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Abstract 

Prognostic models based on survival data frequently make use of the Cox proportional 

hazards model. Developing reliable Cox models with few events relative to the 

number of predictors can be challenging, even in low-dimensional datasets, with a 

much larger number of observations than variables. In such a setting we examined the 

performance of methods used to estimate a Cox model, including (i) full model using 

all available predictors and estimated by standard techniques, (ii) backward 

elimination (BE), (iii) ridge regression, (iv) least absolute shrinkage and selection 

operator (lasso), and (v) elastic net. Based on a prospective cohort of patients with 

manifest coronary artery disease (CAD), we performed a simulation study to compare 

the predictive accuracy, calibration, and discrimination of these approaches. 

Candidate predictors for incident cardiovascular events we used included clinical 

variables, biomarkers, and a selection of genetic variants associated with CAD. The 

penalized methods, i.e., ridge, lasso, and elastic net, showed a comparable 

performance, in terms of predictive accuracy, calibration, and discrimination, and 

outperformed BE and the full model. Excessive shrinkage was observed in some cases 

for the penalized methods, mostly on the simulation scenarios having the lowest ratio 

of number of events to the number of variables. We conclude that in similar settings, 

these three penalized methods can be used interchangeably. The full model and 

backward elimination are not recommended in rare event scenarios.  

 

KEYWORDS: Proportional hazards regression; Penalized regression; Events per 

variable; Coronary artery disease 

 



  

Introduction 

The applications of prognostic models, that is, models that predict the risk of a future 

event, include among others [1]: (i) informing individuals about a disease course or 

the risk of developing a disease, (ii) guiding further treatment decisions, and (iii) 

selection of patients for therapeutic research. Prognostic models derived using 

time-to-event (or survival) data often make use of the Cox proportional hazards 

model. Thernau and Grambsch [2] describe this model as the “workhorse of 

regression analysis for censored data”. When the number of events is small relative to 

the number of variables, the development of a reliable Cox model can be difficult. 

This can be challenging even in a low-dimensional setting where the number of 

predictors is much smaller than the number of observations. Existing rules of thumb 

are based on the number of events per variable (EPV), which is recommended to be 

between 10 and 20 [3,4]. When performing variable selection, these EPV rules are 

applied to the number of candidate variables considered, not just those in the final 

model [3,4]. Penalized regression methods that shrink the regression coefficients 

toward 0 are an option in a rare event setting, which may effectively increase the EPV 

[5], thus producing better results. Examples of these methods include ridge regression 

[6], the least absolute shrinkage and selection operator (lasso) [7], and the elastic net 

[8], which is a combination of the former two. Backward elimination (BE) is another 

widely used method [9] that seemingly reduces the number of predictors by applying 

P values and a significance level α to discard predictors (α = 0.05 is often used). 

Our aim in this work was to compare, in a low EPV and low-dimensional setting, 

the performance of different approaches to computing the Cox proportional hazards 

model. We consider the following methods: i) full model, computed using all 

predictors considered via maximization of the partial log-likelihood (termed “full” 

model), (ii) BE with significance levels α = 0.05 and α = 0.5 (BE 0.05 and BE 0.5), 

(iii) ridge, (iv) lasso, and (v) elastic net (for simplicity termed “elastic” thereafter).  

 



  

Results  

Simulation results 

Simulations were used to compare different methods based on a prospective cohort 

study of patients with manifest coronary artery disease (CAD) [10]. Two main 

scenarios were considered: (1) clinical variables relevant to CAD such as age, gender, 

body mass index (BMI), high density lipoprotein (HDL) over low density lipoprotein 

(LDL) cholesterol ratio, current smoking, diabetes, and hypertension, as well as 

blood-based biomarkers such as C-reactive protein (CRP) and creatinine as predictors; 

and (2) information on 55 genetic variants in addition to the variables used in scenario 

1. These variants represented either loci that have been previously shown to be 

associated, at the genome-wide significance level, with CAD, or recently-identified 

CAD loci [11]. Baseline characteristics are shown in Table S1. There are 1731 

participants involved, with median age of 63 years and 77.6% male. Table S2 

provides information of the genetic variants used. The median follow-up was 5.7 

years. In each scenario, a Weibull ridge model was fitted in the cohort. Each fitted 

model was considered the true model and was used to simulate the survival time. 

