RESEARCH ARTICLE

CARDIOVASCULAR GENOMICS

A genomic approach to therapeutic target validation
identifies a glucose-lowering GLP1R variant protective
for coronary heart disease

All authors with their affiliations appear at the end of this paper.

Regulatory authorities have indicated that new drugs to treat type 2 diabetes (T2D) should not be associated with an
unacceptable increase in cardiovascular risk. Human genetics may be able to guide development of antidiabetic thera-
pies by predicting cardiovascular and other health endpoints. We therefore investigated the association of variants in
six genes that encode drug targets for obesity or T2D with a range of metabolic traits in up to 11,806 individuals by
targeted exome sequencing and follow-up in 39,979 individuals by targeted genotyping, with additional in silico follow-
up in consortia. We used these data to first compare associations of variants in genes encoding drug targets with the
effects of pharmacological manipulation of those targets in clinical trials. We then tested the association of those
variants with disease outcomes, including coronary heart disease, to predict cardiovascular safety of these agents.
A low-frequency missense variant (Ala316Thr; rs10305492) in the gene encoding glucagon-like peptide-1 receptor
(GLP1R), the target of GLP1R agonists, was associated with lower fasting glucose and T2D risk, consistent with GLP1R
agonist therapies. The minor allele was also associated with protection against heart disease, thus providing evidence
that GLP1R agonists are not likely to be associated with an unacceptable increase in cardiovascular risk. Our results
provide an encouraging signal that these agents may be associated with benefit, a question currently being ad-
dressed in randomized controlled trials. Genetic variants associated with metabolic traits and multiple disease

outcomes can be used to validate therapeutic targets at an early stage in the drug development process.

INTRODUCTION

In 2008, the U.S. Food and Drug Administration issued guidance for
industry on new therapies to treat type 2 diabetes (T2D), recommend-
ing that sponsors should demonstrate that these treatments are “not as-
sociated with an unacceptable increase in cardiovascular risk” (1). This
mandate challenges drug developers to prove safety during clinical
trials, which is an expensive and late-phase strategy for the identification
of such concerns. Instead, genetic approaches may aid in the identifica-
tion of possible drug side effects much earlier in the drug development
process. Genetic variants can inform the treatment and prevention of
human disease (2, 3), by either reducing the prioritization of potential
targets (4, 5) or implicating new targets (6, 7). Functional exonic variants
can be useful surrogates for drug effects, when, for example, a loss-of-
function (LoF) variant may be a useful tool to understand the
consequences of pharmacological inhibition of a particular target pro-
tein (7). Recent sequencing efforts have identified a large number of po-
tentially functional low-frequency and rare exonic variants in human
populations, even among genes under purifying selection (8-12). Al-
though such variants may influence susceptibility to disease, the high
cost of these sequencing approaches has previously meant that they
have not been performed in the sample sizes required to allow routine
investigation of their association with complex disease and related
traits.

A recent targeted exome sequencing study of 202 genes encoding
potential drug targets identified an abundance of potentially functional
exonic variants (8). Among these 202 genes, 6 genes encoding drug tar-
gets licensed or in development by GlaxoSmithKline (GSK) for treat-
ment of obesity and/or T2D were included. Recognizing that these
data could be used to test for genetic variants mimicking pharmaco-
logical manipulation of the encoded protein (drug target), we investi-
gated six genes encoding targets of relevance to obesity and T2D.

These variants could then serve as tools to aid a broader evaluation of
drug-related risk for adverse events mediated via on-target effects.

As a proof of concept for use of genetic variants to evaluate the
cardiovascular safety of antidiabetic agents, we evaluated the widely
used glucose-lowering glucagon-like peptide-1 receptor (GLP1R) ago-
nists (13). These agents are long-acting mimetics of the incretin hor-
mone GLP-1, which increases insulin secretion after oral consumption
of glucose but not after glucose administered intravenously. There are
uncertainties over the role of these agents in the etiology of rare adverse
pancreatic events that have been reported after their usage (14). These
therapies have been associated with weight loss (15) and reduced
cardiovascular risk factors, and while a recent trial reported noninferior-
ity of GLP1R agonists in cardiovascular safety (16), multiple large trials
evaluating cardiovascular safety have not yet been completed (17). We
used a genetic variant in GLPIR that is associated with variation in fasting
glucose levels and with T2D risk (18) to evaluate the cardiovascular safety
of GLP1R agonists. The low-frequency variant protective for T2D was
also protective for coronary heart disease (CHD). These findings support
the notion that GLP1R agonists will not confer an increased
cardiovascular risk in people. This study also demonstrates how genetic
target validation approaches can be used early in the drug development
process to evaluate efficacy and safety.

