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ABSTRACT 

Introduction: Investigations in urban areas have just begun to explore how the indoor dust 

microbiome may affect the pathogenesis of asthma and allery. We aimed to investigate the early 

fungal and bacterial microbiome in house dust with allergic sensitization and wheezing later in 

childhood. 

Methods: Individual dust samples from 189 homes of the LISAplus birth cohort study were 

collected shortly after birth from living room floors and profiled for fungal and bacterial 

microbiome. Fungal and bacterial diversity was assessed with terminal restriction fragment length 

polymorphism (tRFLP) and defined by the Simpson diversity index. Information on wheezing 

outcomes and co-variates until the age of 10 years was obtained by parental questionnaires. 

Information on specific allergic sensitization was available at 6 and 10 years. Logistic regression 

and General Estimation Equation (GEE) models were used to examine the relationship between 

microbial diversity and health outcomes. 

Results: Logistic regression analyses revealed a significantly reduced risk of developing 

sensitization to aero-allergens at 6 years and ever wheezing until the age of 10 years for exposure 

to higher fungal diversity (adjusted Odds Ratio aOR (95%CI): 0.26 (0.10-0.70)), and 0.42 (0.18-

0.96), respectively), in adjusted analyses. The associations were attenuated for the longitudinal 

analyses (GEE) until the age of 10 years. There was no association between higher exposure to 

bacterial diversity and the tested health outcomes. 

Conclusion: Higher early exposure to fungal diversity might help to prevent from developing 

sensitization to aero-allergens in early childhood, but the reasons for attenuated effects in later 

childhood require further prospective studies.  
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INTRODUCTION  

Farm environment has been considered the strongest protective effect in relation to asthma and 

allergy in children (von Mutius and Vercelli 2010). Studies on the mechanisms observed higher 

levels of endotoxin (bacterial lipopolysaccharide of gram-negative bacteria), but also mould 

related components including 1,3-ß-D-glucan, a cell-wall component of most fungi and fungal 

Extracellular Polysaccharides from the genera Penicillium and Aspergillus (EPS) within settled 

dust in farming households (Karvonen et al. 2012; Schram-Bijkerk et al. 2005). It has been 

suggested that an increased exposure might be partly responsible for the observed inverse 

associations (Braun-Fahrlander et al. 2002) through immunomodulatory effects (Schuijs et al. 

2015). Evidence regarding the microbiome composition in dust from urban environments and its 

influence on the occurrence and development of allergic diseases is still scarce and comprehensive 

understanding is lacking.  

The microbial profile in urban environments might differ considerably from those in rural areas in 

levels, composition and diversity (Pakarinen et al. 2008) and therefore, might also have different 

effects on atopic outcomes. Until now, the assessment of the urban microbiome in dust has been 

only considered in a few studies. Those had small sample sizes (not exceeding 100 subjects) or 

were studies mainly focused on exposure assessment rather than on health outcomes (Adams et al. 

2013a, 2014, 2013b; Barberán et al. 2015; Dannemiller et al. 2015, 2014; Kembel et al. 2012; 

Lynch et al. 2014). Moreover, to conclude on the impact of early exposure to the urban dust 

microbiome in relation to health outcomes in later childhood, cohort studies with a prospective 

study design and appropriate analyses methods are required. 

In the present study, we investigated the diversity of the fungal and bacterial microbiome in dust 

from a population based birth cohort from the city of Munich, Germany. We aimed to study the 
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hypothesis whether early life exposure to fungal and bacterial diversity is associated with a 

decreased risk of allergic sensitization and wheezing later in childhood. These outcomes are major 

risk factors for asthma and allergic diseases.  

MATERIALS AND METHODS  

1) Study overview and participants 

LISAplus (The influence of life-style factors on the development of the immune system and 

allergies in East and West Germany PLUS the influence of traffic emissions and genetics study) is 

an ongoing birth cohort study with four research centers in Germany (Munich, Leipzig, Bad 

Honnef and Wesel). Screening, recruitment and exclusion criteria have been described in detail 

elsewhere (Heinrich et al. 2002; Zutavern et al. 2006). In short, a total of 3094 healthy full-term 

neonates were recruited between December 1997 and January 1999. Only healthy full-term 

neonates with a gestational age ≥37 weeks were included in the study. The current analysis is 

based on a sub-group of children from the Munich study center with an available dust sample 

from the living room floor obtained at three months of age and follow-up information on 

outcomes until ten years of age (N = 189). In the final models, the sample size varied between 110 

and 189 subjects, depending on the included variables. Informed consent of the parents has been 

obtained from all participating subjects. The study was approved by the local Ethics Committee 

(the Bavarian Board of Physicians, reference number: 01212). 

