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A genomic approach to therapeutic target validation
identifies a glucose-lowering GLP1R variant protective
for coronary heart disease
All authors with their affiliations appear at the end of this paper.

Regulatory authorities have indicated that new drugs to treat type 2 diabetes (T2D) should not be associated with an
unacceptable increase in cardiovascular risk. Humangeneticsmaybeable toguidedevelopment of antidiabetic thera-
pies by predicting cardiovascular and other health endpoints. We therefore investigated the association of variants in
six genes that encode drug targets for obesity or T2D with a range of metabolic traits in up to 11,806 individuals by
targeted exome sequencing and follow-up in 39,979 individuals by targeted genotyping, with additional in silico follow-
up in consortia. We used these data to first compare associations of variants in genes encoding drug targets with the
effects of pharmacological manipulation of those targets in clinical trials. We then tested the association of those
variants with disease outcomes, including coronary heart disease, to predict cardiovascular safety of these agents.
A low-frequency missense variant (Ala316Thr; rs10305492) in the gene encoding glucagon-like peptide-1 receptor
(GLP1R), the target of GLP1R agonists, was associated with lower fasting glucose and T2D risk, consistent with GLP1R
agonist therapies. Theminor allele was also associatedwith protection against heart disease, thus providing evidence
that GLP1R agonists are not likely to be associated with an unacceptable increase in cardiovascular risk. Our results
provide an encouraging signal that these agents may be associated with benefit, a question currently being ad-
dressed in randomized controlled trials. Genetic variants associated with metabolic traits and multiple disease
outcomes can be used to validate therapeutic targets at an early stage in the drug development process.
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INTRODUCTION

In 2008, the U.S. Food and Drug Administration issued guidance for
industry on new therapies to treat type 2 diabetes (T2D), recommend-
ing that sponsors should demonstrate that these treatments are “not as-
sociated with an unacceptable increase in cardiovascular risk” (1). This
mandate challenges drug developers to prove safety during clinical
trials, which is an expensive and late-phase strategy for the identification
of such concerns. Instead, genetic approaches may aid in the identifica-
tion of possible drug side effects much earlier in the drug development
process. Genetic variants can inform the treatment and prevention of
human disease (2, 3), by either reducing the prioritization of potential
targets (4, 5) or implicating new targets (6, 7). Functional exonic variants
can be useful surrogates for drug effects, when, for example, a loss-of-
function (LoF) variant may be a useful tool to understand the
consequences of pharmacological inhibition of a particular target pro-
tein (7). Recent sequencing efforts have identified a large number of po-
tentially functional low-frequency and rare exonic variants in human
populations, even among genes under purifying selection (8–12). Al-
though such variants may influence susceptibility to disease, the high
cost of these sequencing approaches has previously meant that they
have not been performed in the sample sizes required to allow routine
investigation of their association with complex disease and related
traits.

A recent targeted exome sequencing study of 202 genes encoding
potential drug targets identified an abundance of potentially functional
exonic variants (8). Among these 202 genes, 6 genes encoding drug tar-
gets licensed or in development by GlaxoSmithKline (GSK) for treat-
ment of obesity and/or T2D were included. Recognizing that these
data could be used to test for genetic variants mimicking pharmaco-
logical manipulation of the encoded protein (drug target), we investi-
gated six genes encoding targets of relevance to obesity and T2D.
www.Sc
These variants could then serve as tools to aid a broader evaluation of
drug-related risk for adverse events mediated via on-target effects.

As a proof of concept for use of genetic variants to evaluate the
cardiovascular safety of antidiabetic agents, we evaluated the widely
used glucose-lowering glucagon-like peptide-1 receptor (GLP1R) ago-
nists (13). These agents are long-acting mimetics of the incretin hor-
mone GLP-1, which increases insulin secretion after oral consumption
of glucose but not after glucose administered intravenously. There are
uncertainties over the role of these agents in the etiology of rare adverse
pancreatic events that have been reported after their usage (14). These
therapies have been associated with weight loss (15) and reduced
cardiovascular risk factors, and while a recent trial reported noninferior-
ity of GLP1R agonists in cardiovascular safety (16), multiple large trials
evaluating cardiovascular safety have not yet been completed (17). We
used a genetic variant inGLP1R that is associatedwith variation in fasting
glucose levels andwith T2D risk (18) to evaluate the cardiovascular safety
of GLP1R agonists. The low-frequency variant protective for T2D was
also protective for coronary heart disease (CHD). These findings support
the notion that GLP1R agonists will not confer an increased
cardiovascular risk in people. This study also demonstrates how genetic
target validation approaches can be used early in the drug development
process to evaluate efficacy and safety.
RESULTS