Censored Weibull quantile−quantile (Q−Q) plots of the models’ exponentiated 

residuals are shown in Figure S1. Deviations from the Weibull distribution are 

observed in both scenarios.  

Cox proportional hazards models were calculated on the simulated datasets using 

the different methods considered (full model, BE, ridge, lasso, and elastic net) for 

EPV equal to 2.5, 5, and 10, respectively. BE 0.05 selected no variable in 64% 

(scenario 1) and 62% (scenario 2) of the simulations performed with EPV = 2.5. For 

the same EPV, BE 0.5 selected no variable in 18% and 10% of the simulations for 

scenarios 1 and 2, respectively. This resulted in a model that predicted the same 

survival probability for all individuals in the dataset (this model is basically a 

Kaplan-Meier estimator). The same occurred for BE with other EPV values and also 

for the lasso (32% and 25%) and the elastic net (8% and 2%) with EPV = 2.5. The 

ridge method also produced constant predictions (10% and 4% of the simulations, 



  

EPV = 2.5) as a consequence of shrinking the coefficients too strongly (in all cases 

where the elastic net gave constant predicted survival probabilities it was equal to or 

very close to the ridge model in the sense that elastic net mixing parameter was zero 

or almost zero). Consequently, the computation of the calibration slope and the 

concordance becomes impossible.  

The calibration slope could not be calculated either, when a model assigned a 

predicted survival probability of 1 to at least one individual. This occurred for the full 

model in 72 (EPV = 2.5) and 3 (EPV = 5) simulations in scenario 1, and in 12 

simulations in scenario 2 (EPV = 2.5). BE and the penalized models (ridge, lasso, and 

elastic net) had 62 and 8 simulations, respectively, that predicted a survival 

probability of 1 (all of them in scenario 1). The root mean square error (RMSE) could 

be computed in all these cases. However for consistency, the results shown below 

only reported the RMSE for the simulations where the concordance and calibration 

slope could be computed. Table 1 gives the number of simulations used to compute 

RMSE, calibration slope, and concordance on each scenario.  

For both scenarios we found a decrease of the RMSE as the EPV increases 

(Figure 1). The penalized methods (ridge, lasso, and elastic net) have lower RMSE 

than the full model and the two BE variants considered. BE with a lower significance 

level (BE 0.05) showed a better RMSE than a higher significance level (BE 0.5) in 

our simulations. In both scenarios 1 (Figure 1A) and 2 (Figure 1B), the elastic net had 

the best RMSE, that is, the RMSE that was closer to zero. 

Looking at the average of the calibration slope across the simulations (Figure 2), 

the lasso method showed the best performance, being of all the methods the one with 

an average calibration slope closest to the ideal value of 1. Here, we observed that the 

average calibration slope for the ridge and the elastic net for scenario 1 and EPV = 2.5 

was above 10 (above 5 for EPV = 5, Figure 2A). A similar but less extreme average 

calibration slope was observed in scenario 2 (Figure 2B). These extreme average 

calibration slopes for the ridge and elastic net were caused by excessive shrinkage of 



  

the regression coefficients. The extreme calibration slopes corresponded almost 

exclusively to models where the elastic net equalled or was comparable to the ridge 

model.  

Using a trimmed mean, 5% on each tail of the distribution, as a robust estimator 

of the mean, reduced the extreme calibration slopes in scenario 1 and EPV = 2.5 from 

approximately 15 to 9 for the ridge and from 12 to 6 for the elastic net. In scenario 2, 

the trimmed mean reduced the average calibration slope from approximately 4 to 2.26 

for the ridge and from 2.4 to 1.12 for the elastic net (data not shown). Examining the 

median calibration slope (Figure S2), we observed that the ridge has the best 

calibration slope in both scenarios with EPV = 2.5 and the elastic net with EPV = 5. 