2) Assessment of health outcomes 

The subjects were tested for specific sensitization at six and ten years. Specific allergic 

sensitization was defined as a positive response (> 0.35 kU/l) to the ‘sx1 aero-allergen mixture’ 

(timothy, rye, mugwort, mite [Dermatophagoides pteronyssinus], cat, dog and mould 

[Cladosporium herbarum] allergens). Wheezing in the past 12 months was obtained at age of 6, 
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12, 18, 24 months and at 4, 6, and 10 years of age. Controls were defined as “complete” controls 

and had information available for all time points. 

3) Dust sampling and assessment of the fungal and bacterial microbiome 

Settled dust samples from living room floors in the area of Munich (radius: 37.5 km, Figure 1) 

were obtained by trained inspectors when the children were 2-3 months old by using vacuum 

cleaners (Phillips, Hamburg, Germany) equipped with ALK filter holders (ALK, Hørsholm, 

Denmark) containing a paper filter. The sampling was done by vacuuming 1 m2 for 2 minutes for 

textile surfaces or 4 m2 for 4 minutes for smooth floors. The sampling period lasted 301 days. The 

samples were stored below -20 °C. A detailed description of the dust sampling and analysis 

procedures has been published previously (Casas et al. 2013; Heinrich et al. 2002).  

Frozen filter boxes with vacuumed dust were equilibrated to ambient conditions in a clean PCR 

chamber with deactivated airflow for 60 minutes. Dust was released from the filter boxes, freed 

from obvious extraction obstacles (stones, etc.) and 100 mg were used to extract DNA with a 

PowerSoil-htp96 Soil DNA Isolation Kit (Mo-Bio Laboratories, Carlsbad, USA). For tRFLP 

DNA-fingerprinting, DNA was PCR-amplified using a TopTaq DNA polymerase kit (Qiagen, 

Hilden, Germany) with primers ITS1F (5’-CTTGGTCATTTAGAGGAAGTAA-3’) (Gardes and 

Bruns 1993) and ITS4 (5’-TCCTCCGCTTATTGATATGC-3’) (White et al. 1990) for fungal ITS 

(internal transcribed spacer) DNA with a mean amplicon length of 600 base-pairs (bp) 

(https://unite.ut.ee/primers.php, accessed Jan. 18, 2016 (UNITE 2015)). Most amplicons expected 

between 540 and 800 bp, or Bac27f (5’-AGAGTTTGATCMTGGCTCAG-3’) (Jiang et al. 2006) 

and 907r (5-CCGTCAATTCMTTTGAGTTT-3) (Mühling et al. 2008) for bacterial 16S rRNA 

genes (880 base-pairs amplicon).  Forward primers were labelled with 6-FAM and reverse primers 

with 6-HEX fluorescent dyes, respectively. PCR profiles were [4 min 94 °C; 32 cycles of 60 s 94 
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°C, 60 s 50 °C, 90 s 72 °C; 5 min 72 °C] (fungi) and [5 min 94 °C; 30 cycles of 45 s 94 °C, 45 s 

59 °C, 45 s 72 °C; 5 min 72 °C] (bacteria). Products from two PCR reactions were pooled, 

purified and digested with restriction enzyme HpyCH4IV (fungi) or MspI (bacteria). HpyCH4IV 

was chosen due to its performance in separating all fungal strains with ITS sequences available in 

the International Nucleotide Sequence Database (INSD) in a study by Alvarado and Manjón 

(Alvarado and Manjón 2009). A similar performance in indoor dust was reconfirmed with an in 

silico restriction analysis of 91 ITS sequences from 38 fungal genera (Ascomycota, 

Basidiomycota, Zygomycota) using REPK v1.3 (Collins and Rocap 2007). The sequences were 

selected based on availability (INSD release 09/2012) and their description as commonly found in 

indoor environments, i.e. found in (Pitkaranta et al. 2008) (data of a reference building, strains > 

0.8% of total retrieved clones were considered). Sequences were obtained as described in 

Alvarado and Manjón (Alvarado and Manjón 2009). Cleaned fragments were transferred to HiDi 

Formamid (Applied Biosystems, Foster City, USA) containing MapMarker 1000-ROX (1:400; 

Bioventures, Murfreesboro, USA) and separated with an ABI 3730 capillary sequencer (Applied 

