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Abstract

Purpose: Lipid signals measured by 1H MR spectroscopy cannot be adequately

quantified by common fitting routines like VARPRO or AMARES, if lipid spectra

are distorted by irregular spatial and temporal inhomogeneities of the static mag-

netic field during readout. A fully automatic reference deconvolution algorithm is

presented that eliminates these distortions before application of fitting routines.

Methods: The measured signal of the dominant methyl resonance is isolated with

aid of a spectral estimator (ESPRIT) and used as reference signal for estimation of

distortions. A Wiener filter is applied to deconvolve those distortions in the lipid

spectrum. Performance of the algorithm is assessed for different bandwidths and

shapes of distortions, using artificially distorted as well as measured data.

Results: Application of the fully automatic reference deconvolution algorithm on

simulated spectra yields a distinct increase in quantification accuracy. Deconvolved

in vivo spectra of subcutaneous fat indicate reduced spectral overlap after application

of the proposed strategy.

Conclusion: The proposed method is helpful for in vivo MR spectroscopy of adipose

tissue in order to correct for effects of field inhomogeneities within the voxel and for

inevitable eddy current effects. Quantification accuracy is improved by eliminating

distortions before application of fitting routines.

Key words: spectral overlap; reference deconvolution; Wiener filter; estimation of

parameters via rotational invariance techniques algorithm

Introduction

In many clinical studies, the distribution of triglycerides, which are present in dif-

ferent regions of adipose tissue (e.g., layers of subcutaneous fat or visceral fat), is

performed to get insight into the pathogenesis of metabolic diseases, such as type

2 diabetes (1–4). Using magnetic resonance spectroscopy (MRS) for this analysis,

highly accurate quantification of the occurring signal parts is of great importance

to get reliable information about the composition of body fat. Especially, precise

assessment of mono- (MUFA) and polyunsaturated (PUFA) fatty acids has become

an important task for metabolic studies on obesity and type 2 diabetes (3–6).
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Usually, quantification of resonances in in vivo spectra is done by fitting an ap-

propriate model of MRS signals directly to the measured data, using interactive

fitting algorithms like VARPRO (7) or AMARES (8), and by extracting the esti-

mated resonance amplitudes. A well established model for the use with VARPRO

or AMARES consists of a superposition of exponentially damped complex sinusoids,

which equals a superposition of Lorentzian functions in the frequency domain. How-

ever, if effects like spin-spin coupling must be taken into account, the complexity

of the model increases significantly, because of the clearly increasing number of oc-

curring complex sinusoids. In this case, the problem of signal fitting is often solved

by applying LCModel (9) for quantification, which decomposes the measured data

into a linear combination of model spectra from known metabolite solutions. This

approach is mainly used to analyze metabolites in the brain.

However, all the mentioned methods can not fully avoid quantification errors

due to spatial and temporal inhomogeneities of the static magnetic field. Spatial

inhomogeneities are caused by the structural and magnetic heterogeneity of the tis-

sue and lead to a non-exponential decay of the signal parts in time domain, which

results in line broadening as well as spectral overlap in the frequency domain. Tem-

poral inhomogeneities of the magnetic field occur due to eddy currents induced in

the chassis of the MR tomograph after fast switching of field gradients necessary for

volume selection. These eddy currents are known to cause a frequency modulation of

the measured signal and therefore also contribute to the distortion of spectral lines.

Fitting exponentially dampened sinusoids to the distorted signal, using VARPRO

or AMARES, will lead to considerable errors. The usage of LCModel for spectra of

adipose tissue is also limited because the measured data can not be well described by

a linear combination of model spectra. Therefore, the measured data from adipose

tissue is ill suited for an accurate quantification, if magnetic field inhomogeneity and

eddy currents are pronounced.

More accurate quantification results are expected, if distortions caused by the

static and temporal inhomogeneities were compensated in a preconditioning step.

Thereafter, approved methods like VARPRO or AMARES can be used for quan-

tification. A method to reduce the influence of eddy currents is for example the

correction introduced by Klose (10), which estimates phase distortions from unsup-

pressed water signals. It uses the prior knowledge that the undistorted water signal
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has linear phase and dominates the phase evolution of the whole signal. Major draw-

backs are that this method can only be applied if water signal is dominant in the

measured sample and that it can only correct distortions caused by eddy currents.

More general approaches, which do not need a water resonance and which can

also counteract line broadening caused by magnetic field inhomogeneities, are spec-

tral deconvolution algorithms like the reference deconvolution proposed in (11). Al-

gorithms for spectral deconvolution can be used for preconditioning of the measured

data prior to quantification. They can restore Lorentzian line shapes with linear

phase and reduce spectral overlap in order to make the measured data better suited

for the following fitting process.