The distribution of the calibration slope across simulations is shown as boxplots in 

Figure S3 (scenario 1) and Figure S4 (scenario 2). On the boxplots we see how the 

interquartile range (IQR) of the calibration slopes becomes narrower with increasing 

EPV, and that in both scenarios the ridge has the greatest calibration slope IQR for 

EPV = 2.5. For both the ridge and the elastic net, the increase in IQR with decreasing 

EPV is proportionally larger on the 75th percentile-median difference, than in the 

median-25
th

 percentile difference. A particular simulation in scenario 2 with EPV = 

2.5 that produced extreme calibration slopes was examined. The calibration slopes for 

this simulation were 22 for the elastic net and 52.5 for the ridge. A scatterplot of the 

points (log odds) used to compute the calibration slope is shown in Figure S5. Here 

we observed that the range of the estimated log odds of event is much shorter than 

that of the true log odds, indicating that too much shrinkage was applied.  

 In both scenarios and all EPV values tested, the concordance was higher for the 3 

penalized methods considered, except scenario 1 with EPV = 2.5, for which BE 0.05 

had the highest concordance (Figure 3). In those cases for which the penalized 

methods showed better discrimination, either lasso or ridge had the highest 

concordance. 

 



  

BE and ridge 

To further explore the methods considered, a hybrid method was considered, where 

BE was followed by an application of ridge regression, that is, the coefficients of the 

variables selected by BE were shrunk using ridge. Both BE 0.05 and BE 0. 5 were 

examined. The results showed that RMSE of both BE 0.05 and BE 0.5 was improved 

by the application of ridge (Figure S6), but it was still higher than that when using 

ridge, lasso, or elastic net alone. With the application of ridge, both the average and 

the median calibration slope of BE came closer to the ideal value of 1 (Figure S7 and 

Figure S8), whereas the concordance of BE (Figure S9) improved only slightly. 

 

Additional simulations 

The three penalized methods considered have a tuning parameter, which gives the 

amount of shrinkage that is applied to the regression coefficients. The elastic net has 

an additional tuning parameter which determines how close the elastic net fit is to the 

lasso or ridge fit. These tuning parameters were selected in our simulations by 10-fold 

cross-validation. We next explored the sensitivity of the simulation results (RMSE, 

calibration slope, and concordance) for the penalized methods to the number of folds 

used in the cross-validation during the selection of tuning parameters. In particular, 

we wanted to examine whether the extreme calibration slopes observed in some of the 

simulations were attributed to the method used to select the tuning parameters. To do 

this, the simulations were repeated using 5-fold cross-validation (instead of 10-fold 

cross-validation as was done in the analyses shown above). RMSE, calibration slope, 

and concordance were overall similar to the previous results using 10-fold 

cross-validation (data not shown), including the distribution of the calibration slopes, 

in particular, the extreme values observed in some simulations. 

Further additional simulations were run for the penalized methods using the 

predictor variables to balance the 10 folds used in the cross-validation. The 

observations were clustered in 10 groups via K-means and then each of the 10 folds 



  

used was chosen randomly so that it would contain approximately one tenth of the 

individuals on each cluster. Here again, the results for the RMSE, calibration slope, 

and concordance were similar to those for the initial simulations using 10-fold 

cross-validation, including the extreme values for the calibration slopes observed in 

some simulations (results not shown). 

 

Application to clinical data 

The different methods considered, to compute a Cox model, were applied to the 

clinical data that were used as the basis of our simulations. We used the same 

scenarios as in the simulations (which are defined in terms of the candidate predictors 

used). The regression coefficients for both scenarios considered are shown in Table 

S3 and Table S4. In scenario 1 (EPV = 23.2), creatinine was selected by all models 

performing selection (BE 0.05, BE 0.5, lasso, and elastic net), representing the only 

predictor selected by BE 0.05. BE 0.5 additionally selected age and C-reactive 

protein. The lasso and elastic net selected, on top of these two, LDL/HDL ratio, 

hypertension, and gender. In scenario 2 (EPV = 3.3), creatinine was the only predictor 

selected by BE 0.05, while BE 0.5 selected age additionally. None of the 55 variants 

considered was selected by these two methods. Lasso and the elastic net selected the 

same number of variables (24), of which 23 variables were selected by both methods. 