Biosystems). Raw fragment tables were built with peak-scanner 2.0 (Applied Biosystems). T-

REX v1.14 (Culman et al. 2009) was used for noise filtering with algorithms of Abdo et al. (Abdo 

et al. 2006) (standard deviation multiplier 1) and for binning, alignment, and accounting of T-RF 

drift with the approach from Smith et al. (Smith et al. 2005) (threshold 1 bp). For all analysis 

steps, data based on peak height instead of peak area was used following suggestions by Culman 

et al. (Culman et al. 2008). Contamination was controlled with samples consisting of material 

scratched off from empty dust-filters, and with non-template controls during PCR. The study-

population (N = 189) encompassed only samples of which DNA had been successfully amplified 

and electropherograms had passed peak-scanner’s initial quality test (90 % of 209 samples). 
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4) Fungal and bacterial diversity in dust 

In order to assess possible relationships between the fungal and the bacterial microbiome in dust 

with later health outcomes, we determined the relative diversity (dependent on method and marker 

gene) of the fungal and bacterial microbiome. The microbial diversity can be assessed by taking 

into account species richness (the number of different kinds of species) and species evenness (a 

measure of the relative abundance of difference species). For the current investigation we used the 

Simpson index (Simpson 1949) as a measure for microbial diversity. The valuation of the 

Simpson Index (shown as 1-D) ranges from 0 (no diversity, all individuals belong to the same 

species) to 1 (maximum diversity)). For doing so, OTU (operational taxonomic unit) abundances 

were rarefied (function “Rarefy”) to the lowest amount of signal present in the samples and the 

Simpson index calculated for each sample (vegan (Oksanen et al. 2013) and GUniFrac package 

(Chen 2012) in R (R Core Team 2015)). This step was repeated 103 times and averaged. Results 

were calculated separately for forward and reverse terminal restriction fragments (including 

labelled forward or reverse primers) and averaged. 

5) Statistical analysis 

In order to investigate possible relationships between exposure to fungal and bacterial diversity 

(Simpson index) with later allergic sensitization and wheezing outcomes, logistic regression and 

general estimation equation (GEE) models (logit link and exchangeable correlation structure) 

were used with the exposure (fungal and bacterial diversity) expressed in tertiles. Apart from the 

main analyses, we evaluated the association between exposure to microbial diversity and 

wheezing at earlier time points in childhood in sensitivity analyses. Exposure to fungal and 

bacterial diversity was categorized into tertiles for the analyses because not all functional 

relationships between exposure and health outcomes appeared to be linear. The logistic regression 
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and GEE models have been adjusted for sex, maternal education and season of dust sampling. All 

results are presented as adjusted odds ratio (aOR) with corresponding 95% confidence interval 

(95% CI). Statistical analyses were performed using the R programming environment (R Core 

Team 2015).  

RESULTS  

The study population characteristics are depicted in Table 1. About two-third of the mothers 

(68%) held a high educational level compared to mothers with low or medium education (32%). 

During the months in summer and autumn, more dust samples have been obtained compared to 

winter and spring. There was very weak correlation between fungal and bacterial diversity 

(Spearman’s Rho: -0.05). At the six-year follow-up, 27% of the children were sensitized to aero-

allergens with 40% at ten years. Ever wheezing at the age of 10 years was reported for 43% of the 

children.  

 Regression analyses 

According to table 2, there was a statistically significant inverse association between higher 

exposure to fungal diversity around birth and sensitization to aero-allergens at 6 years (3rd tertile 

versus 1st tertile: 0.26 (0.10-0.70)), adjusted for covariates. High fungal diversity in dust conferred 

also protection for ever wheezing until the age of 10 years (3rd tertile versus 1st tertile: 0.42 (0.18-

0.96)). However, in the longitudinal view (GEE models), considering the impact of several 

follow-ups and their correlation with each other, the inverse effects attenuated. The association 

between exposure to higher fungal diversity and sensitization to aero-allergens as well as 

wheezing did not attain statistical significance (0.61 (0.24-1.59), and 0.57 (0.26-1.22), 

respectively). Sensitivity analyses revealed that there was also a statistically significant 

association with wheezing until 2 years in the logistic regression model as well as the GEE model 
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for early exposure to fungal diversity (Supplementary table 1). There was no significant 

association between exposure to bacterial diversity with any of the outcomes tested.  

DISCUSSION  

To the best of our knowledge, the present prospective study is the first that specifically considered 

the fungal and the bacterial microbiome in more than 100 households in an urban environment. 