In the following, a fully automatic reference deconvolution technique is presented,

which is useful for preconditioning of triglyceride signals. Like described in (11), it

uses the shape of an arbitrarily chosen single resonance line to estimate the actual

frequency distribution produced by the spatial and temporal B0 inhomogeneity and

then deconvolves that distribution from the entire spectrum. The new approach,

therefore, only needs very limited a priori information about the measured signal.

Especially if considerable spectral overlap exists, the main problem of reference

deconvolution algorithms is to isolate the reference resonance from the measured

data. In (11), the use of bandpass filters is proposed for this purpose. A disadvantage

of this approach is that the performance of the algorithm strongly depends upon the

shape of the stop- and pass-band. There is no theory how to design those filters

in order to obtain the most accurate results. Furthermore, using bandpass filters,

the infinitely broad Lorentzian line shape of the reference resonance will always

be truncated. The newly proposed algorithm uses the Estimation of Parameters

via Rotational Invariance Techniques (ESPRIT) (12) algorithm and a nearest-mean

classification to isolate the reference resonance in the time domain. So choosing

appropriate stop- and pass-bands can be omitted, and the reference resonance is not

truncated in frequency domain.

Another difference to the algorithm proposed in (11) is that the deconvolution

is performed using a Wiener filter (13) rather than simple division in time domain.

Simple division leads to noise enhancement if the estimated distortion approaches

zero and causes instability. The Wiener filter is a statistical approach to correct the

distortion from the measured data and minimizes the mean-squared error. Therefore,
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noise enhancement is kept as low as possible and stability is ensured.

Theory

Model of fat MR spectra

Because the algorithm is developed to correct the line shape of triglyceride signals,

a brief overview about the known signal properties and the effects of field inhomo-

geneities shall be given. A triglyceride is composed of a glycerol backbone with

three attached fatty acid chains. Each of those chains contains 1H atoms, which can

roughly be sorted in seven groups with clearly different resonance frequencies. As

depicted in Fig. 1, the resulting triglyceride spectrum consists of seven dominant

resonances. The chemical shifts of those resonances can be obtained from measure-

ments and are given in Table 1 along with the nomenclature of the resonances. The

sampled time signal of the methylene resonance can be well approximated by one

single exponentially dampened complex sinusoid

sCH2
(n) = sCH2

exp {(jωCH2
− αCH2

)nTs} [1]

with the amplitude sCH2
, dampening constant αCH2

= 1/T2CH2
, frequency ωCH2

and

sampling period Ts. The value of the dampening constant was chosen as αCH2
=

1/69 ms−1, according to in vivo measurements of T2 reported in the literature (5,

14, 15). The methylene resonance is well separated from the other resonances in

the frequency domain, i.e. there are no other signal parts in the frequency range

ωCH2
± 0.2 ppm.

It should be mentioned that a triglyceride spectrum in general consists of more

than seven resonances mentioned in Table 1 because the glycerol backbone intro-

duces additional resonances and each signal part may exhibit multiplet characteris-

tics due to spin-spin coupling effects. Therefore, the model for the undistorted time

signal is kept as general as possible and is assumed as the superposition

s(n) = sCH2
(n) +

M−1∑
k=1

sk exp {((jωk − αk)nTs} [2]
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of the methylene resonance and M − 1 additional dampened complex sinusoids,

formed by all the remaining chemical groups. The signal order M−1, the amplitudes

sCH2
and sk, the dampening constants αk, as well as ωCH2

and ωk are free parameters.

Spatial inhomogeneities of the static magnetic field are considered to cause ran-

dom frequency shifts ∆ω to all M signal parts. The probability of spatial occurrence

of those shifts can be described by the probability density function p(∆ω). The dis-

torted signal can be derived by calculating the expected signal

s̃(n) =

∫ ∞
−∞

exp {j∆ωnTs}s(n)p(∆ω) d∆ω = 2πm(n)s(n) ,

considering all possible values of ∆ω. Because the integral has the form of an inverse

Fourier Transformation, the effect of spatial inhomogeneities can be described by a

multiplication of the sampled signal s(n) with a non-exponentially decaying function

m(n), whereasm(n) = F−1 {p(∆ω)} is the so called characteristic function of p(∆ω).

If eddy currents are taken into account, an additional frequency modulation is

introduced (10) due to the temporal inhomogeneities of the static magnetic field.

Eddy currents are in general assumed to be exponentially dampened with the relax-

ation time Te. In this case, the distorted signal can be written as

s̃(n) = h(n)s(n) [3]

h(n) = 2π exp {jΦe(n)}m(n) [4]

Φe(n) = ae

(
1− exp

{
nTs
Te

})
, [5]

where ae is an arbitrary factor depending on the strength of the eddy currents

and Φe(n) is the time dependent phase shift caused by the eddy currents. In the

frequency domain, the distorted signal can be written as the convolution H(ω)∗S(ω).

