1H 
dimension taken from 2D-TROSY spectra shown in (b) exhibit a pronounced decrease in signal intensity 
upon complex formation with BclxL (black: p63-DBD; red: in complex with BclxL). (e) CSPs mapped onto the 
solution structure of p63-DBD ranging from light grey (no effect) to red (>mean CSP +​ standard error).
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salt bridge into p63-DBD and assayed the change in binding affinity compared to wild-type p63. The assumption 
is that p63-DBD capable of forming a salt bridge binds to p53-dependent genes with higher affinity, whereas 
less p53-dependent genes would show weaker or no dependence on the presence of the double salt bridge. In 
line with published in vivo data59 the largest change in affinity could be observed for p21 RE, confirming a less 
dominant role of p63 in the induction of cell cycle arrest. A p53-specific consensus site (con2 ×​ 5) showed a 
similar dependence on the presence of the double salt bridge. The involvement of the double salt bridge in coop-
erative high-affinity DNA binding could also be confirmed by NMR chemical shift perturbation studies with 
p53-DBD versus wt-p63-DBD (Fig. 4). These data demonstrate that p53 has evolved for high-affinity binding to 
DNA and thus needs to be tightly regulated by a carefully balanced protein production and degradation equilib-
rium. In contrast, binding to the Bax RE is not significantly affected by the double salt bridge, confirming that 
pro-apoptotic genes might be less p53-specific. The p63-dependent RE of Jag-148, a gene involved in cell differen-
tiation and proliferation, shows a similar salt-bridge independent affinity pattern as Bax. Recent studies showed 
that p63 is less prone to degradation via the ubiquitin-proteasome pathway60, due to lower affinity between Mdm2 
and p63. It is therefore likely that the cellular concentration of p63 is higher than of p53, enabling p63 to efficiently 
bind to DNA elements and even compete with p53.

The importance of p63 in the induction of apoptosis is underlined by its interaction with the anti-apoptotic 
protein BclxL (Fig. 5). The interaction surface between both proteins consists of the positively charged 
DNA-binding interface in p53/p63-DBD (Supplementary Fig. 3) and a negatively charged surface area in 
BclxL50,57. As previously shown for p53, direct interaction with Bcl2 proteins induces rapid mitochondrial apop-
tosis49,50,54–56 in a transcription-independent manner. In order to fulfill its role in limb and epithelial development 
protection p63 might utilize both direct and indirect apoptosis pathways. The apoptotic potential of p63 is also in 
line with its role in female germ line protection and its strong expression pattern in oocytes13, where it is involved 
in DNA damage-induced oocyte death, independent of p53.

Compared to p53, p63-DBD shows a more than 20 °C increased thermal stability (Fig. 2c). A variety of 
cancer-related p53-DBD point mutations lead to a significant destabilization of the already fragile protein, pro-
hibiting proper folding and gene transactivation. The basis for the low stability of p53-DBD is unfavorable pack-
ing of its hydrophobic core, caused by isolated polar side chains and internal cavities (Fig. 2f). There have been 
tremendous efforts to design p53-DBD variants with increased stability for structural studies31–33,43,44 that might 
eventually be used for gene therapeutic approaches61. For one of these studies, our p63-DBD solution structure 
served as a template for the semi-rational design of p53 variants44. Furthermore, small-molecules that stabilize 
the active conformation have been reported for p53 34,35. Hydrophobic packing quality is significantly improved 
in p63-DBD (Fig. 2e) and optimized p53 variants consequently show the same amino acid type at critical posi-
tions as found in p63 or more stable p53 orthologues. Due to its high thermodynamic stability, p63 DNA binding 
activity is less likely to be diminished by single point mutations in its protein core, as shown for the p53 case. 
Furthermore, no destabilizing mutations within p63-DBD have been found in cancer tissues19. It has therefore 
been suggested that p63 acts as an oncogene and not as a tumor suppressor. The oncogenic form of p63 is the 
Δ​N-variant lacking its N-terminal transactivation domain. This variant can still bind to DNA elements and com-
pete with p53 and full-length p63 to suppress apoptosis62. Mutations in p63 have been identified in developmental 
diseases, such as EEC63 and ADULT64, affecting the DNA-binding capability and not protein stability. So far, it is 
not clear what factors govern the binding specificity and cellular functions of the individual members of the p53 
family. Even though plenty of information is available for p53, p63 and in particular p73 are far less well explored. 
Future structural and functional studies are required to clarify these open questions.

Methods
Protein expression and purification.  The preparation of protein samples of p63-DBD has been described 
elsewhere38. In brief, p63-DBD (amino acids 153–388) cDNA was sub cloned into a modified pQ40 vector 
(Qiagen). Proteins were expressed in Escherichia coli BL21 (DE3) at 37 °C. A truncated p63-DBD construct con-
sisting of only structured residues lacking flexible tails was chemically synthesized (Gene Art) and cloned into 
a pET28a vector system (Merck Biosciences). For purification of p63-DBD, the soluble lysate was loaded onto a 
cation-exchange column and eluted with a linear KCl gradient (0–0.5 M) or onto a Ni-NTA column and eluted 
with a linear gradient from 20 to 500 mM imidazole. A heparin column (GE Healthcare) was used for further 
purification. After His-tag removal with Thrombin, final purification was achieved by size-exclusion chromatog-
raphy with a Superdex75 column (GE healthcare) equilibrated with 50 mM sodium phosphate (pH 7.2), 150 mM 
NaCl, and 5 mM β​-mercaptoethanol. For NMR studies, p63-DBD samples were dialyzed against 50 mM phos-
phate buffer (pH 6.8), 150 mM KCl and 5 mM DTT and concentrated to 0.7–1.5 mM using Amicon centrifugal 
devices (Millipore).