Association of genetic variants in genes encoding T2D and
obesity drug targets
The study design consisted of initial discovery of variants with sug-
gestive associations to targeted genotyping and in silico follow-up
analyses (Fig. 1). We investigated the association of 121 variants
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in six genes encoding therapeutic targets in use or in development
for T2D or obesity (CNR2, DPP4, GLP1R, SLC5A1, HTR2C, and
MCHR1)—drawn from a recent targeted exome sequencing study
of 202 genes encoding drug targets (8)—with variation in the
following traits: T2D, obesity, body mass index (BMI), waist circum-
ference, fasting glucose, fasting insulin, and 2-hour glucose (Fig. 1).
In the “discovery analysis,” we identified seven variants potentially as-
sociated with T2D- or obesity-related traits (where P < 0.001 or which
were in a target of interest to GSK and P < 0.05) (Table 1). For these
seven variants, “follow-up analysis” was performed by targeted
genotyping in up to 39,979 additional individuals of European ances-
try. Where possible, in silico follow-up analysis was performed for
traits and variants available in large-scale genetic consortia data.

Initial discovery analyses included 1331 tests of association, with the
threshold specified to reach significance in combined analyses being P <
3.8 × 10−5. In a combined analysis of results from the different phases,
we identified a low-frequency [~1% minor allele frequency (MAF)]
missense variant Ala316Thr; rs10305492 in theGLP1R gene to be asso-
ciatedwith fasting glucose (Fig. 2A). The variant was inHardy-Weinberg
equilibrium in all genotyped samples (P > 0.2). The effect size (that is,
the difference per allele) of 0.09 mM was larger than most common
variants previously reported for fasting glucose (Fig. 2B) and was re-
cently found to be associated with fasting glucose in nonoverlapping
samples from large-scale analyses of coding variant associations with
glycemic traits (18). The combined analyses for the six other variants
in Table 1 did not show evidence of association (P > 3.8 × 10−5, by
linear or logistic regression) with the suggestively associated trait in
www.Sc
the discovery analysis (“follow-up” P values >0.05; “combined” P values
≥0.005; Table 1).

TheGLP1R gene encodes theGLP-1 receptor, the target forGLP-1, a
hormone that mediates the augmented response to insulin secretion af-
ter oral glucose administration. This receptor is the target for theGLP1R
agonist class of T2D therapeutics, and the association of this variant
with fasting glucose mimicked a major effect of this class of agents.
To further corroborate the utility of this variant as a surrogate indicator
of pharmacological modulation of the receptor, we investigated its as-
sociation with T2D and found that the minor allele was associated with
lower risk of T2D [odds ratio (OR), 0.83; CI, 0.76 to 0.91; P= 9.4 × 10−5;
in a fixed-effect meta-analysis of log-ORs from studies and consortia
listed in table S1 and in the Supplementary Materials “Studies con-
tributing to follow-up analyses of T2D and obesity-related traits”; ncases
= 25,868, ncontrols = 122,393]. However, we saw no association of this
GLP1R variant (Ala316Thr; rs10305492) with fasting insulin nor with
2-hour glucose (Fig. 2A).