So, due to the mentioned distortions, all Lorentzian signal parts are blurred likewise

with an arbitrary function H(ω).
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Reference Deconvolution Algorithm

Overview

The basic steps of the reference deconvolution algorithm are visualized in Fig. 2 at

the example of an arbitrary MRS signal with two Lorentzian resonances. In this

example the leftmost resonance is the reference resonance for which a model of the

undistorted line shape exists. During measurement the signal is distorted due to

the inhomogeneities of the static magnetic field (I). In a first step, the measured

signal Y (ω) is decomposed into a superposition of exponentially dampened complex

sinusoids. Because the example distortion H(ω) has two maximums, each resonance

is split into two of such signal parts (II). Therefore, a classification and reconstruction

step is needed after signal decomposition which aggregates signal parts belonging

to the same resonance (III). A model of the undistorted line shape of the reference

resonance is used to get an estimate Ĥ(ω) of the distortion (IV). In a last step, the

distortion is canceled by convolving the measured spectrum with an inverse of the

estimated distortion (V).

Signal decomposition

Decomposition of the measured signal is performed with the ESPRIT algorithm. For

reasons of simplicity, all calculations are done in time domain. Because of Eqs. 2

and 3, we know that the measured time signal y(n) corresponds to a superposition

of exponentially dampened complex sinusoids which is multiplied with an arbitrary

non-exponentially decaying function. Therefore, it is convenient to decompose the

measured signal y(n) into functions of the same form. This means that y(n) can be

written as

y(n) =
M∑
k=1

ak exp {zkn}qk(n) + w(n) [6]

zk = (jbk + ck)Ts ,

where qk(n) represents the non-exponential decay of the k-th signal part due to

inhomogeneities of the magnetic field. Because qk(n) are assumed as complex valued

functions, they also cover the non-linear phase of the signal caused by eddy currents.
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The signal parts which can not be decomposed remains as the rest w(n).

Decomposition means to estimate the parameters ak, zk and qk(n). In the fol-

lowing, a hat (ˆ) is assigned to each estimated parameter. To estimate the complex

exponents zk, the ESPRIT algorithm can be used. Therefore, N samples of the

measured signal y(0), . . . , y(N − 1) are arranged into the data matrix

Y =


y(0) y(1) . . . y(N − L)

y(1) . . . y(N − L+ 1)
...

...

y(L− 1) y(L) . . . y(N − 1)


with column vectors of length L > M . Those column vectors are the measurement

vectors y(l) = [y(l), y(l+1), . . . , y(l+L−1)]T at the time instants 0 ≤ l ≤ N−L. If

qk(n) from Eq. 6 only changes slowly in an interval of the length L it can be replaced

in each measurement vector with its Taylor-series approximation. Expanding Eq. 6

around n = l and just considering the constant term yields

y(l + n) =
M∑
k=1

ak exp {zk(l + n)}qk(l) + w(l + n) .

With this narrow band approximation, the data matrix Y can be written as

Y ≈ SA(X ◦Q) + W [7]
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with

A = diag(a1, a2, . . . , aM )

S =


1 1 . . . 1

e z1 e z2 . . . e zM

...
...

e z1(L−1) e z2(L−1) . . . e zM (L−1)



X =


1 e z1 . . . e z1(N−L)

1 e z2 . . . e z2(N−L)

...
...

...

1 e zM . . . e zM (N−L)



Q =


q1(0) q1(1) . . . q1(N − L)

q2(0) q2(1) . . . q2(N − L)
...

...
...

qM (0) qM (1) . . . qM (N − L)



W =


w(0) w(1) . . . w(N − L)

w(1) w(2) . . . w(N − L+ 1)
...

...
...

w(L− 1) w(L) . . . w(N − 1)

 .

A is a diagonal matrix with the diagonal elements a1, . . . , aM . The operator ◦ de-

notes an element-by-element matrix multiplication (Hadamard product) The prod-

uct A(X ◦ Q) contains the M signal parts ak e zkn qk(n) in its row vectors. The

matrix S contains the complex phase shifts between the samples of one measure-

ment vector which are caused by time delays. In the description of the ESPRIT

algorithm (12), this matrix is often referred to as steering matrix.

Applying the ESPRIT algorithm to Eq. 7 leads to the estimates ẑk of the complex

exponents zk. To apply the ESPRIT algorithm, the following steps have to be

performed:

• The singular value decomposition of Y gives the matrix U, whose column

vectors are the eigenvectors of YYH , Y = UDV.
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• The M eigenvectors u1, . . . ,uM belonging to the M biggest eigenvalues are

known to span the signal subspace. To calculate the parameters zk, the signal

subspace is partitioned into Ea and Eb. Ea covers the upper L−1 row vectors

and Eb is composed of the lower L− 1 row vectors of E.

• The estimates ẑ1, . . . , ẑM are obtained by computing the logarithm of the eigen-

values of the matrix

Ψ = −EaE
−1
b = Pdiag

(
e ẑ1 , . . . , e ẑM

)
P−1 .