We observed that a higher exposure to fungal diversity in house dust around birth was 

significantly inversely related to aero-allergen sensitization status at 6 years as well as ever 

wheezing until the age of 10 years. However, considering several follow-up time points during the 

study period, the magnitude of the effects attenuated and the association did not attain statistical 

significance in the longitudinal view. 

For farm and rural environments, studies have shown that early microbial exposure seems to be 

crucial for non-allergic immune response later in childhood and adulthood. Ege et al. (Ege et al. 

2011) observed in a cross-sectional analysis that children growing up on farms were exposed to a 

greater diversity of fungal and bacterial species, resulting in a lower prevalence of childhood 

asthma and atopy. As against farm studies, investigations in urban areas have just begun to 

explore how the indoor dust microbiome may affect the pathogenesis of asthma and allergic 

diseases. The CHAMACOS birth cohort study in California, U.S., used next-generation DNA 

sequencing of fungal ITS regions describing the fungal microbiome in settled house dust collected 

at 12 months of age. In this small case-control study (13 asthma cases and 28 controls), it has been 

observed that the asthma risk at 7 years of age was significantly increased for lower fungal 

diversity in dust within the first year of life (Dannemiller et al. 2014). One birth cohort study 

(URECA) across 104 children residing in an exclusively urban environment investigated the 

association of combined early life exposure to allergens and bacteria on wheezing and atopic 
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outcomes (Lynch et al. 2014). Lynch and colleagues observed that both, exposure to high levels of 

allergen and a certain subset of bacteria taxa decreased the risk of allergic sensitization and 

wheezing outcomes at the age of 3 years. Our present study partly confirms what has been found 

recently, however, a unique feature of our study is the long follow-up period until later childhood. 

Although we also observed inverse associations of higher microbial exposure in relation to 

allergic sensitization and wheezing, the effects were only significant for higher fungal diversity 

and only for early childhood (6 years) but not at later age (10 years). As of today, no study in an 

urban setting could confirm protective effects of higher microbial exposure in relation to atopic 

outcomes until later childhood or young adulthood. We suggest that a possible reason might be 

that with increasing age, the school environment and activities conducted in different places might 

start to become more important and the daily individual microbial exposure may change in 

composition and relevance (Tischer et al. 2015).  

The present study has important strengths, such as a prospective study design, a larger sample size 

compared to previous studies and a longer follow-up period until the age of 10 years. However, 

our study faced some limitations, which should be noted. While we had nearly double the sample 

size as compared to the available studies in the U.S. on the subject (Dannemiller et al. 2014; 

Lynch et al. 2014), caution is warranted when interpreting the findings, due to the reduced 

statistical power in the adjusted regression models. Although the information on atopy as well as 

other atopy-related health outcomes such as asthma or allergic rhinitis are available within the 

LISAplus study, we were not able to perform regression analysis due to the limited sample size of 

our study. This also concerns the inclusion of other possible confounding factors assessed around 

birth such as parental atopy or the presence of pets at home. Furthermore, we predicted trends in 

microbial diversity using the tRFLP method, whose results are reproducible and comparable to 
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sequencing results if diversity measures are taken as relative values rather than absolute values 

(Orcutt et al. 2009). However, our analysis did not account for the phylogenetic relationships of 

bacteria or fungi within the samples. A sequencing project could now find out if and how the 

trends in diversity translate into the occurrence of microbial taxa. Moreover, it is not yet entirely 

clear how the storage of dust samples over a period of several years might affect microbial DNA. 

Therefore, an unknown, not quantifiable storage effect might have biased the results of our study. 

Similarly, targeting DNA of microbial community members does neither account for activity nor 

for viability of these microbes, although a viability assay for whole communities has been recently 

published (Weinmaier et al. 2015). In addition, only children for whom dust samples have been 

available and with follow-up information at 6 or at 10 years were included. Hence, we cannot 

exclude that the results might be biased by lost for follow up. Compared to the total study 

population, there is a higher proportion of mothers with high education as well as a higher 

prevalence of parental allergy in our study group. Lastly, microbial diversity was only measured at 

one time point shortly after birth, and it is not clear whether the observed inverse effects can be 

exclusively attributed to the crucial period shortly after birth or whether a constant signal of 

exposure to microbial diversity is required. With increasing age, activities conducted in different 

places (e.g. kindergarten, school etc.) might start to become more important and the daily 

individual microbial exposure may change in composition. That might explain why the inverse 

effects were attenuated later in childhood and poses the question whether a constant signal of 

exposure to microbial diversity is required.  