RESULTS

Association of genetic variants in genes encoding T2D and
obesity drug targets

The study design consisted of initial discovery of variants with sug-
gestive associations to targeted genotyping and in silico follow-up
analyses (Fig. 1). We investigated the association of 121 variants
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in six genes encoding therapeutic targets in use or in development
for T2D or obesity (CNR2, DPP4, GLPIR, SLC5A1, HTR2C, and
MCHRI)—drawn from a recent targeted exome sequencing study
of 202 genes encoding drug targets (8)—with variation in the
following traits: T2D, obesity, body mass index (BMI), waist circum-
ference, fasting glucose, fasting insulin, and 2-hour glucose (Fig. 1).
In the “discovery analysis,” we identified seven variants potentially as-
sociated with T2D- or obesity-related traits (where P < 0.001 or which
were in a target of interest to GSK and P < 0.05) (Table 1). For these
seven variants, “follow-up analysis” was performed by targeted
genotyping in up to 39,979 additional individuals of European ances-
try. Where possible, in silico follow-up analysis was performed for
traits and variants available in large-scale genetic consortia data.

Initial discovery analyses included 1331 tests of association, with the
threshold specified to reach significance in combined analyses being P <
3.8 x 107°. In a combined analysis of results from the different phases,
we identified a low-frequency [~1% minor allele frequency (MAF)]
missense variant Ala316Thr; rs10305492 in the GLPIR gene to be asso-
ciated with fasting glucose (Fig. 2A). The variant was in Hardy-Weinberg
equilibrium in all genotyped samples (P > 0.2). The effect size (that s,
the difference per allele) of 0.09 mM was larger than most common
variants previously reported for fasting glucose (Fig. 2B) and was re-
cently found to be associated with fasting glucose in nonoverlapping
samples from large-scale analyses of coding variant associations with
glycemic traits (18). The combined analyses for the six other variants
in Table 1 did not show evidence of association (P > 3.8 x 107>, by
linear or logistic regression) with the suggestively associated trait in

the discovery analysis (“follow-up” P values >0.05; “combined” P values
=>0.005; Table 1).

The GLPIR gene encodes the GLP-1 receptor, the target for GLP-1,a
hormone that mediates the augmented response to insulin secretion af-
ter oral glucose administration. This receptor is the target for the GLP1R
agonist class of T2D therapeutics, and the association of this variant
with fasting glucose mimicked a major effect of this class of agents.
To further corroborate the utility of this variant as a surrogate indicator
of pharmacological modulation of the receptor, we investigated its as-
sociation with T2D and found that the minor allele was associated with
lower risk of T2D [odds ratio (OR), 0.83; CL, 0.76 to 0.91; P= 9.4 x 10™>;
in a fixed-effect meta-analysis of log-ORs from studies and consortia
listed in table S1 and in the Supplementary Materials “Studies con-
tributing to follow-up analyses of T2D and obesity-related traits”; #1555
= 25,868, Ncontrols = 122,393]. However, we saw no association of this
GLPIR variant (Ala316Thr; rs10305492) with fasting insulin nor with
2-hour glucose (Fig. 2A).

Although there were no individuals carrying putative LoF variants in
GLPIR in the targeted sequencing study, a single individual in the co-
hort arm of the UK10K study had an LoF allele (W>*”*) but did not have
an extreme glycemic phenotype. This individual’s fasting glucose and
insulin concentrations were within the range of 95% of the values for
this population. Nine high-confidence LoF variants in GLPIR were ob-
served in the Exome Aggregation Consortium (ExAC) database (19).
Eight were singletons, and the most common had a frequency of less
than 1/10,000, highlighting the difficulty in restricting analyses to indi-
vidual LoF variants.

Association of the GLP1R variant
with quantitative traits
and comparison with effects

Discovery analysis Targeted genotyping

follow-up analysis

observed in clinical trials of GLP1R
agonists

In silico follow-up
analysis

Traits Samples To further characterize the extent to

] : : which the GLPIR variant associations

Wai;rtz Zr C?Jt.:::;:ane Colaus Colaus mirrored the effects of GLP1R agonist
Fasting glucose sequenced imputed Fasting glucose, 2-hour Fasting glucose, 2-hour therapy, we Compared genetic associa-
Fasting insulin (n=2086) || (n=3539) glucose, T2D, BMI glucose, T2D, BMI tions to the metabolic effects observed in
2-hour glucose previously reported clinical trials (Fig. 3
Obesity GEMs and table S2). GLPIR agonist therapy
Waist circumference | sequenced Ely (g) LOLIPOP (g) MAGIC can result in lower fasting and post-
FFaSt;ng g_lucc|>'s N (n =1579) =122 5 =2 (FG: n =20,077; challenge glucose, weight loss, a reduction
aering fnedn ey [ERIELE T 2-hour glucose: n = 15,234) in systolic blood pressure, reduced total
BMI oot ine 12061 | IR [y e P —— low-density lipoprotein (LDL) cho-
controls) (FG n = 49,838; lesterol, and an increase in resting heart

