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ABSTRACT Extensive work has been dedicated to study mechanisms of microRNA-mediated gene regulation. However,
the transcriptional regulation of microRNAs themselves is far less well understood, due to difficulties determining the
transcription start sites of transient primary transcripts. This challenge can be addressed using expression quantitative
trait loci (eQTLs) whose regulatory effects represent a natural source of perturbation of cis-regulatory elements. Here
we used previously published cis-microRNA-eQTL data for the human GM12878 cell line, promoter predictions and
other functional annotations to determine the relationship between functional elements and microRNA regulation. We
built a logistic regression model which classifies microRNA/SNP pairs into eQTLs or non-eQTLs with 85% accuracy and
shows microRNA-eQTL enrichment for microRNA precursors, promoters, enhancers and transcription factor binding
sites and depletion for repressed chromatin. Interestingly, although there is a large overlap between microRNA-eQTLs
and mRNA-eQTLs of host genes, 74% of these shared eQTLs affect microRNA and host expression independently.
Considering microRNA-only eQTLs we find a significant enrichment for intronic promoters, validating the existence of
alternative promoters for intragenic microRNAs. Finally, in line with the GM12878 cell line being derived from B-cells,
we find genome-wide association (GWA) variants associated to blood-related traits more likely to be miRNA-eQTLs than
random GWA and non-GWA variants, aiding the interpretation of GWA results.
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M icroRNAs (miRNAs) are small non-coding RNAs playing
an important role in the post-transcriptional regulation

of gene expression. Only in 2000 was it discovered, that the se-
quence of the let-7 family of miRNAs is conserved among multi-
ple species, attracting great attention to these small RNAs, which
had previously been ignored (Pasquinelli et al. 2000). Their bio-
genesis and function in metazoans have been extensively re-
searched over recent years (Pasquinelli et al. 2005; Ha and Kim
2014) and the majority of the human protein-coding genes are
regulated by miRNAs, ~60% of them possess at least one known
conserved miRNA-binding site (Friedman et al. 2009). Due to
their importance and abundance, miRNAs have been increas-
ingly linked to medical conditions (Sayed and Abdellatif 2011;
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Im and Kenny 2012; Lujambio and Lowe 2012).

MiRNAs are located within different genomic contexts -
intragenic or intergenic regions - either possessing their own
promoter or sharing the promoter of a host gene (Ozsolak
et al. 2008). They are transcribed by RNA polymerase II into a
primary-miRNA (pri-miRNA) of length up to several kilobases
(Corcoran et al. 2009) and the following processing by Drosha
and DGCR8 results in a structured stem-loop precursor-miRNA
(pre-miRNA) of length ∼75 nucleotides, which is in turn cleaved
by Dicer into a miRNA duplex. The ∼22 base pair long duplex
is loaded onto the RNA-induced silencing complex (RISC)
and one strand of the duplex is released (passenger strand).
The remaining strand leads RISC to a target messenger RNA
(mRNA), resulting in the degradation or repression of that
mRNA (Pasquinelli et al. 2005; Ha and Kim 2014). According to
miRBase nomenclature the strands originating from the 5’ and 3’
arms of the pre-miRNA are named mature 5p and 3p miRNA,
respectively (Kozomara and Griffiths-Jones 2014).
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Despite great progress in understanding the biological role of
miRNAs in regulating gene expression, our understanding of
how miRNAs themselves are regulated, both at transcriptional
and post-transcriptional level, is still developing. Recent
research focuses increasingly on how miRNA expression is
controlled, e.g. which regulatory elements cause tissue-specific
expression and de-regulation in pathological conditions.
Among others, the short length of miRNAs and the rapid
cleavage by Drosha present technical issues complicating their
experimental analysis. For this reason, computational methods
are increasingly used to predict miRNA-related annotations,
such as promoters, from both sequencing data and primary
sequences (Marsico et al. 2013; Georgakilas et al. 2014).

Most cis-regulatory elements are encoded in the DNA
sequence either by sequence motifs or higher-order patterns.
Sequence variants affecting these regions are thus expected
to change expression patterns of the associated gene and
can be viewed as naturally occurring perturbations of cis-
regulatory elements. These variants can affect expression
of many types of genes including protein-coding genes and
miRNAs. Such changes in expression manifest themselves
between individuals, populations and distinct tissue-specific
phenotypes (Lappalainen et al. 2013; GTEx Consortium et al.
2015). Expression quantitative trait locus (eQTL) studies enable
the systematic detection of genomic loci associated with the
expression levels of transcripts (Jansen and Nap 2001; Gilad
et al. 2008; Lappalainen et al. 2013; GTEx Consortium et al.
2015). Previously, eQTLs were used to gain better insight into
the biology of human gene expression regulation for protein-
coding genes by incorporating them with genomic regulatory
annotations (Lee et al. 2009; Gaffney et al. 2012; Battle et al. 2014).

Concerning miRNAs, the mechanisms of miRNA-eQTLs
(sequence variants associated with miRNA expression levels)
are less known, due to the limited availability of datasets which
map eQTLs to miRNA expression across different tissues. Two
studies report a limited number of miRNA-eQTLs in adipose
tissue (Parts et al. 2012) and dendritic cells (Siddle et al. 2014),
respectively. Gamazon et al. provide a map of trans-only
miRNA-eQTLs in liver (Gamazon et al. 2013) and Huan et al.
compile a genome-wide map of miRNA-eQTLs in whole blood
(Huan et al. 2015). This final study provides a comprehensive
mapping of miRNA-eQTLs, however, it is inappropriate for the
study of cell type-specific regulatory elements as whole blood
constitutes a mixture of many cell populations.