If the exponents ẑk are estimated, the amplitudes ak and the time dependent

factors qk(n) can be estimated with the least squares method. Inserting the esti-

mated ẑk into S and X gives Ŝ and X̂. The least squares estimate of the product

AQ is given by ÂQ = (SHS)−1SHY ◦ X̂∗, where X̂∗ is the Hadamard inverse of X̂

or equivalently the complex conjugate of X̂. To separate Q̂ and the diagonal matrix

Â, the product ÂQ is factorized such that the first column of Q̂ contains only ones.

This is equivalent to the assumption qk(0) = 1 ∀k. The signal parts ŝk(n) can finally

be reconstructed by inserting them into ŝk(n) = âk exp {ẑkn}q̂k(n).

For the application of this decomposition, knowledge about the signal order M

is necessary. It may be estimated from the measured signal using forward linear

prediction or the MDL (Minimum Description Length) criterion as described in

(16). Alternatively, M can be chosen experimentally by increasing the signal order

until the error w(n) between the measured signal y(n) and its decomposition shows

no further decrease.

Clustering and Reconstruction

The next step is the nearest-mean classification and the reconstruction of the ref-

erence resonance. Applying the introduced signal decomposition to a triglyceride

signal leads to a result similar to case (A) of Fig. 3. As anticipated due to the dis-

tortions, each of the seven dominant resonances, including the methylene resonance,

is decomposed into multiple sinusoidal signal parts. As shown in (B) of Fig. 3, the

estimated signal parts can be aggregated to reconstruct the seven distorted reso-

nances.
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Therefore, each decomposed signal part sk(n) is classified, according to which

of the seven resonances given in Table 1 has the closest resonance frequency. Mathe-

matically, this means to assign class labels Ωc ∈ {’methyl’, ’methylene’, ’β-methylene’,

. . .} to all M signal parts, corresponding to the nearest-neighbor classification rule

Ω̂(ẑk) = arg min
Ωc

|Im(ẑk)− ω(Ωc)| ∀k ∈ {1, 2, . . . ,M} .

As class centers ω(Ωc) = ωc, the center frequencies of the seven resonances in Table

1 are used. After that, the distorted methylene resonance can be reconstructed

s̃CH2
(n) =

∑
k:Ω̂(ẑk)=Ω2

ŝk(n) .

Estimate of the distortion

The estimation of the distortion is performed in the time domain by dividing the

isolated reference resonance by its ideal signal model from Eq. 1:

ĥ(n) =
s̃CH2

(n)

sCH2
exp {(jωCH2

− αCH2
)nTs}

. [8]

The choice of the amplitude sCH2
only results in a scaling of ĥ(n) and does not

alter its line shape. Different values of the optimal resonance frequency ωCH2
have

also no effect on the line shape as they only result in a phase shift of ĥ(n). The

dampening parameter αCH2
can be obtained from measurements and has influence

upon the bandwidth of the estimated distortion. In this paper, αCH2
= 1/69 ms is

used according to T2 values in the literature (5, 14, 15).

Wiener Filtering

The deconvolution of the measured signal is done with the Wiener filter. It is

a statistical method to design an inverse to the estimated distortion which gives

the best trade-off between noise suppression and signal regeneration. Under the

assumptions that

• the measured signal is given by y(n) = ĥ(n)s(n) + w(n), where ĥ(n) is the
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estimated distortion from Eq. 8

• the desired signal s(n) is a non-stationary stochastic process with the power

σ2
s(n)

• the additive noise w(n) is uncorrelated to s(n) and has the power σ2
w

the inverse of the signal distortion g(n) is determined to minimize the mean-squared

error

ĝ(n) = arg min
g(n)

E
[
|s(n)− g(n)y(n)|2

]
=

ĥ∗(n)σ2
s(n)

|ĥ(n)|2σ2
s(n) + σ2

w

[9]

at each time instant n. For the special case of a noiseless measurement (σ2
w = 0),

the inverse g(n) = 1/ĥ(n) is simply the inverse of ĥ(n). For noisy measurements,

the signal and noise variances in the denominator of Eq. 9 ensure that the noise

is enhanced as less as possible and that stability is guaranteed. Multiplying the

measured signal with this inverse sd(n) = ĝ(n)·y(n) eventually gives the deconvolved

signal sd(n), where the exponential decay as well as the linear phase of each resonance

are restored. This signal can be used for accurate quantification of the signal parts.

The needed noise power σ2
w in Eq. 9 can be estimated from the deviation between

the measured data and the fitted signal model

w(n) = y(n)−
∑
∀k

ŝk e ẑkn q̂(n)

σ̂2
w =

1

N

N∑
n=1

∣∣w(n)
∣∣2 .