Variants with suggestive associations: Fenland (g) GenOA (i) T2D cases = 9524, rate. The effects of GLP1R agonists on gly-

P <0.001 or in a target of interest to GSK (n = 6379) (n =129 cases, n controls = 60,718; cemic measures (fasting glucose and 2-
R ORI 1501 controls) BNTSEETE) hour glucose) were stronger than those

Combined analysis: Meta-analysis of discovery, follow-up, and in silico follow-up analyses

on nonglycemic factors (Fig. 3), which
have been detectable only in some meta-

Fig. 1. Overall study design, participating studies, and consortia. Discovery analyses were performed
using targeted exome sequencing of variation in six genes tested for association with seven traits. Variants
were taken forward to follow-up by targeted genotyping. Additional in silico results were obtained using
available association results. Combined results were obtained by fixed-effect meta-analysis of estimates
from linear or logistic regression, as appropriate. On the basis of the 1331 statistical tests performed in
the discovery analyses, P < 3.8 x 107° was used as the threshold for statistical significance. In targeted geno-
typing, (g) refers to studies that were directly genotyped for relevant markers, whereas (i) indicates those in

which relevant variants were captured by imputation.

www.ScienceTranslationalMedicine.org

analyses of clinical trials (20-23).

Using fasting glucose as the bench-
mark, the per-allele association of the gen-
etic variant with glucose [-0.15 SDs (0.20
to —0.11); from Fig. 2] was 3.3-fold weaker
than the effect observed for GLP1R agonist
treatment [-0.49 (-0.60 to —0.37); from
Fig. 3]. We therefore rescaled the genetic
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Table 1. Discovery, follow-up, and combined results for variants ta-
ken forward to follow-up. Seven variants in six genes reached P <
0.001 (or P < 0.05 in target of interest to GSK) in sequence-based dis-
covery analyses (Fig. 1) and were taken forward to follow-up in addi-

tional samples, by targeted genotyping and by in silico lookup from
existing consortia. Data and P values are from fixed-effect meta-analysis
of linear regression for quantitative traits or logistic regression for
binary disease status. 5'UTR, 5' untranslated region.

Positi n B
8:2;:“ (case/ (odds SE
. . Effect Other control ratio  (CI
Gene Variant Chr b37 Consequence  Trait allele allele MAF Stage Study for for for P
Ig'genomet) binary binary OR)
alignmen trait)  trait)
GLPTR rs10305492 6 39046794 A316T Fasting A G 0.015 Discovery Sequenceg Co- 1,869 -0.28 0.14 0.04
glucose Laus
Targeted Additional 18,937 -0.13 0.04 X
follow-up ~ Colaus, Ely, -3
Fenland,
LOLIPOP, GEMS
In silico MAGIC (29) 20,077 -0.16 0.03 1.1x
follow-up 1077
Combined 40,883 -0.15 0.02 26X
107"
DPP4  rs56179129 2 162890142 V2661 Fasting T C 0.008 Discovery GEMS 1,416 0.61 021 36X
glucose 1073
Targeted Colaus, Ely, 12,934 0.00 0.07 0.95
follow-up LOLIPOP
In silico CHARGE 49,838 0.00 003 0.16
follow-up Exome Chip
(18)
Combined 64,188 0.01 003 071
SLC5A1rs200410750 22 32439209 5'UTR Fasting T C 0.001 Discovery Sequenced 5210 1.44 033 17x
glucose and 107°
imputed
Colaus
Targeted Ely, Fenland, 12,707 -0.16 027 0.56
follow-up LoLIPOP?
In silico NA NA
follow-up
Combined 18,059 0.51 0.19  0.01
CNR2  rs4649124 1 24201357  Synonymous 2-Hour A G 0420 Discovery Sequenced 505 0.18 006 0.01
glucose and
imputed
Colaus
Targeted Ely, Fenland 6,377 0.00 0.02 095
follow-up
In silico MAGIC 15234 -001 0.01 049
follow-up (proxy:
rs10917431)
(49)
Combined 22,106 0.00 001 088
CNR2  rs2229579 1 24201162 H316Y T2D T C 0.110 Discovery Sequenced  385/5241 0.73  (0.55- 0.03
and 0.97)
imputed
Colaus
Targeted ADDITION- 7141/ 1.06 (0.99- 0.07
follow-up Ely, NDS, 27,096 1.14)
LOLIPOP,
GenOA