Here we chose the dataset from Lappalainen et al. (Lap-
palainen et al. 2013) since it comprises a large number of
cis-miRNA-eQTLs, the full genotype information as part of
the 1000 Genomes project (1000 Genomes Project Consortium
et al. 2012) and its tissue specificity (B-lymphoblastoid cell line
GM12878). This cell line has been extensively profiled by the
ENCODE project (ENCODE Project Consortium 2012) and
epigenetic and genomic annotations are publicly available. We
combined the miRNA-eQTLs and regulatory annotations with
a methodology for miRNA promoter prediction, previously
developed in our group (Marsico et al. 2013), to address how
genetic variation affects miRNA expression. Therefore, we
trained a logistic regression model to classify miRNA/SNP
pairs into eQTLs and non-eQTLs based on the overlap of the
SNPs with a range of genomic features, such as miRNA gene

structure, miRNA promoters and epigenome mapping.

The final model selected by the Akaike information criterion
(AIC) achieves 85% accuracy on an independent test set. MiRNA-
eQTLs were enriched for regions of the miRNA precursor, tissue-
specific miRNA promoters, enhancers and transcription factor
binding sites. Conversely, odds of miRNA-eQTLs were de-
creased when an insulator was between SNP and miRNA or
the SNP was in a region of repressed chromatin. MiRNA-eQTLs
were also enriched for eQTLs of host genes and a substantial frac-
tion of eQTLs was shared between intragenic miRNAs and their
hosts. We found, however, that the majority of shared eQTLs
affected miRNA and host expression differently. MiRNA-only
eQTLs were enriched for miRNA promoters, mainly intronic pro-
moters, suggesting a decoupling of host and miRNA expression
that is modulated by genetic variation. Finally, we applied our
model to predict miRNA-eQTLs for SNPs that were identified
in genome wide association (GWA) studies. We found that the
predicted probabilities of being a miRNA-eQTL are significantly
higher for variants associated to blood-related traits compared
to random GWA and non-GWA variants. This is in line with the
GM12878 cell line being derived from B-cells.

Materials and Methods

eQTL And SNP Data
The set of cis-eQTLs originated from Lappalainen et al. (Lap-
palainen et al. 2013). They performed mRNA (462 individuals)
and small RNA sequencing (452 individuals) on GM12878 cell
line samples from the European (EUR) and Yoruba (YRI) popu-
lations and determined both mRNA-eQTLs and miRNA-eQTLs.
The set of non-miRNA-eQTLs was defined as all remaining SNPs
in the region +/- 500 kb around pre-miRNAs (1000 Genomes
Project, hg19, phase 1, version 3) (1000 Genomes Project Con-
sortium et al. 2012). All SNPs are filtered for a minor allele
frequency > 5%.

Data For General Cis-Regulatory Elements
The following regulatory genomic annotations from ENCODE
(ENCODE Project Consortium 2012) for the GM12878 cell line
were used: ChiP-seq peak data for 76 transcription factor
binding sites (TFBS) (http://genome.ucsc.edu/cgi-bin/hgTrackUi?
db=hg19&g=wgEncodeRegTfbsClusteredV3), DNase-seq peak
data for DNase I hypersensitive sites (GSM816665) and the
ChromHMM chromatin states (GSM936082). ChromHMM uses
a hidden Markov model to annotate genomic regions according
to combinations of chromatin modifications. This results in 15
different possible states, associated, for example, to enhancer
regions, promoter regions, insulators and regions in a repressed
state.

Data For miRNA Promoter Predictions
Two sets of putatitve miRNA promoters were predicted. In
both cases we used PROmiRNA (Marsico et al. 2013), a method
previously developed in our lab and based on a semi-supervised
machine learning approach trained on deepCAGE data and pro-
moter sequence features. The algorithm considers upstream loci
of pre-miRNAs enriched in CAGE signals as putative promoters
and incorporates CpG content, conservation, TATA box affinity
and mature miRNA proximity to score real promoters versus
background transcription. PROmiRNA provides multiple
predictions per miRNA that correspond to different promoters,
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potentially active in different tissues and conditions.

For the first set (feature promoter (unspecific) in our model) we
use the predictions reported in the PROmiRNA paper, derived
from applying PROmiRNA to the human genome using the
FANTOM4 data on more than 33 non-redundant tissues (Kawaji
et al. 2009). These predictions are complemented by RNA-seq-
based predictions from the microTSS software for hESC and
IMR90 cell lines, as reported in the supplementary tables ac-
companying the paper (Georgakilas et al. 2014). These data do
not contain the GM12878 cell line and promoter predictions in
this case may not correspond to promoters active in this cell
line, but represent all possible alternative promoters. To restrict
predictions to active promoters in the GM12878 cell line (fea-
ture promoter (specific) in our model) PROmiRNA was retrained
on ENCODE CAGE data for the GM12878 cell line (ENCODE
Project Consortium 2012) (two replicates), keeping only promot-
ers found in both replicates. Predictions were further filtered for
promoters overlapping at least 1 bp with DNase I hypersensitive
site peaks (GSM816665). Predictions for both sets, on average
20-30 bp long due to the CAGE peaks, were extended by 100
nucleotides into both directions to cover a region that putatively
represents the core promoter. MiRNA promoters of intergenic
miRNAs are defined as intergenic promoters, promoters over-
lapping the +/- 100 bp region around TSSs of miRNA host genes
are defined as host gene promoters and promoters located inside
introns of miRNA host genes are defined as intronic promoters.

Data For miRNA Gene Structure

MirBase v20 was used for coordinates of pre-miRNA and mature
5p/3p miRNAs (Kozomara and Griffiths-Jones 2014). Due to
changes in this newer miRBase version, we are only using data
for 638 autosomal mature miRNAs (478 pre-miRNAs) and not
the complete set analyzed in Lappalainen et al. (Lappalainen
et al. 2013) (644 mature miRNAs, miRBase v18).