Similarly, the signal power is estimated from the fitted signal model

σ̂2
s(n) =

∣∣∣∑
∀k

ŝk e ẑkn q̂(n)
∣∣∣2 .
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Methods

MRS Measurements

In vitro MR spectroscopy of safflower oil

Test spectra were measured using a single-voxel stimulated echo acquisition mode

(STEAM) technique on a 3 T whole body scanner (Siemens Magnetom Trio) with

sequence parameters TE = 20 ms, TM = 10 ms, TR = 4 s and a voxel size of 20 × 20

× 20 mm3. A bottle of safflower oil served as phantom. To obtain an ideal reference

spectrum, the bottle was placed in the iso-center of the MRT and the position of

the voxel was chosen in the center of the bottle in order to minimize the influence of

spatial field inhomogeneity and eddy currents. 32 acquisitions have been acquired to

obtain a good signal-to-noise ratio. This reference safflower oil spectrum is assumed

as an optimal undistorted signal sref(n). Measurements outside the isocenter with

the voxel positioned at the border of the bottle are used to test the performance of the

algorithm, because field inhomogeneities and eddy currents get more pronounced.

The distorted spectra have been acquired using only one acquisition in order to

obtain significant noise.

In vivo MR spectroscopy of subcutaneous fat

1H MR spectra were acquired from subcutaneous tissue in five male volunteers on

a 3 T whole body scanner (Siemens Magnetom Trio) with a STEAM technique.

Subjects were taken from a study including obese men and had a body mass index

(BMI) between 27.7 and 32.2 kg/m2. Measurement parameter were TE = 20 ms,

TM = 10 ms, TR = 4 s. The size of the voxel was between 20 × 25 × 20 and 30

× 30 × 20 mm3, dependent on the extension of subcutaneous fat and acquisition

number was between 48 and 80 dependent on the voxel size.

Evaluation

Evaluation with simulated distortions

Additional to measured signals, simulated distortions are used to test the perfor-

mance of the algorithm under predefined conditions. According to Eqs. 3, 4 and
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5, the reference signal sref(n) is multiplied with an arbitrarily chosen decaying

function m(n) of different bandwidths to obtain an artificially distorted measure-

ment. The signal-to-noise ratio SNR defined by SNR = 10 · log(A2
Signal/A

2
Noise) =

20 · log(ASignal/ANoise), where ASignal is the signal amplitude and ANoise is the am-

plitude of noise, is assumed to be 45 dB. The influence of the eddy currents is

investigated by changing the half-life time Te of the induced currents. The benefit of

simulated distortions is, that the exact shape of the distortion is known. Therefore,

it can be assessed if the distortion can be correctly estimated with the proposed

algorithm.

Quadratic error as similarity measure

For performance analysis, the quadratic deviations

εy =
N∑

n=1

∣∣sref (n)− y(n)
∣∣2 [10]

εd =
N∑

n=1

∣∣sref (n)− sd(n)
∣∣2 [11]

are calculated as similarity measures. εy describes the similarity between the undis-

torted reference signal sref (n) and the measured signal y(n). εd describes the sim-

ilarity between the undistorted reference signal sref (n) and the deconvolved signal

sd(n). εy > εd indicates that the reference deconvolution algorithm is able to ap-

proximate the original undistorted line shape.

Error of integral estimates

The performance of the blind deconvolution algorithm is assessed, using the AMARES

algorithm to estimate the signal integrals from the distorted and the deconvolved

signal. A number of M = 7 purely Lorentzian signal parts with the relative chem-

ical shifts given in Table 1 are fitted to the signals. All estimated signal integrals

Î1, ..., Î7, except Î3, are normalized to the integral of the methylene resonance in

order to get the integral ratios

vk =
Îk

Î2

,
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which are comparable between different measurements. As the fitting of the integral

of signal s3 was often inaccurate or incorrect due to the low amplitude and large

bandwidth, the relative error for this signal was omitted in the calculations.

At first the integral ratios of the resonances in the reference signal sref (n), which

is the spectrum of case (C) for the simulated data and the spectrum measured in the

isocenter for the in vitro data, are estimated with AMARES. Those ratios are taken

as ground truth and are denoted with vk,ref . Besides, the AMARES algorithm is

used to obtain the integral ratios from the distorted and the deconvolved signal. For

each of them, the error of the integral estimation

ek = 100 ·
|vk − vk,ref |
|vk,ref |

,∀k ∈ [1, 7] [12]

can be calculated as a percentage to get a measure how accurate the integral ratio

can be estimated with the AMARES algorithm.

Calculation of saturation indices (in vivo)

In in vivo MR spectra the performance of the deconvolution algorithm cannot be

judged as no reference spectrum is available. Saturation indices are parameter that

are generally derived from in vivo MR spectra (17). Therefore, the influence of the

removal of the distortions on the accuracy of saturation (SI) and polyunsaturation

indices (PUI) was examined. SI and PUI were calculated as described in (17) for

both the original and the deconvolved MR spectra of the five subjects.

Results

Evaluation with simulated distortions

Evaluation of spectra with three different simulated distortions are shown in Fig. 4.