To quantify the discrimination of the different models we used the C-index [12], 

which estimates the probability that for a pair of individuals the one with the longest 

survival has also the longest predicted survival probability. The C-index is an 

extension of the area under the Receiver Operating Characteristics (ROC) curve 

(AUC) and has a similar interpretation [13]. In scenario 1, the full model had a 

C-index of 0.599 (Table 2). The highest C-index (0.601) was attained using ridge, 

followed by the elastic net and lasso (0.600). For scenario 2, the highest C-index was 

attained by the ridge (0.607), followed by the lasso (0.603) and the full model (0.601), 

while the elastic net had a C-index of 0.600. Both BE regressions considered had 



  

C-indices ≤ 0.577. The BE C-indices improved slightly after applying ridge 

regression.  

The full model had the calibration slope further away from the ideal value of 1 

in both scenarios considered (0.868 and 0.5, respectively). The best calibration slope 

was achieved in scenario 1 by the lasso (1.012), followed by the combinations of BE 

0.05 and BE 0.5 with the ridge (0.974 and 0.960, respectively), the elastic net (1.05), 

and the ridge method (1.065). The fact that these calibration slopes for the penalized 

methods were higher than 1 indicates that slightly too much shrinkage was applied by 

these three methods. In scenario 2, the best calibration slope was produced by the 

elastic net, followed by the lasso and ridge. Both BE methods had a calibration slope 

less than 0.65, indicating overfitting. The BE calibration slope was improved after 

applying ridge regression. 

 

Discussion  

In this work we aimed to compare methods to compute a proportional hazards model 

in a rare event low-dimensional setting. Applying simulations based on a dataset of 

patients with manifest CAD, we compared the full model that used all predictors, BE 

with α = 0.05 or α = 0.5, ridge regression, lasso, and elastic net. The penalized 

methods, i.e., ridge, lasso, and elastic net, outperformed the full model and BE, 

Nonetheless, there is no single penalized method that performs best for all metrics and 

both scenarios considered. BE performance was improved by shrinking the selected 

variables coefficients with ridge regression; however, this hybrid method was not 

better than ridge regression, lasso, or elastic net alone. 

Ambler et al. [14] observed that the lasso and the ridge for Cox proportional 

hazards models have not been compared often in a low-dimensional setting. Porzelius 

et al. [15] investigated several methods that are usually applied in high-dimensional 

settings and produced sparse model fits, including the lasso and elastic net, in a 

low-dimensional setting, via simulations. They found the overall performance was 



  

similar in terms of sparseness, bias, and prediction performance, and no method 

outperforms the others in all scenarios considered. Benner et al. [16] found on their 

simulations that the lasso, ridge, and elastic net had an overall similar performance in 

low-dimensional settings. Ambler et al. [14], whose approach we follow in this paper, 

compared the models considered here on two datasets. They also studied the 

non-negative garrotte and shrank the coefficients of the full model by a single factor 

(estimated by bootstrap [17]), but they did not examine the elastic net. In their 

simulations, the ridge method performed better, except that lasso outperformed ridge 

for the calibration slope. The full model and BE performed the worst on low EPV 

settings. They recommend the ridge method, except when one is interested in variable 

selection where lasso would be better. They also observed that in some cases the ridge 

shrunk the coefficients slightly too much. Lin et al. [18] compared Cox models 

estimated by maximization of the partial likelihood, Firth’s penalized likelihood [19] 

and using Bayesian approaches. They focused on the estimation of the regression 

coefficients and the coverage of their confidence intervals. They recommend using 

Firth penalized likelihood method when the predictor of interest is categorical and 

EPV < 6. Firth method was originally proposed as a solution to the problem of 

‘monotone likelihood’ that may occur in datasets with low EPVs and that causes for 

the standard partial likelihood estimates of the Cox model to break down.  

In our simulations, there was no clear-cut winner, but certainly the penalized 

methods (ridge, lasso, and elastic net) performed better than the full model and BE. 

The elastic net showed the best predictive accuracy and all three penalized methods 

considered had comparable discrimination. In some of our simulations, the penalized 

methods shrunk the coefficients too much (in some cases extremely setting them to 

zero, including the ridge), even though the “true” model was being fitted. This 

behaviour was observed both when using 10-fold and 5-fold cross-validation to select 

the tuning parameters of the penalized approaches and even after attempting to 

balance the folds based on the predictors. This suggests, as it was also pointed out 



  

previously [14], that more work should be done in developing methods to select the 

tuning parameters of the penalized approaches. Van Houwelingen et al. [20] describe 

a strategy involving penalized Cox regression, via the ridge, that can be used to obtain 

survival prognostic models for microarray data. In the first step of this approach, the 

global test of association [21] is applied and ridge regression is used only if the test is 

significant. Even though this approach is suggested in a high-dimensional setting, 

applying this global test on a low-dimensional setting before applying a penalized 

approach may help identify situations, where a penalized method may apply excessive 

shrinkage.          