Feature Encoding

We developed a logistic regression model to classify SNPs
as miRNA-eQTLs or non-miRNA-eQTLs according to their
location with respect to several genomic features. All annotation-
based model features are encoded as 1 or 0, indicating whether
a SNP overlaps with an annotation. The following annotations
are used as features: binding sites for 76 transcription factors,
DNase I hypersensitive sites, all 15 ChromHMM states, two
sets of miRNA promoter predictions and multiple separate
parts of the miRNA primary transcript, namely, the mature
5p miRNA, the mature 3p miRNA, the hairpin loop between
the mature sequences and the 22 base pair long regions
upstream/downstream of the Drosha 5’/3’ cutting points (see
Figure 1 for a visual overview).

In addition to simple overlap-based features we included (all
features encoded as 1 or 0): an insulator in between feature (indi-
cating whether a ChromHMM insulator state is located between
SNP and miRNA), an intragenic feature (indicating whether the
miRNA is intragenic) and a mRNA-eQTL feature (indicating
whether the SNP is an eQTL for the host gene). Finally, we
included the distance between SNP and miRNA, encoded as
follows:

1− |distance(SNP, miRNA)|
500kb

(1)

According to this formula, a higher distance results in a
smaller encoding with a minimum value of 0 for SNPs located
500 kb far away. SNPs located within the pre-miRNA were
assigned a default value of 1. The distance feature is needed
because the number of eQTLs decreases exponentially with the
distance from the miRNA. As regulatory annotations are en-
riched at different distances, the enrichment for miRNA-eQTLs
in those regions may be due to a ’position’ effect, rather than
to the actual function of the regulatory element (see Figure S1
A-B). The distance feature, encoded linearly in this formula, cor-
responds to an overall uniform distance distribution of SNPs in
the model (miRNA-eQTLs and non-miRNA-eQTLs together). To
better capture the exponential decay of miRNA-eQTLs with dis-
tance, we also considered mapping the distances to the quantiles
of the empirical distance distribution of mRNA-eQTLs. How-
ever, since the final model performance and feature importance
did not differ notably we opted for the simpler linear encoding.

Model Building
We considered the set of SNPs located in the region +/- 500 kb
around the pre-miRNA start and end positions for our model.
This results in a data set of 2002126 miRNA/SNP pairs for 638
mature miRNAs, from now on referred to as observations of
the model. From all observations, 4785 are miRNA-eQTLs, the
remaining 1997341 are non-miRNA-eQTLs. The 4785 miRNA-
eQTLs are associated with 58 mature miRNAs and each mature
miRNA has on average 83 eQTLs (median 36). The probability
pi of a SNP i to be a miRNA-eQTL given J features Fij (j = 1 ... J)
is modeled by logistic regression:

pi =
1

1 + e−(β0+β1 Fi1+β2 Fi2+...+β J Fi J)
(2)

In this equation we also control for the effect of SNP proximity
to the annotated pre-miRNA, encoded in the distance feature Fi1
as described above.

Transcription Factor Selection
To reduce the number of features, all informative transcription
factors were merged into one general TFBS feature. To determine
the important factors, we applied logistic regression for each
factor separately on the complete set of observations, whilst
including the distance as a second feature (as in Equation 2).
These and all following logistic regression models use the R
glm function. All transcription factors exhibiting a significant
positive model coefficient (p < 0.05) were merged into the TFBS
feature.

Feature Selection And Interpretation
General feature selection was performed using the TFBS feature
and all other described features. The same procedure as de-
scribed above was applied (logistic regression on the complete
data using one feature at a time + distance). Significant features
were then used to further perform model selection. Considering
that many features are correlated as the annotations are partially
overlapping or mutually exclusive, we also used the estimated
regression coefficients for interpretation (see Figure S1 C).

Model Selection And Testing
To select a final model, logistic regression was performed with
different combinations of significant features determined in
the previous step. Given the strong class imbalance between
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Figure 1 Schematic outline of the classification model. A schematic representation of the +/- 500 kb genomic region around a
miRNA is shown. The miRNA primary transcript is depicted in the middle, and the location of the predicted promoter, the 5p/3p
arms of the pre-miRNA stem-loop (highlighted in red/blue), the terminal loop between 5p and 3p and the Drosha cutting points
are marked. MiRNA-eQTLs and non-miRNA-eQTLs are shown at the top in orange and black, respectively. For the model building
the overlap of each SNP with the miRNA-specific and the cis-regulatory features is determined (vertical lines). For simplicity, not
all cis-regulatory features used in the full model are shown.

miRNA-eQTL observations and non-miRNA-eQTL observa-
tions, we sampled balanced subsets of the two classes for model
selection and testing. For model selection, we randomly sam-
pled three quarters of the 4785 miRNA-eQTL observations and
the same number (3588) of non-miRNA-eQTL observations. The
sampling was repeated 50 times. We selected the feature combi-
nation which minimized the Akaike information criterion (AIC).
For each combination of features we determined the mean AIC
value (computed by the R glm function). The performance of
the final model with regard to accuracy and precision was mea-
sured using observations that were not part of the training data
used during model selection. Again, 50 balanced subsets were
sampled comprising the remaining quarter miRNA-eQTL obser-
vations and an equal amount of non-miRNA-eQTL observations.

MiRNA Expression Analysis

To visualize the small RNA-seq read coverage shown in Figure
5, raw data from the Geuvadis project (Lappalainen et al. 2013)
was remapped, as alignment files are provided for mRNA-seq
data, but not for small RNA-seq data. Fastq files correspond-
ing to small RNA-seq data from the GM12878 cell line carry-
ing the genotype of interest were downloaded from ArrayEx-
press (http://www.ebi.ac.uk/arrayexpress/, accessions E-GEUV-1,
E-GEUV-2, E-GEUV-3). Reads <18nt long were discarded and
3’ adapters clipped using a custom script. The remaining reads
were mapped to the hg19 assembly of the human genome with
the following command: bowtie -f -v 1 -a –best –strata. Raw read
counts corresponding to both 5p and 3p mature miRNAs were
computed using the quantifier.pl module of miRDeep2 (Friedlän-
der et al. 2012). For visualization purposes, read counts were
scaled to a total read count equal to the median library size to
resolve differences in miRNA expression levels across samples.