Although therewere no individuals carrying putative LoF variants in
GLP1R in the targeted sequencing study, a single individual in the co-
hort armof theUK10K study had an LoF allele (W297*) but did not have
an extreme glycemic phenotype. This individual’s fasting glucose and
insulin concentrations were within the range of 95% of the values for
this population. Nine high-confidence LoF variants in GLP1R were ob-
served in the Exome Aggregation Consortium (ExAC) database (19).
Eight were singletons, and the most common had a frequency of less
than 1/10,000, highlighting the difficulty in restricting analyses to indi-
vidual LoF variants.
ienceTranslationalMedicine.org
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Association of the GLP1R variant
with quantitative traits
and comparison with effects
observed in clinical trials of GLP1R
agonists
To further characterize the extent to
which the GLP1R variant associations
mirrored the effects of GLP1R agonist
therapy, we compared genetic associa-
tions to the metabolic effects observed in
previously reported clinical trials (Fig. 3
and table S2). GLP1R agonist therapy
can result in lower fasting and post-
challenge glucose, weight loss, a reduction
in systolic blood pressure, reduced total
and low-density lipoprotein (LDL) cho-
lesterol, and an increase in resting heart
rate. The effects ofGLP1R agonists on gly-
cemic measures (fasting glucose and 2-
hour glucose) were stronger than those
on nonglycemic factors (Fig. 3), which
have been detectable only in some meta-
analyses of clinical trials (20–23).

Using fasting glucose as the bench-
mark, the per-allele association of the gen-
etic variant with glucose [−0.15 SDs (0.20
to−0.11); fromFig. 2] was 3.3-fold weaker
than the effect observed for GLP1R agonist
treatment [−0.49 (−0.60 to −0.37); from
Fig. 3]. We therefore rescaled the genetic
Fig. 1. Overall study design, participating studies, and consortia. Discovery analyses were performed
using targeted exome sequencing of variation in six genes tested for association with seven traits. Variants

were taken forward to follow-up by targeted genotyping. Additional in silico results were obtained using
available association results. Combined results were obtained by fixed-effect meta-analysis of estimates
from linear or logistic regression, as appropriate. On the basis of the 1331 statistical tests performed in
the discovery analyses, P < 3.8 × 10−5 was used as the threshold for statistical significance. In targeted geno-
typing, (g) refers to studies that were directly genotyped for relevant markers, whereas (i) indicates those in
which relevant variants were captured by imputation.
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Table 1. Discovery, follow-up, and combined results for variants ta-
ken forward to follow-up. Seven variants in six genes reached P <
0.001 (or P < 0.05 in target of interest to GSK) in sequence-based dis-
covery analyses (Fig. 1) and were taken forward to follow-up in addi-
www.Sc
tional samples, by targeted genotyping and by in silico lookup from
existing consortia. Data and P values are from fixed-effect meta-analysis
of linear regression for quantitative traits or logistic regression for
binary disease status. 5′UTR, 5′ untranslated region.
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associations to account for this difference, by multiplying the magnitude
of all observed genetic associations by 3.3 (Fig. 3), and demonstrated that
there was little difference between the magnitude of association of the
GLP1R variant and the effects observed in clinical trials beyond that
expected by chance (a = 0.0025). An exception to this observation was
the impact of GLP1R agonist therapy on weight in nondiabetic individ-
uals when compared to the observed association between the variant
and BMI (P = 2.6 × 10−4, Cochrane’sQ test) (table S2). The genetic var-
iant was not associated with BMI (Fig. 3), whereas the agonist therapy
caused a reduction in body mass in nondiabetic individuals but not in
individualswithT2D (fig. S1 and table S2).However, five of the six trials
in nondiabetic individuals were performed in obese participants (table
S3), whose higher starting weightmay have enabled a greater weight loss.

GLP1R agonists appeared to have a greater effect on 2-hour glucose
than themagnitude of association observed for the variant (P= 2.1 × 10−12,
Cochrane’s Q test) (Fig. 3, fig. S2, and table S2). The difference was most
pronounced in comparison to trials in individualswithT2D, amongwhom
we observed heterogeneity in the effect of GLP1R agonists on 2-hour glu-
cose, even within drug class (I2 = 97%) (fig. S2B). There was no significant
difference between themagnitude of genetic association and the impact
of GLP1R agonist therapy on 2-hour glucose in nondiabetic individuals
www.Sc
(Fig. 3 and table S2), although the number of people included in such trials
was much smaller than in trials including individuals with T2D (table S3).