In our clinical dataset application on the scenario that included clinical variables, 

biomarkers, and genetic variants, the three penalized methods also had a comparable 

performance in terms of calibration and discrimination and showed better calibration 

than the full model and BE, in line with our simulation results. 

Some limitations apply to our study. First, the Cox models received as input all 

variables used in the true underlying models to simulate the data, that is, there were 

no noise predictors. This may have given an unfair advantage to ridge regression 

which does penalization but not variable selection like the lasso or elastic net. Second, 

all simulations are based on a single clinical cohort, which may be representative of 

other cohorts, but we cannot compare, the similarity or dissimilarity of the observed 

simulation results in other datasets. Third, we examined only on the Cox proportional 

hazards model and did not consider alternative approaches to prognostic models for 

survival data like full parametric approaches or non-parametric ones (e.g., survival 

random forest [22]). Future work will address some of these limitations on other 

datasets and using non-parametric models. 

     

Conclusion 

All three methods using penalization, i.e., ridge, lasso, and elastic net, provided 

comparable results in the setting considered and may be used interchangeably in a low 



  

EPV low-dimensional scenario if the goal is to obtain a reliable prognostic model and 

variable reduction is not required. If variable selection is desired ,then the lasso or the 

elastic net can be used. Since too much shrinkage may be applied by a penalized 

method, it is important to inspect the fitted model to look for signs of excessive 

shrinkage. In a low EPV setting, the use of the full model and BE is discouraged, even 

when the coefficients of variables selected by BE are shrunk with ridge regression. 

This study adds new information to the few existing comparisons of penalized 

methods for Cox proportional hazards regression in low-dimensional datasets with a 

low EPV.  

 

Materials and methods 

Data 

AtheroGene [10] is a prospective cohort study of consecutive patients with manifest 

CAD and at least one stenosis of 30% or more present in a major coronary artery. For 

the present study we focus on the combined outcome of non-fatal myocardial 

infarction and cardiovascular mortality. Time to event information was obtained by 

regular follow-up questionnaires and telephone interviews, and verified by death 

certificates and hospital or general practitioner charts.  

Genotyping was performed in individuals of European descent only using the 

Genome-Wide Human SNP 6.0 Array (Affymetrix, Santa Clara, USA). The Markov 

chain haplotyping algorithm (MaCH v1.0.18.c) [23] was used to impute untyped 

markers. The 1000 Genomes Phase I Integrated Release Version 2 served as reference 

panel for the genotype imputation. For the present study we use 55 genetic variants 

(51 SNPs and 4 indels). These variants are taken from the CAD genome-wide 

association meta-analysis performed by the CARDIoGRAMplusC4D Consortium 

[11]. Using an additive genetic model, these variants represent the lead 

CARDIoGRAMplusC4D variants on 47 (out of 48) loci previously identified at 

genome-wide significance and 8 novel CAD loci found by this consortium. Out of the 



  

48 loci examined [11], rs6903956 was not nominally significant and is not used in our 

analyses. All SNPs and indels are used as allele dosages, that is, the expected number 

of copies of specified allele is used in the analyses. 

After exclusion of missing values, the dataset consists of 1731 individuals, 209 

incident events and a median follow-up time of 5.7 years (with a maximum of 7.6 

years). 