MiRNA - Host Gene Independence Analysis
We also reanalyzed the original gene expression and genotype
data from the Geuvadis project to determine whether or not
overlapping eQTLs of host genes and miRNA genes are really
shared or independent associations. We downloaded the expres-
sion data for mRNAs as well as the genotype data and eQTL
results and scaled the RNA-seq read count data as described in
the previous paragraph. In addition, we mapped the counts on
the quantiles of a standard normal distribution for both mRNAs
and miRNAs (as described in (Lappalainen et al. 2013)). We
analyzed all triplets of miRNAs, host genes and SNPs, where
the SNP was an eQTL for either the miRNA or the host on gene
or exon level in at least one of the two populations (EUR, YRI).
For each miRNA we tested both the 5p and the 3p arm when
available. To test for miRNA-eQTLs independent of the host
gene we compared the two nested linear models

H1 : miRNA ∼ mRNA + SNP
H0 : miRNA ∼ mRNA

using a likelihood ratio test. In addition, we computed the
miRNA - SNP and host - SNP associations as well as the cor-
relation of host gene and miRNA. We called miRNA-eQTLs
independent when the miRNA-eQTL was genome-wide sig-
nificant and the independent eQTL test was significant (false
discovery rate < 0.05).

Data Availability
File S1 contains the promoter predictions used. File S2 contains
several data files, including the results of the miRNA - host gene
independence analysis. It also contains an R script used to build
the model and to create the plots in this paper, and instructions
to reproduce the calculations. The final full model matrix can be
downloaded from https://github.molgen.mpg.de/budach/miRNA_
eQTL.
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Figure 2 Feature selection and log-odds ratios. For each fea-
ture a separate logistic regression was performed, always
including the distance as a second feature. Insignificant log-
odds ratios (natural logarithm) are shown greyed (p > 0.05).
Error bars illustrate 95% confidence intervals. Numbers in-
side parentheses show the amount of miRNA-eQTLs / to-
tal amount of SNPs for each feature. Feature names start-
ing with a number and an underscore represent the original
ChromHMM identifiers.

Results

A Classification Model For miRNA-eQTLs

To comprehensively understand the genomic context of genetic
variants driving miRNA expression, we developed a classifica-
tion model to predict the probability of a certain SNP being a
miRNA-eQTL based on the SNPs location with respect to func-
tional genomic annotations (from now on called features of the
model). Note that in contrast to previous work (Lee et al. 2009;
Gaffney et al. 2012; Battle et al. 2014) we do not aim to resolve
the most likely causal variants underlying the eQTL, but rather
build a first interpretable model of miRNA-eQTLs, as explained
in more detail in the Discussion. The eQTL data used to build the
model originates from the Geuvadis project (Lappalainen et al.
2013). They performed mRNA and small RNA sequencing on
hundreds of GM12878 cell line samples from the 1000 Genomes
Project Phase 1 data and identified cis-eQTLs of protein-coding
and miRNA genes in the European and Yoruba populations.
For classification we used logistic regression to retrieve model
parameters that are easily interpretable in terms of log-odds
ratios, which indicate enrichment or depletion of miRNA-eQTLs
with respect to each feature. Model features include different
non-overlapping parts of the miRNA primary transcript, pro-
moter predictions, transcription factor binding sites and other
cis-regulatory annotations for both open and repressed chro-
matin regions. Intragenic miRNAs are often co-expressed with
their host genes and as they may be regulated differently than
intergenic miRNAs, we included additional information into the
model, such as whether a miRNA is intragenic and whether a
SNP is an eQTL of the host gene. A schematic representation
of our logistic regression model is shown in Figure 1 (see Mate-
rial and Methods for a detailed description of eQTL data and
features).

Figure 3 Model selection and performance. (A) AIC of dif-
ferent feature combinations. "pre-miRNA" represents sev-
eral features: mature 5p and 3p miRNA, hairpin-loop and the
flanking regions of the Drosha cutting points. "ChromHMM"
represents all remaining significant ChromHMM features (see
Figure 2). A low AIC indicates a better model quality. The dots
are mean values, error bars depict the standard deviations ob-
tained from repeated random sampling of the data (see Meth-
ods). (B) Accuracy, sensitivity and specificity of the full model.
In this case, the number of miRNA-eQTLs and non-miRNA-
eQTLs is balanced and for a probability cutoff of 0.5 the model
achieves an accuracy of 85%, which is stable for different sam-
ples. (C) Precision/recall plot colored by the probability cutoff.
The preferred cutoff of 0.5 leads to both a high precision and a
high recall (sensitivity) of about 85% each.

Feature Selection Identifies Relevant Annotations
We first sought to filter out unimportant features that do not help
in predicting the response. We also quantified the enrichment
or depletion for miRNA-eQTLs relative to each model feature,
while controlling for the SNP-to-miRNA distance. Therefore
we performed logistic regression with each model feature sep-
arately, whilst including the distance as a second feature. In
Figure 2 the resulting coefficients (β values of the regression)
are shown. The coefficients in a logistic regression represent
the log-odds ratios between the odds of miRNA-eQTLs ver-
sus non-miRNA-eQTLs in a certain feature compared to the
odds in background regions. A positive log-odds ratio im-
plies that a feature is likely to increase the chance of being a
miRNA-eQTL SNP. Nine out of 27 features do not possess a
significant log-odds ratio and hence were excluded from the fur-
ther analysis (p > 0.05). Among these are 7 ChromHMM states
(2_Weak_Promoter, 5_Strong_Enhancer, 6_Weak_Enhancer, 8_In-
sulator, 11_Weak_Txn, 14_Repetitive, 15_Repetitive), the DHSs
and a set of promoter predictions not specific to the cell line.