From left to right, the assumed arbitrary distortion H(ω), the reference spectrum

Sref (ω) and the distorted spectrum Y (ω) as well as the result of deconvolution Sd(ω)

are shown in the frequency domain. From top to bottom, three different cases (A) to

(C) are presented. In case (A), the distortion H(ω) is assumed as a smooth function

with a bandwidth of approximately 0.3 ppm. Eddy currents are assumed to decay
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fast with Te = 50 ms. In case (B), a distortion with a more narrow bandwidth of

approximately 0.05 ppm is assumed in combination with the same half-life Te of the

eddy currents. Case (C) shows the results if no eddy currents are present, while the

distortion caused by magnetic field inhomogeneities remains the same as in case (B).

Evaluation with measured distortions (in vitro)

Similar investigations were performed by using measured distortions from voxels at

the border of the safflower oil bottle. The result of those experiments are shown in

Fig. 5. Because the exact distortion is not known for measured data, the estimated

distortions are shown in the leftmost plots. Case (D) shows the result when the

measured distortion is broadband. It is obtained from a measurement, where the

voxel is far from the isocenter of the MR tomograph and encases both oil and

air. Case (E) shows the behavior of the algorithm with a measured narrow band

distortion.

Comparison of performance measures

The similarity measures εy, εd and the error of integral estimation ek were calculated

for the experiments of Fig. 4 and 5 as described in the Methods part. They are given

in Table 2. In the first column the indexes of the four cases (A), (B), (D) and (E) are

reported. The second column provides data for distorted (dist) versus deconvolved

(dec) data. Deconvolution leads to a quadratic error εd which is between 5.3 and 89.7

times lower than the error εy with the distorted signal. The relative error of integral

estimation ek is in all cases except case (D) lower or similar if the deconvolved

signal was used for integral estimation. Case (D) is an extreme example with broad

field inhomogeneities, where the accuracy of the deconvolution algorithm drastically

decreases and the narrow-bandwidth assumption is no more fulfilled. (As the fitting

of the integral of the β−methylene signal is often inaccurate or incorrect due to the

low amplitude and large bandwidth, the relative error for this signal is omitted in

the calculations.)
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Influence of the distortions bandwidth

The influence of the bandwidth of the distortion on the the deconvolution accuracy

is shown in Fig. 6a. In an interval between 0.12 ppm and 0.5 ppm the mean of the

quadratic errors εy and εd is calculated for eight different bandwidths of the distor-

tion and is given in logarithmic scale. Eddy currents are not taken into account. To

calculate the mean of the quadratic errors for each bandwidth, the reference signal

has been successively convolved and deconvolved, assuming 100 random smooth dis-

tortions H(ω) per bandwidth. The improvement of the quadratic error lies between

7 dB for broad bandwidths and 11 dB for narrow bandwidths of the distortion.

The influence of the half-life Te of the eddy currents on the the deconvolution

accuracy is shown in Fig. 6b. In an interval between 6 ms and 100 ms the mean of

the quadratic errors εy and εd is calculated for 15 different values of Te and is given

in logarithmic scale. Again, 100 random distortions H(ω) per bandwidth have been

used to calculate those mean values. The improvement of the quadratic error lies

between 7 dB for short Te and 11 dB for long Te.

Evaluation with measured distortions (in vivo)

Fig. 7 shows spectra from subcutaneous fat of all five volunteers together with the

result of the reference deconvolution. In contrast to the in vitro measurements no

”gold standard” is available for the integral ratios or the shape of the undistorted

signal. Therefore, only an optical inspection can be made. It is obvious that the

line widths of the resonances are reduced after deconvolution. The bandwidth of the

resonances is reduced if the reference deconvolution algorithm is applied. Before de-

convolution the methylene resonance has a bandwidth of 0.14 ppm. Deconvolution

reduces the bandwidth to 0.07 ppm, what is a reduction of 50%. In the deconvolved

spectrum even small side lobes caused by spin-spin coupling affects are visible be-

cause there is little spectral overlap. This can be seen in case of the methyl and

the α-methylene resonance which both are examples of triplets. Elimination of eddy

current distortions in the range of the methylene peak is also demonstrated in three

MR spectra.
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Calculation of saturation indices (in vivo)

In Table 3 the SI and the PUI for both the original and the deconvolved MR spectra

(Fig. 7) together with their mean values and standard deviations are shown.

In (17) SI and PUI were calculated for a group of obese men with a BMI of

30.1 ± 1.3 kg/m2. Mean values were SI = 0.944 ± 0.008 and PUI = 0.003 ± 0.001.

The mean values of the SI and PUI of the deconvolved MR spectra in Table 3 are

rather in the range of the values in (17) as the values of the distorted MR spectra.

Furthermore the standard deviation is distinctly higher for the distorted MR spectra.

Discussion and Conclusions

The results show that the ESPRIT algorithm can be used in combination with a

nearest-mean classification to isolate a reference resonance from the spectra resulting

from a distorted measurement. In comparison to the selection with a bandpass

filter, knowledge about the bandwidth of this reference resonance is not necessary.