 

Design of simulations 

We adopted the simulation design used by Ambler and colleagues [14] by considering 

two main scenarios. For scenario 1, we consider clinical variables (age, gender, BMI, 

HDL over LDL cholesterol ratio, current smoking, diabetes, and hypertension) and 

blood-based biomarkers (C-reactive protein and creatinine) as predictors. For scenario 

2, we added information on 55 genetic variants to these variables. On each scenario, 

we fit a Weibull ridge model from which we simulate the survival time using the 

methods of Bender and colleagues [24]. Since the fitted Weibull model is used to 

simulate the survival time, this model provides the data generating mechanism, and as 

such it plays the role of the true underlying model. The resulting values of the survival 

time are then right-censored with help of a uniform random variable U on the interval 

(0, δ), that is, if the simulated time exceeds U, the (censored) time is set to U. The δs 

are chosen to achieve an EPV of 2.5, 5, or 10 (lower δ values produce a higher 

percentage of censored time and therefore fewer observed events). We generate 1000 

simulated datasets. For each scenario and EPV, and on each one of them we fit a 

standard Cox model via partial likelihood, two BE models, with α = 0.05 and α = 0.5, 

a lasso model, a ridge model and elastic net model.  

 

Penalized models 

The Cox proportional hazards model assumes the hazard as follows, 

 



  

 ℎ��� = ℎ����exp 
	� 
�
�

��� ��� (1) 

where (x1, x2, …, xp) is a vector of p predictor variables (e.g. age, gender, and BMI) 

and β1, β2,…, βp are the corresponding regression coefficients, which are the weights 

given to each variable by the model. These coefficients are obtained by maximizing 

the partial log-likelihood function l(β), where β = (β1, β2,…, βp).  

For fixed non-negative λ, maximization of the penalized partial log-likelihood 

function, 

 2� ��
� − � 
� ��
���
��� + 12 �1 − ��� 
���

��� � (2) 

produces the regression coefficients of the elastic net. The parameter λ controls the 

amount of shrinkage applied to the coefficients, higher values of lambda 

corresponding to lower coefficients. The parameter α is the elastic net mixing 

parameter and changes between 0 and 1 [25,26]. The lasso and ridge regression 

coefficients are obtained by setting α to 1 and 0 in equation (2), respectively, and 

maximizing the resulting expression.  

 

Selection of tuning parameters for penalized models 

For the lasso and the ridge, 10-fold cross validation is used and the parameter that 

maximizes the cross-validated partial log-likelihood [27] is used as the corresponding 

penalization parameter. For the elastic net, we consider a course grid from 0 to 1 in 

steps of length 0.05 for the mixing parameter α. As for the lasso and ridge, the 

cross-validated partial likelihood is maximized. 

Additional analyses were performed selecting the tuning parameters using (1) 

5-fold cross validation and (2) 10-fold cross-validation. The folds for the latter were 

obtained as follows. The observations were clustered in 10 groups using the predictors 

and K-means [28]. Then each fold was chosen randomly so that it would contain 

approximately one tenth of the individuals on each cluster. 



  

 

Comparison of methods 

The use of a Weibull model to generate the data allows us to compare the “true” 

survival probabilities ����� of the i
th

 individual at time t, to the survival probabilities � ����  estimated by the different models we considered. To compare survival 

probabilities, we used the same metrics as described previously [14]. RMSE for 

predictive accuracy is calculated as follows. 

 !"�#��� = $1� � %����� − � ����&�'
��� . (3) 

For calibration, the calibration slope �� is used, which is the slope of the model 

obtained by fitting a simple linear regression to ) = log%�-./�0�./�0� &  and � =
log%�-. /�0�. /�0� &. Ideally �� should be 1 (overfitting occurs if  �� < 1 and underfitting 

occurs if  �� > 1). For discrimination the concordance, the proportion of pairs of 

patients where individuals with the higher predicted event probability also have the 

higher “true” event probabilities is used. It has a similar interpretation as the C-index 

and is related to Kendall’s rank correlation τ [29] according to the formula 1 =2�concordance − 0.5�. For the RMSE and calibration slope the predicted survival 

probabilities are computed at time points 0.08, 0.17, and 0.25 years, respectively, for 

scenario 1 and of 1, 2.5, and 5 years , respectively, for scenario 2. The concordance is 

computed for only one time point, since its value does not depend on the particular 

time point used to compute the predicted survival probabilities 

 

Analysis of the clinical dataset 

The methods considered were applied to the AtheroGene dataset [10]. As measures of 

performance, we computed the C-index Cτ [12] and the calibration slope. For the 

computation of the C-index, the first five years of the follow-up were used. Since 

estimating the performance of a model on the same dataset the model was developed 



  

may produce over-optimistic performance estimates, both the C-index and calibration 

slope were corrected for over-optimism with help of the 0.632 bootstrap estimator 

[30]. 1000 bootstrap replications were used in the correction. 