Final Model Selection Yields 85% Accuracy
Combinations of significant features determined above were
tested to minimize the Akaike information criterion (AIC) and
to select a final model. The AIC estimates the goodness of fit of
a model to its observations and adds a penalty for the number
of features, thus it penalizes the model complexity. A lower
AIC indicates a better model quality. On this basis, the combi-
nation of all significant features provides the best fit to the data
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(Figure 3A). In particular, it is noticeably superior to a distance-
only model. Adding single features to the distance-only model
improves the AIC. Adding the mRNA-eQTL feature yields the
largest improvement. Correlations between features do not
affect the performance of the model, but as they do alter the esti-
mated log-odds ratios, the subsequent biological interpretation
is based on the coefficients obtained during the feature selection
(Figure 2, for correlations see Figure S1 C).The final full model
performance (Figure 3B-C) was measured on observations not
used during the model training. The logistic regression predicts
the probability of being a miRNA-eQTL for each observation.
The maximum accuracy of the predictions amounts to 85% for a
probability cutoff of 0.5 and is stable for different samples (Fig-
ure 3B). For the same cutoff, precision and recall are 85% as well
and the corresponding false discovery rate is 15% (Figure 3C). A
model containing only the two most important features, distance
and mRNA-eQTL (Figure 2 and 3A), achieves near full model
accuracy of 83%. Since mRNA-eQTLs are already enriched for
regulatory regions (Lappalainen et al. 2013) this is expected and
accordingly, the full model without the mRNA-eQTL feature
achieves 79% accuracy (model not shown).

miRNA-eQTLs Are Enriched For TFBSs Related To The Tran-
scription Process And Immune Functions

Our model shows miRNA-eQTLs are enriched for regulatory
elements such as active enhancers, active promoters, regions of
transcriptional elongation and TFBS. Conversely, miRNA-eQTL
SNPs are depleted for heterochromatic and repressed regions,
and for poised promoters. The existence of an insulator element
between SNP and miRNA also makes the probability of being a
miRNA-eQTL SNP less likely. As miRNA-eQTLs were enriched
for TFBSs, we analyzed the individual factors more detailed and
performed logistic regression with each transcription factor sep-
arately, always including the distance as a second feature (see
Figure S1 D). The ranking of these factors according to their p-
values and log-odds ratios (Table 1) shows highly ranked factors
which are crucial in general transcription processes or in immune
response. Factors with a low p-value tend to have more bind-
ing events and therefore a high number of overlapping SNPs,
whereas those with a high log-odds ratio usually have a lower
number of overlapping SNPs, but a higher portion of miRNA-
eQTLs. Among the top ranked factors we found transcriptional
regulators, such as CHD1 (chromatin-remodeling factor regulat-
ing the RNA polymerase II transcription and known to recruit
several complexes to the H3K4me3 chromatin mark (Sims et al.
2007)), IKZF1 (associated with chromatin remodeling (Payne
and Dovat 2011)) and BRCA1 (interacts with RNA polymerase II
holoenzyme (Scully et al. 1997)) and factors related to immune-
specific functions, such as JUND (also known to interact with
BRCA1 (Hu and Li 2002)), CEBPB (Ramji and Foka 2002), MEF2A
(McKinsey et al. 2002) and PAX5 (Schebesta et al. 2007).

Enrichment Of miRNA-eQTLs Around The miRNA Precursor

All features representing the individual parts of the miRNA
stem-loop show significant miRNA-eQTL enrichment. These
regions play important roles in the miRNA biogenesis; hairpin
loops are important for Dicer-TRBP complex binding (Zeng
2006) and the flanking regions are critical for the detection of
cutting sites by Drosha. Studies have shown that sequence
determinants of Drosha processing are located in a region
~20 nt downstream/upstream of the cutting sites (Auye-
ung et al. 2013; Conrad et al. 2014). When looking at the

Table 1 The 10 top-ranked transcription factors.

p-value log-odds ratio

MEF2A 9.45E-015 JUND 2.05

PAX5 7.35E-014 BRCA1 1.59

JUND 7.82E-014 NR2C2 1.58

IKZF1 7.86E-014 CEBPB 1.23

CEBPB 2.21E-013 IKZF1 1.16

CHD1 4.10E-013 MEF2A 1.14

ATF2 2.24E-010 CHD1 1.04

YY1 3.75E-010 ZBTB33 1.03

PML 6.53E-010 SIX5 0.99

RELA 1.66E-009 RCOR1 0.94

Factors found in both top 10 rankings are shown bold.

data we found that miRNA-eQTLs occur up to position 22
downstream/upstream of cutting points and the next ones
do not occur until position 59, supporting previous studies
(only non-miRNA-eQTLs were located between these positions).

Cell Line-specific Promoter Predictions Are Enriched for
miRNA-eQTLs
MiRNA promoters were predicted using the PROmiRNA
software (Marsico et al. 2013), which originally utilizes CAGE
data from all available tissues in the FANTOM4 database. Our
model feature promoter (unspecific) is based on those original
predictions, covering all the FANTOM4 data, complemented
by the predictions of the microTSS software (Georgakilas et al.
2014). The promoter (unspecific) predictions do not include our
cell line of interest. This feature was not significant during the
feature selection (p ≈ 0.32, β ≈ -1.00), highlighting the impor-
tance of locating active promoters in the cell line of interest. To
do this, we retrained PROmiRNA on ENCODE CAGE data for
the GM12878 cell line (ENCODE Project Consortium 2012). The
resulting model feature promoter (specific) was significant (p ≈
6,26e-44, β ≈ 1.45), indicating that functional miRNA-eQTLs are
enriched for cell type-specific active miRNA promoters.