A truncated construct of human BclxL lacking the trans membrane domain (residues 1 to 212), so-called 
BclxLΔTM (Refs 50, 65), was constructed by PCR based deletion in a pET28a expression vector (Novagen). 
Expression was done in E.coli BL21(DE3) and purification was achieved by Nickel-NTA, Anion-exchange and 
size exclusion chromatography50.

Buffer exchange to 50 mM potassium phosphate pH 6.8, 150 mM KCl, 5 mM DTT was achieved by passage 
over a G-60 column (GE healthcare). Analysis of all samples using SDS-PAGE indicated high purity (>​95%) and 
confirmed the correct molecular mass.

Circular dichroism (CD) spectroscopy.  CD spectroscopic experiments were done with a Jasco J-715 spec-
tropolarimeter (Jasco, Gross-Umstadt, Germany). For CD spectra and thermal transition experiments, protein 
concentrations of 10 μ​M in 10 mM sodium phosphate pH 7.2, 1 mM TCEP were used. Thermal transition exper-
iments were recorded from 20 to 90 °C with a heating rate of 60 K/h. Data were fitted with a two-state folding 
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model as described previously66. A response of 2 s, a bandwidth of 5 nm and a cuvette of 1 mm path length was 
used for all measurements.

Fluorescence polarization experiments.  Fluorescence polarization experiments were done with a BMG 
Polarstar Galaxy (BMG Labtec, Offenburg, Germany) multimode plate reader. 100 nM of ds 5′​-fluorescein-labeled 
DNA response elements or N-terminally labeled BclxLΔ​TM (without trans membrane helix) were titrated with 
increasing amounts of p63-DBD/p53-DBD in 10 mM sodium phosphate pH 7.2, 1 mM DTT. Data were fitted 
with a one-site or cooperative binding model using ProFit (Quantum Soft, Uetikon am See, Switzerland) as 
described previously41.

NMR experiments.  All spectra were recorded at 303 K on Bruker DMX600, DMX750 and Avance900 spec-
trometers. Backbone sequential assignment was completed using standard triple resonance experiments based 
on earlier results38.Aliphatic side chain assignments were done using H(C)CH- and (H)CCH-COSY67 exper-
iments. The use of 13C-TOCSY-sidechain experiments was beneficial only for the most slowly relaxing amino 
acids. Stereospecific assignments and the resulting χ​1 rotamer assignments were determined for 106 of the 156 
prochiral CβΗ​2 protons and for the CγΗ​3 groups of all 17 valine residues. Assignments of χ​1 rotamers were also 
available for 13 of 14 isoleucine residues and 12 of 18 threonine residues. Assignments of χ​2 rotamers were made 
for 12 of 14 isoleucine and 8 of 10 leucine residues. Distance restraints were derived from a set of five 3D-NOESY 
spectra, including the heteronuclear edited NNH- and CNH-NOESY spectra68 in addition to conventional 15N- 
and 13C-HSQC-NOESY spectra. NOE spectra were acquired using the following parameters (proton frequency, 
resolution in F1, F2, F3, mixing time, total experiment time): HNH-NOESY (900 MHz, 15 N 39 Hz, 1 H 31 Hz, 
1 H 9 Hz, 70 ms, 13 h), HNH-NOESY (600 MHz, 1N 37 Hz, 1H 56 Hz, 1H 7 Hz, 100 ms, 10 h), CNH-NOESY 
(900 MHz, 15N 39 Hz, 13C 31 Hz, 1H 9 Hz, 80 ms, 168 h), NNH-NOESY (750 MHz, 15N 27 Hz, 15N 20 Hz, 1H 10 Hz, 
80 ms, 123 h), HCH-NOESY (900 MHz, 13C 170 Hz, 1H 74 Hz, 1H 9 Hz, 70 ms, 67 h). In addition, backbone dihe-
dral angle restraints (as predicted by the program TALOS69 and verified with NOE data), sidechain dihedral 
restraints (derived from NOE data and qualitative evaluation of 3J(N-Hβ) couplings), 3J (HN-Hα​-coupling con-
stant restraints and hydrogen bond restraints (implemented as pseudo-covalent bonds70 were used as input for 
structure calculation. Stereospecific assignment and NOE restraint refinement was carried out by comparison of 
experimental and back calculated 15N-NOESY-HSQC, NNH- and CNH-NOESY spectra (in house software). This 
procedure facilitated the adjustment of most side chain rotamers. Structures were calculated with XPLOR-NIH 
using standard protocols with minor modifications as described elsewhere71. For the final set, 200 structures were 
calculated and 20 chosen on the basis of lowest overall energies. An average structure was calculated and regu-
larized with experimental restraints yielding a representative of the structural ensemble (model 1 in the protein 
data base entry  rmn, used here for all NMR figures). Titration experiments were monitored with 1H-15N TROSY 
experiments. 400 μ​M of triple (U-2H, 13C, 15N) or double (U-13C, 15N) labeled p63DBD was titrated with an at least 
2-fold excess of unlabeled BclxLΔ​TM (without the trans-membrane helix) in 1 mM sodium phosphate pH 7.2, 
5 mM DTT or a 1/5 molar ratio of con2 ×​ 5 double-stranded consensus DNA in 1 mM sodium phosphate pH 7.2, 
100 mM NaCl, 5 mM DTT. Titration experiments with 100 μ​M U-2H,15N p53-DBD were done in the same buffer 
and upon addition of 50 μ​M ds-con2 ×​ 5. The heteronuclear NOE was derived using standard experiments and a 
presaturation time of 2 seconds for 750 MHz and 3 seconds for 900 MHz.
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