 

Software 

All analyses were performed with R Version 3.2.1. The glmnet package [25, 26] was 

used to fit the penalized Cox regressions (lasso, ridge, and elastic net). BE was 

performed with the package rms [4]. The survival package [2] was used to fit the 

standard Cox model. The survC1 package was used to compute Cτ. 
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Figure legends 



  

Figure 1  Average RMSEs across simulations for both scenarios using different 

models  

Average RMSEs of simulated datasets were calculated using different models in 

scenario 1 (A) and scenario 2 (B), respectively, with different EPV. The models 

examined include full model, BE with significance levels α = 0.05 and α = 0.5 (BE 

0.05 and BE 0.5), ridge, lasso, and elastic net. Scenario 1 considers patients’ clinical 

variables relevant to CAD and blood-based biomarkers as predictors. Predicted event 

probabilities were computed at time points 0.08, 0.17, and 0.25 years, respectively. In 

scenario 2, information on 55 genetic variants is also considered besides the 

predictors used in scenario 1, while predicted event probabilities were computed at 

time points 1, 2.5, and 5 years, respectively. BE, backward elimination; RMSE, root 

mean square error; EPV, events per variable.  

 

Figure 2  Average calibration slopes across simulations using different models  

Average calibration slopes of simulated datasets were calculated using different 

models in scenario 1 (A) and scenario 2 (B), respectively. Dashed line depicts ideal 

calibration slope of 1. See legend of Figure 1 for more details of the models used and 

the scenarios examined. 

 

Figure 3  Average concordance across simulations using different models 

Average concordance of simulated datasets was calculated using different models in 

scenario 1 (A) and scenario 2 (B), respectively. See legend of Figure 1 for more 

details of the models used and the scenarios examined. 

 

Tables 

Table 1  Number of simulations used when presenting results for different 

models out of a maximum of 1000 simulations 

 



  

Table 2  C-indices and calibration slopes for clinical data example in both 

scenarios considered using different models 

 

 

Supplementary material 

 

Figure legends 

Figure S1  Censored Weibull Q−Q plot for residuals of Weibull ridge regression 

models used as the base of the simulations  

Scenario 1 considers patients’ clinical variables relevant to CAD and blood-based 

biomarkers as predictors. In scenario 2, information on 55 genetic variants is also 

considered besides the predictors used in scenario 1. A Weibull regression model was 

fitted to the clinical data used as the basis of the simulations for each scenario. The 

residuals of this fit are then used to produce a Q-Q plot. Due to the censoring of the 

data, the points at which the quantiles of the theoretical distribution are computed are 

estimated using the Kaplan-Meier estimator. The residuals are exponentiated to be 

able to compare them against the Weibull distribution. Q-Q plot, quantile-quantile 

plot. 

 

Figure S2  Median calibration slope across simulations using different models  

Median calibration slopes of simulated datasets were calculated using different 

models in scenario 1 (A) and scenario 2 (B), respectively. Dashed line depicts ideal 

calibration slope of 1. The models examined include full model, BE with significance 

levels α = 0.05 and α = 0.5 (BE 0.05 and BE 0.5), ridge, lasso, and elastic net. BE, 

backward elimination; EPV, events per variable.  

 

Figure S3  Calibration slope distribution across simulations for scenario 1 using 

different models 



  

A. Boxplots of calibration slopes. B. Boxplots of calibration slopes. with outliers 

removed to help visualization of quartiles. Predicted event probabilities were 

computed at time point 0.08 year. Grey dashed line depicts ideal calibration slope of 

1.  

 

Figure S4  Calibration slope distribution across simulations for scenario 2 using 

different models 

A. Boxplots of calibration slopes. B. Boxplots of calibration slopes with outliers 

removed to help visualization of quartiles. Predicted event probabilities were 

computed at time point 1 year. Grey dashed line depicts ideal calibration slope of 1.  