Intronic Promoters Initiate miRNA Transcription Independent
From The Host Gene
The majority (313 or 65%) of miRNA precursors from our data
were intragenic, located within exons, introns or untranslated
regions of host genes, and 165 (35%) were intergenic. Thus we
tested whether intragenic miRNAs are regulated by their host
gene promoters or by their own independent promoters. In the
GM12878 cell line we predicted at least one promoter for 312
miRNA precursors out of 478 (a total of 1501 miRNA promoters).
Intriguingly, only 475 (32%) were coincident with the host gene
promoter whereas the majority showed independent promoters
located in intergenic regions (451 or 30%) and within introns of
host genes (575 or 38%). 100 out of the 4785 miRNA/SNP pairs
categorized as miRNA-eQTLs overlapped predicted promoters.
The majority of these were intronic miRNA promoters distinct
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from host gene promoters (49 out of 100), followed by intergenic
promoters (32 out of 100) and host gene promoters (only 19
out of 100). Compared to host gene promoters, miRNA-eQTLs
show a significant enrichment for intronic promoters (p =
2.93e-05, Fisher’s exact test, see Figure 4). Intronic promoters are
thought to be alternative miRNA promoters driving intragenic
miRNA transcription independently from their host genes
in a tissue-specific manner (Monteys et al. 2010). Although
miRNA promoter prediction algorithms report a large number
of intronic miRNA promoters, the existence and activity
of these promoters has been validated in few experimental
studies and large-scale experimental validations are currently
missing. Here we showed that 49 miRNA-eQTLs overlap
predicted intronic promoters in GM12878, indicating that these
promoters have a potential function in this cell line, and that
genetic variation in such promoter elements likely contributes
to a decoupling of miRNA expression from host gene expression.

Figure 4 Overview of miRNA and promoter localization.
About two-thirds of pre-miRNAs in our dataset are intra-
genic, i.e. located within a host gene. About one-third of the
predicted promoters coincide with a host gene promoter, the
majority represents independent intergenic or intragenic al-
ternative promoters. A Fisher’s exact test shows that miRNA-
eQTLs are significantly enriched for predicted intronic promot-
ers as compared to host gene promoters. Greyed numbers in
the contingency table are expected values computed by Pear-
son’s Chi-squared test.

Figure 5 shows three examples of predicted miRNA promot-
ers and miRNA-eQTLs that can be instructive in understanding
the biological mechanisms of host-independent miRNA tran-
scription. In all three cases the deepCAGE peaks upstream of
the precursor correspond to predicted promoters that harbor
miRNA-eQTLs. This is indicated by changes in read coverage
at the 5p and 3p miRNAs for different SNP genotypes. Figure
5A-B show intronic miRNA promoters for which sequence vari-
ants influence miRNA expression, but not host gene expression.
These promoters can be cell type-specific (Figure 5B) or present
in multiple cell lines (Figure 5A). Figure 5C shows a cell type-
specific intergenic and bidirectional predicted promoter that is

located upstream of the host gene promoter and for which the
overlapping eQTL changes both miRNA and mRNA expression.

74% Of Shared eQTLs Affect miRNA And Host Expression In-
dependently

We found that 18 intragenic mature miRNAs share cis-eQTLs
with their host genes and thus asked for which functional anno-
tations shared eQTLs and miRNA-only or mRNA-only eQTLs
are enriched. While shared eQTLs (2092) were found to be
enriched for several transcription factor binding sites, miRNA-
only eQTLs (2147) were significantly enriched for promoter re-
gions, mainly intronic promoters, as well as miRNA hairpin
sub-regions (one-sided Fisher’s exact test, see Table S1). This
further strengthens the argument that SNPs in intronic miRNA
promoters and in the miRNA hairpin affect miRNA biogenesis
and expression independently from the host. Conversely, when
looking for enriched features for mRNA-only eQTLs (26131) we
find the insulator in between is the only highly significant regula-
tory feature (p ≈ 9.47e-90). This indicates that the cell makes use
of insulator elements to decouple the expression of intragenic
miRNAs from the expression of the corresponding host tran-
scripts. For miRNA-eQTLs that overlapped with mRNA-eQTLs,
we performed a test of independence (see Material and Methods)
to assess whether the associations between SNPs and miRNAs
remained significant when conditioned on the host gene expres-
sion level using miRNA and mRNA expression data. We found
that 74% of the miRNA/SNP associations remained significant
at a false discovery rate of 5%, if conditioned on the host gene
expression level. These results indicate that shared eQTLs can
affect both miRNA and host gene expression independently, i.e.
expression values of miRNA and host gene are not correlated
within each genotype group (see Figure S1 E-F for examples).

The eQTL Model Predicts Tissue-Specific GWAS Variants

The NHGRI GWAS catalog contains SNPs associated to clin-
ical conditions and phenotypic traits (Welter et al. 2014). As
GWAS SNPs located in regulatory regions are potentially causal
for the associated phenotypes, we tested whether that is also
the case for miRNA-eQTLs. In other words, we investigated if
a miRNA-eQTL-specific model built on the B-lymphoblastoid
cell line GM12878 provides relevant information to interpret
GWAS SNPs. The GWAS SNP annotation was retrieved from the
NHGRI GWAS catalog and filtered using a p-value cutoff < 5e-8.
We selected GWAS SNPs related to traits of the blood (GM12878
being a blood cell line) according to the International Classifica-
tion of Diseases (ICD). This includes all GWAS SNPs related to
primary diseases of the hematopoietic system, as well as blood
tumors, immunological diseases of the blood and other blood-
related phenotypes. For the ’blood’-associated GWAS SNPs that
were also in our dataset used to build the model (108 SNPs out
of which 10 were miRNA-eQTLs), we predicted the probability
of being a miRNA-eQTL. We also sampled equal-sized random
sets of non-GWAS SNPS and GWAS SNPs which did not belong
to the ’blood’ category and computed the probabilities. By com-
paring the cumulative distributions of these probabilities for the
three groups, we could show that ’blood’-associated SNPs have
a significantly higher probability of behaving as miRNA-eQTLs
compared to the other two groups (Kolmogorov–Smirnov test,
Figure 6). The significantly skewed cumulative distribution illus-
trates that the annotations of our model carry disease-relevant
information and that it can be used to enhance the interpretation
of GWAS variants.