continued on next page
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g n
P::g:;:n (case/ (odds SE
. . Effect Other control ratio  (Cl
Gene Variant Chr b37 Consequence  Trait allele allele MAF Stage Study for for for P
Igenome binary binary OR)
alignment) trait) trait)
In silico CHARGE 9,524/ 096 (0.90- 0.10
follow-up Exome Chip 60,718 1.01)
(18
Combined 17,047/ 099 (0.95- 0.67
93,225 1.04)
HTR2C rs56372597 X 113951968 Intronic BMI A G 0.150 Discovery BMI 10,798 0.05 0.02 2,1>3<
10~
Targeted Additional 36,983 0.00 0.01 0.92
follow-up Colaus, Ely,
EPIC,
Fenland,
LOLIPOP
In silico NA NA
follow-up
Combined 47,781 0.01 0.01 0.13
MCHRT rs117372135 22 41075523 T25M BMI T C 0.002 Discovery BMI 10,952 0.62 0.15 45x
107°
Targeted Additional 37,240 008 010 040
follow-up Colaus, Ely,
EPIC,
Fenland,
LOLIPOP
In silico CHARGE 68978 -0.04 0.07 0.59
follow-up adiposity
Exome chip
working
group
Combined 117,170 0.08 0.05 0.3

*Analyzed in sequenced Colaus participants only owing to low imputation quality (R? < 0.5) in additional CoLaus participants at the discovery stage.

number of carriers (<5 minor alleles).

associations to account for this difference, by multiplying the magnitude
of all observed genetic associations by 3.3 (Fig. 3), and demonstrated that
there was little difference between the magnitude of association of the
GLPIR variant and the effects observed in clinical trials beyond that
expected by chance (a = 0.0025). An exception to this observation was
the impact of GLP1R agonist therapy on weight in nondiabetic individ-
uals when compared to the observed association between the variant
and BMI (P = 2.6 x 10™%, Cochrane’s Q test) (table S2). The genetic var-
iant was not associated with BMI (Fig. 3), whereas the agonist therapy
caused a reduction in body mass in nondiabetic individuals but not in
individuals with T2D (fig. S1 and table S2). However, five of the six trials
in nondiabetic individuals were performed in obese participants (table
S3), whose higher starting weight may have enabled a greater weight loss.

GLP1R agonists appeared to have a greater effect on 2-hour glucose
than the magnitude of association observed for the variant (P = 2.1 x 107",
Cochrane’s Q test) (Fig. 3, fig. S2, and table S2). The difference was most
pronounced in comparison to trials in individuals with T2D, among whom
we observed heterogeneity in the effect of GLP1R agonists on 2-hour glu-
cose, even within drug class (P =97%) (fig. S2B). There was no significant
difference between the magnitude of genetic association and the impact
of GLP1R agonist therapy on 2-hour glucose in nondiabetic individuals

www.ScienceTranslationalMedicine.org

tNot analyzed in GEMS because of low

(Fig. 3 and table S2), although the number of people included in such trials
was much smaller than in trials including individuals with T2D (table S3).

Association of the GLP1R variant with disease outcomes
Our final aim was to describe the association of the GLPIR variant with
CHD and other outcomes. In a large-scale international collaboration, we
studied 61,846 individuals with CHD and 163,728 controls and found
that the fasting glucose-lowering allele of GLPIR was associated with pro-
tection against CHD (Fig. 4). The association with CHD is greater than the
1% reduction in risk that would be predicted on the basis of the association
of this variant with fasting glucose alone (24) (see “Calculating the reduc-
tion in coronary heart disease risk attributable to lower fasting glucose
levels” in the Supplementary Materials), suggesting that lowering of fasting
glucose alone is unlikely to explain the observed association between the
GLPIR variant and lower risk of CHD. Although not significant, car-
riage of the minor allele was associated with lower LDL cholesterol,
triglycerides, systolic blood pressure, and higher HDL (high-density
lipoprotein) cholesterol.

Using data from international consortia, we found no evidence for
association of the GLPIR variant with pancreatic cancer, although the
ClIs were wide owing to the comparatively small sample size (4987 cases
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and 8627 controls) and low frequency of the allele (Fig. 4). There was no
evidence of association with breast, ovarian, or prostate cancer risk. Giv-
en the interest in GLP1R agonist therapy for neurological diseases, in-
cluding Parkinson’s (25) and Alzheimer’s (26), we also investigated the
association of the GLPIR variant with those diseases but found no ev-
idence of association (Fig. 4).