Furthermore, the crucial problem of determining the best suited pass- and stop-band

characteristic of such a filter is omitted this way. Besides, the reference resonance

is not truncated in frequency domain if the proposed algorithm is used for reference

resonance isolation.

For the use of reference deconvolution algorithms with triglyceride signals, the

methylene resonance can be used as a reference resonance. A signal model of the

undistorted methylene resonance consisting of one single exponentially dampened

complex sinusoid is sufficiently precise for an accurate estimation of the distortions

line shape. For this model, only the T2 relaxation time of the methylene group is

used. No informations about the amplitude or the center frequency of the methylene

resonance is needed. As shown in Fig. 4, tests with simulated data reveal that the

amplitude and phase response of the distortion can be accurately estimated.

Another reference deconvolution algorithm applied to lipid spectra was intro-

duced in (18) to improve the separation of intra- and extramyocellular lipid peaks in

single voxel 1H MR spectroscopy. In that work, a reference spectrum acquired in tib-

ial bone marrow was used to deconvolve the effects of the magnetic field distribution

on line shape and line width of lipid spectra in lower leg skeletal musculature. Fur-
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ther investigations would be necessary, whether the proposed algorithm in this work

can be expanded to multiple lipid compartments of different geometry experiencing

different magnetic field strength as for example skeletal musculature.

Deconvolution with a Wiener filter in the time domain is a good way to re-

construct the undisturbed signal, even if the measurements are corrupted by noise.

Cases (D) and (E) show, that the Lorentzian line shapes can be restored from the

distorted measurements even if only one acquisition is used during measurement and

therefore noise has significant influence.

Deconvolution with the proposed algorithm in general yields an increase in quan-

tification accuracy. The results from Table 2 show quantification with the AMARES

algorithm to be clearly more stable after preconditioning with the proposed deconvo-

lution algorithm. Visual examination of deconvolved in vivo spectra of subcutaneous

fat indicates significantly reduced spectral overlap after application of the proposed

algorithm. Calculated SI and PUI from the deconvolved in vivo MR spectra coin-

cided with literature values (17) and showed less variations than the values calculated

from the original data.

Different bandwidths of the distortion h(n) in Fig. 6a lead to a difference in

deconvolution accuracy. The algorithm works best with narrow-band distortions.

This is due to the narrow-band assumptions which are used for signal decomposition.

Because it is assumed that the non-exponential decay gk(n) of each signal part varies

slowly in a time frame of the length L, the signal decomposition will be inaccurate

if the distortions are very broadband. As a result, the estimated distortion ĥ(n) is

inaccurate and the accuracy of the deconvolution algorithm decreases.

Similar behavior can be seen investigating the influence of the half-life Te of

the eddy currents in Fig. 6b. A very fast decay of the eddy currents, e.g. Te <

10 ms, means that the eddy currents decayed immediately after excitation and have

very little influence on the signal. Therefore, deconvolution accuracy is high. Fast

decaying eddy currents with 10 ms < Te < 20 ms effect a larger time interval and

lead to a lower deconvolution accuracy, because gk(n) again changes fast and can not

be estimated accurately during the signal decomposition. For practical applications,

where eddy currents typically have a half-life of Te > 20 ms, the algorithm works

highly accurate.

One may ask, how variations in the assumed value for T2 to estimate the distor-
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tion ĥ(n) will influence the deconvolution algorithm. Of course, the inverse of the

assumed damping parameter αCH2 should be in the range of the correct T2 value

of the methylene peak in the MR spectrum of the examined adipose tissue and an

accurate determination of T2 before the actual MRS measurements could be done.

Actually, small deviations of the real T2 value only influence the bandwidth of the

estimated distortion and not the results of the algorithm itself. Therefore, an as-

sessment of T2 by values from literature will be sufficient in case of a determination

of T2 of the investigated adipose tissue is not desirable or not possible being short

of time.
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Tables

Table 1: Indices, measured chemical shifts and corresponding nomenclature of the
resonances in triglyceride signals.

Index Chem. shift ωk Nomenclature

1 0.90 ppm methyl
2 1.30 ppm methylene
3 1.59 ppm β-methylene
4 2.03 ppm allylic
5 2.25 ppm α-methylene
6 2.77 ppm diallylic
7 5.31 ppm olefinic

Table 2: Errors of the integral estimation for the simulated data ((A) and (B)), the
in vitro data ((D) and (E)) and the quotient of the quadratic errors to the reference
signal for deconvolved (dec) and distorted (dist) signals.