Association of the GLP1R variant with disease outcomes
Our final aim was to describe the association of the GLP1R variant with
CHDand other outcomes. In a large-scale international collaboration, we
studied 61,846 individuals with CHD and 163,728 controls and found
that the fasting glucose–lowering allele ofGLP1Rwas associated with pro-
tection against CHD (Fig. 4). The associationwithCHD is greater than the
1% reduction in risk that would be predicted on the basis of the association
of this variant with fasting glucose alone (24) (see “Calculating the reduc-
tion in coronary heart disease risk attributable to lower fasting glucose
levels” in the SupplementaryMaterials), suggesting that lowering of fasting
glucose alone is unlikely to explain the observed association between the
GLP1R variant and lower risk of CHD. Although not significant, car-
riage of the minor allele was associated with lower LDL cholesterol,
triglycerides, systolic blood pressure, and higher HDL (high-density
lipoprotein) cholesterol.

Using data from international consortia, we found no evidence for
association of the GLP1R variant with pancreatic cancer, although the
CIs were wide owing to the comparatively small sample size (4987 cases
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and 8627 controls) and low frequency of the allele (Fig. 4). Therewas no
evidence of associationwith breast, ovarian, or prostate cancer risk. Giv-
en the interest in GLP1R agonist therapy for neurological diseases, in-
cluding Parkinson’s (25) and Alzheimer’s (26), we also investigated the
association of the GLP1R variant with those diseases but found no ev-
idence of association (Fig. 4).
D

DISCUSSION

Anticipating the side effects of drugs before phase 3 clinical trials could
support drug discovery and development, reducing attrition rates and
saving considerable time andmoney. The promise of human genetics in
this endeavor (2, 3, 7, 27) depends on the availability of genetic variants
that mimic pharmaceutical interventions. We undertook a systematic
study to identify such genetic variants in the context of diabetes and obe-
sity and identified an association between fasting glucose and T2D with
www.Sc
a missense variant in GLP1R, the gene encoding the GLP-1 receptor—
the target of the GLP1R agonist class of T2D therapies. Regulatory
authorities require evidence that therapies for T2D are not associated
with unacceptable increases in cardiovascular risk. The reduced risk as-
sociated with the glucose-lowering genetic variant in GLP1R provides
evidence that not only will GLP1R agonists meet this regulatory hurdle
but they may also reduce CHD events. Ongoing trials of GLP1R ago-
nists are designed to resolve this uncertainty and will also augment the
evidence on the broader validity of genetic approaches in drug target
validation.

A key consideration in assessing whether genetic variants can be
used to understand therapeutic effects is how well the genetic variant
mirrors the effects of pharmacological intervention at the same target.
Genetic association data, here and reported previously (18), suggest that
lifelong carriage of theminorGLP1R allele (at rs10305492) is associated
with lower fasting glucose and lower risk of T2D, although not with
2-hour glucose. Clinical trial data from individuals with T2D, who
ienceTranslationalMedicine.org
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may have a diminished incretin effect,
show that GLP1R agonists lower 2-hour
glucose considerably (28), whereas the
effect on 2-hour glucose is smaller in in-
dividuals without T2D (29), presumably
because nondiabetic individuals are less
likely to have an impaired incretin effect re-
quiring therapeutic correction. Similarly,
GLP1R agonists were associated with
greater weight loss in obese than in non-
obese individuals. Such a phenomenon
has previously been suggested for the
effects of GLP1R agonism on blood pres-
sure, where GLP1R agonist therapy
appears to lower blood pressure in indi-
viduals with high blood pressure but not
in nonhypertensive individuals (30, 31).
This highlights a limitation in the use of
genetic variants in target validation: that
the association of genetic variants is often
tested in individuals of “normal” physiol-
ogy, whereas clinical trials are generally
performed in individuals with prevalent
disease.