 

Figure S5  Scatter plot of log odds of event for exemplary simulation with 

extreme calibration slope 

The true log odds of event was plotted against the estimated log odds of event. Results 

shown here are for exemplary simulation in scenario 2 with elastic net (left panel) and 

ridge regression (right panel). One year predicted event probabilities were computed 

at time point 1 year. Blue line depicts least squares regression line (y = 72.2 + 22 x 

and y = 176.7 + 52.5 x for elastic net and ridge, respectively). Dashed line depicts the 

y = x line, which corresponds to the ideal case in which the estimated log odds equals 

to the true log odds.  

 

Figure S6  Average RMSEs across simulations including application of ridge 

regression to results of BE  

Average RMSEs of simulated datasets were calculated using different models in 

scenario 1 (A) and scenario 2 (B), respectively. Other than full model, BE with 

significance levels α = 0.05 and α = 0.5 (BE 0.05 and BE 0.5), ridge, lasso, and elastic 

net, models examined also include application of ridge regression for BE 0.5 (BE 0.5 

+ Ridge) and BE 0.05 (BE 0.05 + Ridge). Predicted event probabilities were 



  

computed at time points 1, 2.5, and 5 years. BE, backward elimination; RMSE, root 

mean square error; EPV, events per variable. 

 

Figure S7  Average calibration slopes across simulations including application 

of ridge regression to results of BE  

Average calibration slopes of simulated datasets were calculated using different 

models in scenario 1 (A) and scenario 2 (B), respectively. Dashed line depicts ideal 

calibration slope of 1. See legend of Figure S6 for more details of the models used 

and the scenarios examined. 

 

Figure S8  Median calibration slopes across simulations including application of 

ridge regression to results of BE  

Median calibration slopes of simulated datasets were calculated using different 

models in scenario 1 (A) and scenario 2 (B), respectively. Dashed line depicts ideal 

calibration slope of 1. See legend of Figure S6 for more details of the models used 

and the scenarios examined. 

 

Figure S9  Average concordance across simulations including application of 

ridge regression to results of BE 

Average concordance of simulated datasets was calculated using different models in 

scenario 1 (A) and scenario 2 (B), respectively. See legend of Figure S6 for more 

details of the models used and the scenarios examined. 

 

 

Tables 

Table S1  Baseline characteristics of patients in the AtheroGene study used in 

our simulations 

 



  

Table S2  Information on genetic variants considered 

 

Table S3  Regression coefficients for scenario 1 (EPV = 23.22) using different 

models 

 

Table S4  Regression coefficients for scenario 2 (EPV = 3.27) using different 

models 



  

Table 1  Number of simulations used when presenting results for different 

models out of a maximum of 1000 simulations 

Scenario EPV Full  BE 0.05  BE 0.5  Lasso  Ridge  Elastic  

1 2.5 928  345  785  681  903  913  

1 5 997  649  945  871  976  983  

1 10 1000  938  997  979  1000  1000  

2 2.5 988  383  897  747  957  977  

2 5 1000  784  992  938  994  997  

2 10 1000  991  1000  998  1000  1000  

Note: Presented in the table are the numbers of simulations where the model 

computed did not produce constant predictions nor predicted survival probabilities 

equal to 1. Scenario 1 candidate predictors include clinical variables and biomarkers. 

Scenario 2 candidate predictors include clinical variables, biomarkers, and genetic 

variants. BE, backward elimination; EPV, events per variable. 

  



  

Table 2  C-indices and calibration slopes for clinical data example in both 

scenarios considered using different models 

Scenario Measure Full  BE 0.05  BE 0.5 BE 0.05 

+Ridge  

BE 0.5 

+Ridge  

Lasso Ridge  Elastic  

1 C-index 0.599  0.586  0.596  0.586  0.596  0.600  0.601  0.600  

2 C-index 0.601  0.574  0.577  0.574  0.578  0.603  0.607  0.600  

1 Calibration 

slope 

0.868  0.927  0.884  0.974  0.960  1.012  1.065  1.050  

2 Calibration 

slope 

0.500  0.649  0.583  0.708  0.645  0.861  1.162  0.885  

Note: The C-indices and calibration slopes presented are corrected for over-optimism 

via the 0.632 bootstrap. BE 0.05 + ridge and BE 0.5 + ridge refer to ridge regression 

applied to the variables selected by BE 0.05 and BE 0.5, respectively. BE, backward 

elimination. 
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