Case Signal e1 e2 e3 e4 e5 e6 e7 εy/εd

(A)
dec 11.8 0 n.a. 2.3 7.1 3.4 1.3

63.1
dist 20.9 0 n.a. 50.1 10.0 21.2 13.7

(B)
dec 4.8 0 n.a. 3.0 2.0 1.6 0.1

89.7
dist 36.6 0 n.a. 16.3 6.3 4.1 2.3

(D)
dec 27.7 0 n.a. 63.5 19.2 32.3 5.5

5.3
dist 34.3 0 n.a. 67.1 5.9 24.3 2.0

(E)
dec 8.6 0 n.a. 3.0 2.0 0.6 2.4

61.3
dist 7.9 0 n.a. 3.3 6.2 1.7 4.9

Table 3: Saturation (SI) and polyunsaturation indices (PUI) of both the original
and the deconvolved MR spectra (Fig. 7). In the last column the mean values and
standard deviations of the SI and PUI are shown.

Index Signal #1 #2 #3 #4 #5 #6 Mean

SI
dec 0.963 0.928 0.974 0.952 0.958 0.963 0.956 ± 0.016
dist 0.950 0.928 0.797 0.935 0.862 0.947 0.903 ± 0.061

PUI
dec 0.005 0.011 0.003 0.007 0.004 0.006 0.006 ± 0.002
dist 0.006 0.011 0.017 0.011 0.080 0.009 0.022 ± 0.028
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Figure 1: MR spectrum of safflower oil with labeled resonances as specified in Table
1. The spectrum was measured with a 3T whole body scanner (Siemens Magnetom
Trio) using a STEAM sequence with TE = 20 ms, TM = 10 ms and TR = 1500 ms.
Voxel size was 20 × 20 × 20 mm3.

24



Figure 2: The reference deconvolution algorithm for a signal with two resonances:
(I) The measured signal Y (ω) can be described by a convolution of the ideal signal
S(ω) only determined by chemical shifts and the distortion H(ω) caused by magnetic
field inhomogeneities. With aid of the ESPRIT algorithm the measured signal can
be decomposed (II) in a certain number of single functions Yk(ω), which inverse
Fourier transforms are the exponentially damped complex sinusoids from Eq. 2. In
a next step the nearest-mean classification (III) of the functions Yk(ω) leads to a
reconstruction of the individual distorted resonances. Now the distortion H(ω) can
be estimated (IV) by dividing the extracted reference resonance by its ideal signal
model from Eq. 1. Deconvolution (V) of the measured signal Y (ω) by the estimated
distortion Ĥ(ω) with aid of a Wiener filter leads to the deconvolved signal Sd(ω).
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Figure 3: (A) Signal parts obtained after decomposition of the MR spectrum of
safflower oil of Figure 1 with aid of the ESPRIT algorithm and (B) result of the
clustering of those signal parts with aid of the nearest-mean classification to the
seven dominant resonances of triglyceride signals as shown in Table 1.
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Figure 4: Three distortions (A, B and C) with different bandwidth and different in-
fluence of eddy currents shown in the left column were used to test the deconvolution
algorithm for simulated data. In the middle column the original and the distorted
data are depicted. The deconvolved data in the right column are practically identical
with the original one.
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Figure 5: In the middle column two different examples (D and E) of MR spectra
out of voxels positioned at the border of the bottle filled with safflower oil (solid
lines) can be seen together with the optimal undistorted reference MR spectrum
out of a voxel in the iso-center. The corresponding deconvolved MR spectra shown
in the right column are very similar to the original reference spectrum. In the left
column the corresponding estimated distortions are depicted. Effects of spatial field
inhomogeneities and eddy currents are clearly visible. Especially, in case (D) the
measured distortion is very broadband belonging to a voxel partially containing air
from outside the bottle.
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Figure 6: (a) In an interval between 0.12 ppm and 0.5 ppm the mean of the
quadratic errors εy and εd was calculated for eight different bandwidths of the dis-
tortion, given in logarithmic scale. To calculate the mean of the quadratic errors
for each bandwidth, the reference signal has been successively convolved and de-
convolved, assuming 100 random smooth distortions H(ω) per bandwidth. The
improvement of the quadratic error lies between 7 dB for broad bandwidths and
11 dB for narrow bandwidths of the distortion. (b) In an interval between 6 ms and
100 ms the mean of the quadratic errors εy and εd was calculated for 15 different
values of Te, given in logarithmic scale. To calculate the mean of the quadratic errors
for each Te, the reference signal has been successively convolved and deconvolved,
assuming 100 random smooth distortions H(ω) per bandwidth. The improvement
of the quadratic error lies between 7 dB for short Te and 11 dB for long Te.
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Figure 7: Examples for deconvolutions of in vivo spectra out of subcutaneous
fat for all five volunteers. Above, the original, distorted spectrum is drawn and
below the deconvolved one. All deconvolved spectra show distinctly smaller half
widths in comparison to the original in vivo spectra. Especially elimination of eddy
current distortions in the range of the methylene peak in MR spectra #2 and #4
is demonstrated. In all spectra triplet structure of the methyl and the α-methylene
resonances are visualized.
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