Modeling microRNA-eQTLs 7



Figure 5 Effect of predicted alternative promoters on miRNA expression. Read coverage from ENCODE CAGE data is shown for
GM12878 and HeLa cells for two replicates. Blue signal corresponds to read coverage on the forward (+) strand, while red signal
corresponds to read coverage on the reverse strand (-). Normalized read coverage from small RNA-seq data for different geno-
types is shown for the 5p and 3p miRNA arms in GM12878 only (green signal and boxplots, see ’MiRNA Expression Analysis’ in
Methods). Violet boxes represent regions around the predicted promoters. The corresponding eQTL SNPs located within the pre-
dicted promoters are marked with red. (A) Genome browser view of miR-550a-2 located in a long intron of the AVL9 gene. The
miRNA-eQTL rs115218604 is located in the ± 100 bp region around the predicted intronic promoter (chr7(+):32767642-32767783).
(B) Genome browser view of miR-1255a located in the first intron of the PPP3CA gene. The miRNA-eQTL rs1348161 is located in
the ±100 bp region around the predicted intronic promoter (chr4(-):102252612-102252641). (C) Genome browser view of miR-574
located in the first intron of the FAM114A1 gene. Two predicted miRNA promoters are highlighted: one corresponding to the host
gene promoter and an alternative and cell type-specific bidirectional promoter located about 10 kb upstream of the miRNA pre-
cursor (chr4(+):38859404-38859497). The miRNA-eQTL and mRNA-eQTL rs2174284 is located in the ± 100 bp region around the
alternative promoter. Transcription on the forward strand is specific to the GM12878 cell line, as indicated by the tissue-specific pro-
moter prediction. Transcription on the reverse strand is preserved in both cell lines, corresponding most probably to an alternative
promoter for the TRL1 gene.
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Figure 6 Prediction of GWA variants with the miRNA-eQTL model. Empirical cumulative distribution functions (eCDF) of pre-
dicted probabilities for ’blood’ GWAS SNPs, random other GWAS-SNPs and random non-GWAS SNPs. For the ’blood’ GWAS
SNPs always all 108 SNPs were used, for the other two groups 100 random sets were sampled and the mean eCDFs and standard
deviations were plotted. One-sided Kolmogorov-Smirnov tests were applied to compare the eCDFs (significance level p < 0.05). (A)
In 97 out of 100 cases the eCDF of ’blood’ GWAS SNPs was significantly different from the random non-GWAS SNPs eCDF. (B) In
30 out of 100 cases the eCDF of ’blood’ GWAS SNPs was significantly different from the random-GWAS SNPs eCDF. (C) In no case
the eCDF of random GWAS SNPs was significantly different from the eCDF of random non-GWAS SNPs.

Discussion

Despite its relevance, the biology underlying miRNA expression
remains poorly understood, mainly due to the difficulty of
locating the transcription start sites for the primary transcripts.
Consequently, a large-scale experimental annotation of regula-
tory elements such as promoters is not yet available. Here we
used a genome-wide map of cis-miRNA-eQTLs in the human
cell line GM12878 (Lappalainen et al. 2013), data from the 1000
Genome Project (1000 Genomes Project Consortium et al. 2012),
and miRNA promoter predictions (Marsico et al. 2013) to get an
overview of the regulatory landscape of miRNA transcription
and to answer the question how regulatory variation affects
miRNA expression.

In contrast to previous work on protein-coding genes (Lee
et al. 2009; Gaffney et al. 2012; Battle et al. 2014) we did not
aim to resolve the most likely causal variants underlying the
eQTL, but rather built a first interpretable model to classify
miRNA/SNP pairs into miRNA-eQTL or non-miRNA-eQTL.
Our model achieves a classification accuracy of 85%, but
one should keep in mind that eQTL studies give rise to
multiple significant SNPs per gene. Of those, many may not
be causal, but are in linkage disequilibrium (LD) with true
causal SNPs. Nevertheless, we labeled all miRNA-eQTLs as
positives - including possible non-causal SNPs - to achieve
higher statistical power. To study the effect of this possible
mislabeling in the absence of a ground truth about causality,
we monitored the effect of a reduced portion of causal SNPs
on our prediction accuracy by gradually relabeling randomly
sampled miRNA-eQTLs as non-miRNA-eQTLs. Progressively
lowering the chance of including true causal miRNA-eQTLs
among the positives resulted in a gradual decrease of prediction
accuracy which converges to a value of 65%. As expected,
lowering the portion of true miRNA-eQTLs also leads to models
where the regulatory features no longer contribute to prediction
accuracy (i.e. do not lead to better AIC values, see Figure S1
G), while the distance feature still remains important due to
the correlation between LD and distance. Using only the single

most significant eQTL per miRNA (58 miRNA-eQTLs, as this
should be a reasonable approximation of a subset of causal
SNPs (Lappalainen et al. 2013)) and relabeling the remaining
miRNA-eQTLs as non-miRNA-eQTLs results in an accuracy of
71% which is better than randomly selecting one miRNA-eQTL
per miRNA (65%). However, in doing so we also strongly
decrease the number of eQTL observations from 4785 to 58,
losing substantial statistical power due to the smaller sample
size. Dissecting the interplay of smaller sample size and having
a cleaner miRNA-eQTL set is not completely possible. Still,
seeing that in our case the performance measurements (Figure
3) are stable for random samples suggests that the model offers
a high predictive power.