An important step in evaluating the
utility of genomics in target validation is
to understand the functional consequences
of variants. For potential novel targets,
whether the variant confers gain or loss
of function informs the development of
either an agonist or an antagonist therapy.
For example, LoF variants have been used
to understand the consequences of antag-
onism of a novel drug target (7, 32). How-
ever, researchers have gained insights
using variants validated as instruments
when their phenotypic associations mir-
rored pharmacological action, even in
the absence of strong functional insights
into the mechanism of those variants
(33). GLP1R agonist therapy reduces
Fig. 2. Association of the GLP1R variant (rs10305492) with glycemic traits. (A) Genetic variant associ-
ation with glycemic traits. Data are SDs per minor allele at rs10305492. Fasting glucose results are from the

combined analysis (Table 1). Individual studies contributing to the associations for fasting insulin and 2-hour
glucose are in table S4. All results reflect point estimates and 95% confidence intervals (CIs) from a fixed-
effect meta-analysis of linear regression estimates. (B) Effect size of the GLP1R variant (in red) and loci pre-
viously reported to be associated with fasting glucose. Effect sizes are reported from discovery analyses of
available MAGIC results (50) and from the combined estimate for the GLP1R variant in (A).
1 June 2016 Vol 8 Issue 341 341ra76 5
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fasting glucose in humans, as does administration ofGLP1, regardless of
the duration or severity of T2D (34). Inmice, the loss of GLP1R leads to
fasting hyperglycaemia (35, 36). Together, these findings in humans and
in mice suggest that the glucose-lowering minor allele at rs10305492
confers gain of function. However, differences in basal activity of the
human andmurine GLP1R (37) limit our ability to extrapolate findings
from GLP1R knockout mice to humans (15, 32). Previous attempts to
characterize the effect of this variant in cellular models have been in-
conclusive (38, 39). The rarity of putative LoF alleles in the GLP1R im-
paired our ability to restrict analyses to such variants. Although the
absence of definitive functional characterization is a limitation of this
study, our observation that the minor allele is strongly associated with
lower fasting glucose levels and is protective against T2D supports the
www.Sc
validity of the variant as a genetic instrument for GLP1R agonist ther-
apy. Future integration of large-scale human genetic datawith function-
al characterization in appropriate cell models will allow a broader
application of variants, other than those characterized as LoF, in target
validation.

Although theGLP1R variant was not associated with any of the oth-
er nonglycemic or quantitative cardiovascular parameters, there was in-
sufficient evidence to suggest that the genetic associations and
pharmacological effects were different. Power calculations indicated
that to detect the expected association with systolic blood pressure or
resting heart rate, a sample size of more than 250,000 individuals would
be required. This is considerably larger than most current genetic
consortia, although this limitation could soonbe overcome as larger stu-
ienceTranslationalMe
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dies become available (40), further strengthening
the promise of genomics in target validation. Al-
though we did not observe overall evidence for as-
sociation of variants other than the GLP1R variant,
the discovery phase, from which we selected var-
iants for follow-up, was relatively small in compar-
ison to the overall sample, and there remains a
possibility of type II error in the discovery phase.
As larger resources of genetic data become available,
these limitations will also be reduced.

The detection of rare adverse effects of a drug
remains a challenge. Pharmacoepidemiological
approaches using routine database analysis may
identify rare adverse outcomes associated with
treatment, but the approach is rarely conclusive be-
cause of confounding, particularly by indication.
Our demonstration that the GLP1R variant is not
associated with pancreatic, breast, prostate, or ovar-
ian cancer or with Parkinson’s or Alzheimer’s dis-
ease is limited by the upper bounds of CIs, which are
too high to allow strong inference about the likely
long-term safety of GLP1R agonists with regard to
these outcomes. Although these data represent the
largest resources available globally, the accumulation
of studies with greater numbers of individuals with
genetic data and robust disease outcome classifica-
tion will considerably enhance the potential of this
type of investigation. Comparisons of other traits
and disease outcomes, beyond the primary indica-
tions, make the assumption that pharmacological
effects are mediated via “on-target” effects and not
“off-target” effects (that is, those mediated by
effects of the agent on other nonspecific targets).
Thus, while our results offer insight into the effects
ofGLP1R agonists, they donot necessarily apply to
other agents targeting the incretin pathway
through different mechanisms, such as by DPP-4
inhibition (41).