Conclusion 

Our study is an important contribution to the field of the urban dust microbiome in relation to 

atopic and respiratory health. We observed a significant reduced risk for developing specific 
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allergic sensitization to aero-allergens in early childhood after exposure to higher fungal diversity 

around birth but with attenuated effects until later childhood. Further research is advised to 

regularly monitor microbial diversity throughout childhood and to identify key environmental 

characteristics capable of creating a microbial environment beneficial for allergic and respiratory 

health.   
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Table 1: Characteristics of the study population 

  n / N (%) 

Study population    189 
Female 87/189 (46%) 
Maternal education  
 Low & Medium 60 / 187 (32%) 
 High 127 / 187 (68%) 
Season of dust sampling  
 Winter 41 / 189 (22%) 
 Spring 29 / 189 (15%) 
 Summer 57 / 189 (30%) 
 Autumn 62 / 189 (33%) 
Fungal diversity   
 1st tertile [0.403 - 0.863) 
 2nd tertile [0.863 - 0.931) 
 3rd tertile [0.931 - 0.977] 
Bacterial diversity   
 1st tertile [0.179 - 0.693) 
 2nd tertile [0.693 - 0.835) 
 3rd tertile [0.835 - 0.941] 
IgE aero-allergens (≥ 0.35 kU/l) – 6 years 43/159 (27%) 
IgE aero-allergens (≥ 0.35 kU/l) – 10 years  56/141 (40%) 
Wheezing ever – 10 years 73 / 170 (43%) 
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Table 2: Crude and adjusted* odds ratios (aORs 95% CI) for the association between fungal and bacterial diversity (Simpson index, 

tertiles) and health outcomes  

 Crude analyses  Adjusted* analyses  

Logisitic regression models 
 

Fungal diversity Bacterial diversity Fungal diversity Bacterial diversity 

Sensitization to aero-allergens (6y)  N = 157 N = 157
        2nd tertile vs 1st tertile 0.79 (0.35, 1.80) 0.63 (0.27, 1.47) 0.66 (0.28, 1.56) 0.56 (0.23, 1.33) 
        3rd tertile vs 1st tertile 0.31 (0.12, 0.79) 0.53 (0.22, 1.24) 0.26 (0.10, 0.70) 0.45 (0.18, 1.11) 

Sensitization to aero-allergens (10y)  N = 140 N = 140
        2nd tertile vs 1st tertile 1.41 (0.61, 3.22) 0.71 (0.31, 1.58) 1.13 (0.47, 2.70) 0.59 (0.25, 1.38) 
        3rd tertile vs 1st tertile 1.32 (0.57, 3.07) 0.63 (0.27, 1.45) 1.01 (0.41, 2.51) 0.45 (0.18, 1.11) 

Wheezing ever (10y)    N = 168 N = 168
        2nd tertile vs 1st tertile 0.61 (0.29, 1.28) 0.62 (0.29, 1.33) 0.59 (0.27, 1.28) 0.60 (0.28, 1.30) 
        3rd tertile vs 1st tertile 0.45 (0.21, 0.95) 1.00 (0.48, 2.07) 0.42 (0.18, 0.96) 1.00 (0.45, 2.06) 

GEE models (longitudinal analysis) 

 

   

Sensitization to aero-allergens until 10y   N = 110 N = 110 
        2nd tertile vs 1st tertile 1.04 (0.51, 2.12) 0.58 (0.29, 1.19) 0.89 (0.34, 2.32) 0.79 (0.33, 1.90) 
        3rd tertile vs 1st tertile 0.69 (0.33, 1.41) 0.51 (0.25, 1.04) 0.61 (0.24, 1.59) 0.56 (0.22, 1.42) 

Wheezing until 10y    N = 159 N = 159 
        2nd tertile vs 1st tertile 0.83 (0.45, 1.54) 0.81 (0.41, 1.57) 0.78 (0.40, 1.51) 0.74 (0.36, 1.53) 
        3rd tertile vs 1st tertile 0.50 (0.26, 0.98) 1.14 (0.62, 2.09) 0.57 (0.26, 1.22) 0.98 (0.52, 1.84) 
*Adjusted for sex, maternal education and season of dust sampling.
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Figure 1: Map of the Munich urban area 

The map covers the Larger Urban Zone of Munich. It includes the position of 189 sampled 

households located within a radius of 37.5 km from the center of Munich. [Map created with 

ArcGIS 10.3 Geographical Information System (GIS) (ESRI, Redlands, CA).] 
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Figure 1. 

 