The integrative analysis presented here provides new
insights into patterns of cis-miRNA-eQTLs which affect
different steps of miRNA biogenesis. Several notable results
emerge from our analysis. We find that both SNPs in the 5p
and 3p miRNA arms, as well as around the Drosha processing
sites and internal loop can affect miRNA expression. miRNA
regulation takes place at multiple steps, including processing by
Drosha and Dicer. Several studies have shown that nucleotide
preferences in the flanking regions of the Drosha cutting sites
play a role in determining miRNA processing efficiency (Conrad
et al. 2014; Auyeung et al. 2013). Although we do not detect
any preferential enrichment of miRNA-eQTLs for previously
described motifs, we do see that miRNA-eQTLs preferentially
accumulate within 22 nt upstream and downstream of Drosha
cutting sites when compared to more distal regions. This further
supports the hypothesis that the sequence and secondary
structure of the 20 nt region upstream of the 5p and downstream
of the 3p are crucial for Drosha recruitment and function.

Genetic variants that modify chromatin accessibility, pro-
moters and transcription factor binding are a major mechanism
by which genetic variation leads to expression differences for
protein-coding genes in human (Kasowski et al. 2010; Degner
et al. 2012; McVicker et al. 2013; Del Rosario et al. 2015; Waszak
et al. 2015; Grubert et al. 2015a). Here we demonstrate that
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miRNA-eQTLs are more likely to overlap activating regulatory
elements and less likely to overlap repressive features. In
particular, miRNA-eQTLs were significantly enriched for
predicted promoters in the GM12878 cell line as opposed to
unspecific promoters, which do not show enrichment. Our
predicted promoters provide a snapshot of the currently
active promoters in this cell line and our results indicate that
miRNA-eQTLs may affect promoter activity in a tissue-specific
fashion. Although we cannot quantitatively determine if a
certain miRNA-eQTL is really GM12878-specific, due to the
lack of miRNA-eQTL mapping in other cell types, we suggest
that cell type-specific regulatory elements are associated to cell
type-specific miRNA-eQTLs. In fact, active binding sites for
immune-related and/or B-cell lineage-specific transcription fac-
tors are among the top 10 factors miRNA-eQTLs are enriched for.

The mechanisms of transcriptional regulation of intragenic
miRNAs are more complex than for intergenic miRNAs, as
intragenic miRNAs may mirror the regulatory mechanisms of
their host transcripts, and therefore share regulatory elements
with their hosts. Here we demonstrate that the majority of
intragenic miRNAs is independently regulated by their own
promoter regions or cis-regulatory elements. Independent
alternative promoters for intragenic miRNAs, mainly intronic
promoters, have previously been shown to be preferentially
tissue-specific, unlike host gene promoters which are prefer-
entially ubiquitously expressed (Marsico et al. 2013). We also
discovered that miRNA-eQTLs show a significant enrichment
for mRNA-eQTLs, pointing to many cases of co-regulation
of the intragenic miRNA with its host gene. However, 74%
of the shared eQTLs remain significant when conditioned on
the corresponding mRNA expression level and we observed
a significant enrichment of miRNA-only eQTLs for intronic
promoters active in the GM12878 cell line. This supports the
hypothesis of cell type-specific intronic miRNA promoters and
suggests that alternative promoters of intragenic miRNAs are a
rich source of causal genetic variation.

A significant fraction of miRNA-eQTLs are found to be
located far upstream or downstream of the mature miRNA
(up to 500 kb). This suggests that miRNAs distal regulatory
elements can also interact with proximal regulatory elements,
e.g. via chromatin looping, regulating miRNA expression. The
observation that the presence of an insulator between SNP
and miRNA significantly decreases the probability of that SNP
to be causal also suggests that insulators may act as a barrier
preventing chromatin looping (Grubert et al. 2015b).

While epigenetic and genomic annotations are available for a
variety of cell types and tissues and we can predict miRNA pro-
moters with software such as PROmiRNA (Marsico et al. 2013)
and microTSS (Georgakilas et al. 2014), genome-wide maps of
miRNA-eQTLs are available for very few cell types. Excluding
the Geuvadis project, miRNA-eQTL studies either report a
limited number of significant miRNA-eQTL associations (Parts
et al. 2012; Siddle et al. 2014), report only ’trans’ associations
(Gamazon et al. 2013), or map miRNA-eQTL for a mixture of
cells (e.g. blood (Huan et al. 2015)), making the analysis of
tissue-specific regulatory elements much harder. In the coming
years we also expect that miRNA-eQTL data will be available
for diverse cell types and in sufficient sample sizes to train a
statistical model, such as the one presented here. By exploiting

the richness of regulatory annotations in different tissues, our
model, which is now trained to predict miRNA-eQTL versus
non-miRNA-eQTLs, can easily be applied to other cell lines and
trained to discriminate tissue-specific miRNA-eQTLs.

Similar to eQTL SNPs which associate a genomic location
with transcript expression, GWAS SNPs are associated with
phenotypic traits. Most GWAS SNPs are located within non-
coding regions of the genome which makes the interpretation
of associations difficult. By applying our eQTL model to SNPs
associated with diseases/traits in the GWAS catalog, we found
that the predicted probabilities for cell line-specific traits are
significantly higher than those for other traits and non-GWAS
SNPs, indicating that model features can be used to interpret
GWAS results. More generally, predictions of our model
might be useful to determine whether a cell line is relevant in
explaining the effects of a set of GWAS SNPs firstly by analyzing
the distribution of predicted probabilities.

In conclusion, our classifier not only enables for the first time
an accurate discrimination between miRNA-eQTLs and non-
miRNA-eQTLs in a cell type-specific fashion, but also helps
to identify the most informative functional features that may
explain the mechanisms of miRNA regulatory logic improving
the interpretation of genome-wide association studies.
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