In conclusion, through a targeted exome sequen-
cing approach, we identified that a low-frequency
missense variant inGLP1Rwas associatedwith lower
fasting glucose and risk of T2D, similar to the effects
of GLP1R agonist therapy. This variant was also as-
sociatedwith lower risk of CHD, thus providing sup-
portive evidence that these agents are not likely to be
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Fig. 3. Comparison of the GLP1R variant (rs10305492) associations with effects observed in
clinical trials of GLP1R agonists in nondiabetic individuals and in individuals with T2D.

Genetic associations are all scaled to match the effects of GLP1R-agonists on fasting glucose [that
is, per 3.3 copies of the minor (A) allele]. Genetic variant results are b estimates and 95% CIs from
fixed-effect meta-analysis of linear regression results. Trial results are estimates from fixed-effect
meta-analyses of standardized mean differences between treatment and comparison groups of
the individual trials listed in table S3. *Trials reported effects on body mass, whereas genetic as-
sociations were only available for BMI.
dicine.org 1 June 2016 Vol 8 Issue 341 341ra76 6

http://stm.sciencemag.org/


R E S EARCH ART I C L E

http://stm
.science

D
ow

nloaded from
 

associated with an unacceptable increase in cardiovascular risk and may
indeed be associated with benefit, a question currently being addressed in
randomized controlled trials. We propose that future drug development
and investment decisions could be informed by genomic data much ear-
lier in the development process, providing insight into both efficacy and
side effects.
 on June 5, 2016
m

ag.org/
METHODS

Study design
We studied six genes encoding therapeutic targets licensed or in devel-
opment for obesity or T2D (CNR2, DPP4, GLP1R, SLC5A1, HTR2C,
and MCHR1), drawn from a recent targeted exome sequencing study
of 202 genes encoding drug targets (8), which represented about 1% of
the coding genome and 7% of all genes considered current or potential
drug targets (8). In the “discovery analysis,” we investigated the associ-
ation of common and rare variants in these six genes with seven T2D-
and obesity-related traits (Fig. 1). We analyzed all variants that had an
(i) MAF≥0.5% or well imputed (R2 > 0.5) in CoLaus; (ii) MAF≥0.5%
in GEMS; or (iii) MAF≥0.1% in BMI (given the larger sample size) in
theCoLaus study (42), theGEMS study (43), or all individualswith BMI
measurements.We examined 121 variants for association with six traits
in theCoLaus study (6 × 121 = 726 tests), four traits inGEMS (4 × 121=
484 tests), and one trait in the BMI study, comprising a total of 1331
tests of association. First, we analyzed a subset of the population-based
CoLaus study (n = 2086) for T2D, obesity, waist circumference, fasting
glucose, fasting insulin, and 2-hour glucose traits. Second, in the GEMS
dyslipidemic case and normolipidaemic control study (ncases = 787,
ncontrols = 792), we analyzed obesity, waist circumference, fasting glu-
cose, and fasting insulin traits. We performed discovery analyses in
the CoLaus and GEMS studies separately because of the different study
designs and traits analyzed in an attempt tomaximize sensitivity to detect
associations that might be masked by context-dependent associa-
www.ScienceTranslationalMedicine.org 1 June 20
tions. Third, BMImeasureswere
available in a larger sample size
from11 studies (Fig. 1) andwere
analyzed together. We provide
the sample sizes for the discov-
ery analyses in Fig. 1 and trait-
specific sample sizes in Table
1 (n = 505 to 11,806). We aug-
mented the sequence data for
the CoLaus study with imputed
data in the remainder of the
study (n=3539), where variants
were imputable (R2 > 0.5), using
a custom imputation process on
individuals genotyped on the
Affymetrix 500K chip but not in-
cluded in the targeted sequencing
experiment (Supplementary
Materials).

Using results from the dis-
covery analyses, we identified
variants that were associated
with T2D- or obesity-related
traits at the P < 0.001 level or
were located in genes encoding targets of strategic interest to GSK, in-
cluding GLP1R, DPP4, CNR2, and HTR2C with a P value threshold of
<0.05. To maximize sensitivity to detect associations in these genes of
highest interest, we took forward to follow up those variants reaching
P < 0.05 in the discovery analyses. However, this did not affect the
threshold for statistical significance or overall a value (3.8 × 10−5),
for which we accounted for all association tests performed in the dis-
covery analyses (n = 1331). The principal reason for prioritizing specific
genes was to ensure a balance between sensitivity for targets of high
priority to GSK and to maintain specificity: given that initial replication
was performed by de novo large-scale targeted genotyping, we were
practically unable to follow up vast numbers of variants. This does
not bias the variants selected for follow-up nor raise the risk of type I
error. The only variant we determined to be mimicking pharmaco-
logical manipulation was well beyond “genome-wide significance”
even if all possible low-frequency and common variants in the genome
had been tested.

We then genotyped seven variants in six genes in up to 39,979
follow-upparticipants ofEuropeanancestry drawn frommultiple studies
(Fig. 1): CoLaus (whenGEMSwas the discovery sample), GEMS (when
CoLaus was the discovery set), Ely (44) (n = 1,722), EPIC-Norfolk (45)
(n = 25,313), Fenland (46) (n = 6379), and LOLIPOP (47) (n = 6565)
studies. The follow-up analysis of T2D included participants from the
Norfolk Diabetes Study (ncases = 5587 and ncontrols = 19,012), the GenOA
study (ncases = 129 and ncontrols = 1501), and individuals with T2D from
the ADDITION study (48) (ncases = 816) who were combined with ad-
ditional cases from the Ely study (ncases = 116) and compared to non-
diabetic controls from the Ely study (ncontrols = 1,487).

We also performed additional in silico follow-up analysis to further
evaluate associations in collaborative studies utilizing results from the
MAGIC and CHARGE consortia. Five of the seven variants were avail-
able for in silico analysis (Table 1). Further details on each of the studies
and consortia are provided in the SupplementaryMaterials and tables S1
and S4.
Type 2 diabetes

Coronary heart 
disease

Pancreatic cancer

Ovarian cancer

Breast cancer

Prostate cancer

Parkinson's disease

Alzheimer's disease

25,868

61,846

4 987

1 879

5 157

3 937

122,393

163,728

8 627

5 118

4 838

4 423

9.4 x 10–5

9.2 x 10–3

0.43

0.92

0.28

0.25

0.65

0.4

0

0

0

0.83 (0.76 – 0.91)

0.93 (0.87 – 0.98)

1.15 (0.82 – 1.61)

0.98 (0.73 – 1.31)

0.88 (0.70 – 1.11)

1.16 (0.91 – 1.48)

1.07 (0.80 – 1.43)

0.94 (0.81 – 1.09)

10.7 0.8 0.9 1 1.2 1.4 1.6

OR per minor allele

Disease 
outcome

ncases ncontrols
P value I2OR (95% CI)OR (95% CI)

14,753 16,354

Fig. 4. Associationof theGLP1Rvariant (rs10305492)withdiseaseoutcomes.Associationwith disease outcomes are
reported per minor allele at rs10305492. Data show ORs and 95% CIs from logistic regression models.
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Statistical analyses
We carried out genetic association analyses on variants identified via tar-
geted sequencingusing anadditive geneticmodel by linear or logistic regres-
sion, adjusting for age and sex and other study-specific covariates. We
combined study-specific estimates using fixed-effectmeta-analysis.We per-
formed analyses on standardized variables (mean, 0; SD, 1) and, as such,
expressed effect sizes as SDs for quantitative traits. In total, we analyzed
121 single nucleotide variants. Overall, we performed 1331 tests of associa-
tion in the discovery analyses, and, as such, associations that were P < 3.8 ×
10−5 in the combined analysis were deemed to be statistically significant.

We performed targeted genotyping of selected variants from discovery
analyses using Sequenom for the Ely, EPIC-Norfolk, Fenland, and ADDI-
TIONstudies andKASPar for theLOLIPOPstudy. Imputeddatawere also
available in theGenOA study using reference haplotypes fromparticipants
in the previous sequencing study (8). We carried out genetic association
analyses in each study under an additive genetic model using linear or lo-
gistic regression, again adjusting for age-, sex-, and study-specific covariates.
We sought further in silico follow-up from summary association results
from theMAGIC and CHARGE consortia (Table 1). We converted sum-
mary association result effect sizes to SDs using the SD of fasting glucose
from the population-based Fenland study (SD, 0.65 mM) (46). We
meta-analyzed results from the discovery analysis, follow-up analysis,
and in silico follow-up analysis using a fixed-effect inverse-variance
weighted approach. The discovery analysis of the CoLaus study included
association results from the sequence variants and imputed variants (Table
1). In the entire CoLaus study, we later directly genotyped (KASPar tech-
nology) variants that had been imputed in the unsequenced CoLaus parti-
cipants study as part of the original follow-up analysis. The combined
analysis results in Table 1 therefore represent those from the directly gen-
otyped data.

For variants that showed statistically significant associations in the
combined analysis (P < 3.8 × 10−5), we investigated their association
with a range of anthropometric, metabolic, and cardiovascular risk
factors and disease outcomes in the studies described previously, as well
as in additional studies described in tables S1 and S4 and in the Supple-
mentary Materials. We also investigated the association of variants
reaching statistical significance after follow-up (a < 3.8 × 10−5) with
CHD through targeted genotyping and collaboration with large-scale
exome chip consortia (table S1). For these variants, we also investigated
association with a range of other disease outcomes (table S1), with a
particular focus on diseases previously suggested as potential opportu-
nities for repositioning (that is, where existing drugs might be used for
alternative indications). However, as the variant reaching statistical sig-
nificance was not well covered on existing GWAS (genome-wide asso-
ciation study) arrays or in HapMap, we were limited to those disease
outcomes for which we could obtain association data. For genes that
contained variants with P < 3.8 × 10−5 in the combined analysis, we
investigated the presence of putative LoF alleles in individuals in whom
we had performed targeted sequencing (8) and in individuals with
whole-genome sequencing from the UK10K study (www.uk10k.org).

Comparison of clinical trial effects and genetic associations.
Randomized clinical trials of GLP1R agonists were identified through
previous systematic reviews and by performing a supplementary liter-
ature search, as detailed in the Supplementary Materials. Only trials
with placebo or no-drug comparison groups (that is, no trials with
active comparison groups) with ≥4 weeks of drug treatment (that
is, no single-dose studies) and≥10 participants per trial arm were in-
cluded. Treatment effects were expressed in SDs before pooling across
www.Sc
trials using random-effects meta-analysis (see table S3 for details of
clinical trials included). P values derived from Cochrane’s Q test were
used as a guide to assess whether there were pairwise differences be-
tween the rescaled genetic and trial estimates.
SUPPLEMENTARY MATERIALS

www.sciencetranslationalmedicine.org/cgi/content/full/8/341/341ra76/DC1
Additional acknowledgments and funding
Methods
Fig. S1. Effects of GLP1R agonists on body weight.
Fig. S2. Effects of GLP1R agonists on 2-hour glucose.
Table S1. Study characteristics for disease traits.
Table S2. Comparison of heterogeneity between trial and rescaled genetic estimates.
Table S3. Details of randomized trials contributing to analyses of GLP1R agonist effects includ-
ed in Fig. 2.
Table S4. Study characteristics for quantitative traits.
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Editor's Summary

 
 
 
than causing any additional risk, and was not associated with various cancers or neurological diseases.

 variant was actually protective against CHD, ratherGLPR1the −−with heart disease, some as controls
 some−−against disease outcomes, like coronary heart disease (CHD). In more than 200,000 individuals
 associated with fasting glucose. The authors then compared this variant−−like exenatide and liraglutide

 peptide-1 receptor, which is the target for certain glucose-lowering drugs frequently used in the clinic,
 the gene encoding glucagon-like−−GLP1Rindividuals, they landed on one particular variant in 

traits like body mass index and fasting glucose levels. Using several cohorts totaling more than 50,000
drugs for type 2 diabetes or obesity, to see whether any genetic variations were linked to metabolic 

 looked at six genes that encode the targets of variouset al.developing heart disease or cancer. Scott 
Genetics could soon routinely tell clinicians whether certain drugs are putting patients at risk of
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