DISCUSSION

Anticipating the side effects of drugs before phase 3 clinical trials could
support drug discovery and development, reducing attrition rates and
saving considerable time and money. The promise of human genetics in
this endeavor (2, 3, 7, 27) depends on the availability of genetic variants
that mimic pharmaceutical interventions. We undertook a systematic
study to identify such genetic variants in the context of diabetes and obe-
sity and identified an association between fasting glucose and T2D with

A
Phenotype n

Fasting glucose 40,883
2-hour glucose

Fasting insulin 55,854 .

B (95% CI)

—0.15 (-0.20 to —0.11) 2.6 x 1010

39,600 =—— 0.04 (-0.02t0 0.10)

0.02 (—0.01 to 0.05)

a missense variant in GLPIR, the gene encoding the GLP-1 receptor—
the target of the GLP1R agonist class of T2D therapies. Regulatory
authorities require evidence that therapies for T2D are not associated
with unacceptable increases in cardiovascular risk. The reduced risk as-
sociated with the glucose-lowering genetic variant in GLPIR provides
evidence that not only will GLP1R agonists meet this regulatory hurdle
but they may also reduce CHD events. Ongoing trials of GLP1R ago-
nists are designed to resolve this uncertainty and will also augment the
evidence on the broader validity of genetic approaches in drug target
validation.

A key consideration in assessing whether genetic variants can be
used to understand therapeutic effects is how well the genetic variant
mirrors the effects of pharmacological intervention at the same target.
Genetic association data, here and reported previously (18), suggest that
lifelong carriage of the minor GLPIR allele (at rs10305492) is associated
with lower fasting glucose and lower risk of T2D, although not with
2-hour glucose. Clinical trial data from individuals with T2D, who
may have a diminished incretin effect,
show that GLP1R agonists lower 2-hour
glucose considerably (28), whereas the
effect on 2-hour glucose is smaller in in-
dividuals without T2D (29), presumably
0 because nondiabetic individuals are less
likely to have an impaired incretin effect re-
quiring therapeutic correction. Similarly,
GLP1R agonists were associated with
greater weight loss in obese than in non-
obese individuals. Such a phenomenon
has previously been suggested for the

P value I2

0.15 0

0.24 21.3

T T T T T

-0.3 -0.2 -0.1 0 0.1 0.2
B - SDs per minor allele

0.1 4

0.08 A

0.06 A *

0.04 A

Effect size (mM)

0.02 A

: effects of GLPIR agonism on blood pres-
0.3 sure, where GLP1R agonist therapy
appears to lower blood pressure in indi-
viduals with high blood pressure but not
in nonhypertensive individuals (30, 31).
This highlights a limitation in the use of
genetic variants in target validation: that
the association of genetic variants is often
tested in individuals of “normal” physiol-
ogy, whereas clinical trials are generally
performed in individuals with prevalent
disease.

An important step in evaluating the
utility of genomics in target validation is
to understand the functional consequences
of variants. For potential novel targets,
whether the variant confers gain or loss
of function informs the development of

Gene

Fig. 2. Association of the GLP1R variant (rs10305492) with glycemic traits. (A) Genetic variant associ-
ation with glycemic traits. Data are SDs per minor allele at rs10305492. Fasting glucose results are from the
combined analysis (Table 1). Individual studies contributing to the associations for fasting insulin and 2-hour
glucose are in table S4. All results reflect point estimates and 95% confidence intervals (Cls) from a fixed-
effect meta-analysis of linear regression estimates. (B) Effect size of the GLP1R variant (in red) and loci pre-
viously reported to be associated with fasting glucose. Effect sizes are reported from discovery analyses of
available MAGIC results (50) and from the combined estimate for the GLP1R variant in (A).
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T either an agonist or an antagonist therapy.
& For example, LoF variants have been used
to understand the consequences of antag-
onism of a novel drug target (7, 32). How-
ever, researchers have gained insights
using variants validated as instruments
when their phenotypic associations mir-
rored pharmacological action, even in
the absence of strong functional insights
into the mechanism of those variants
(33). GLP1R agonist therapy reduces
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fasting glucose in humans, as does administration of GLP1, regardless of
the duration or severity of T2D (34). In mice, the loss of GLP1R leads to
fasting hyperglycaemia (35, 36). Together, these findings in humans and
in mice suggest that the glucose-lowering minor allele at rs10305492
confers gain of function. However, differences in basal activity of the
human and murine GLP1R (37) limit our ability to extrapolate findings
from GLPIR knockout mice to humans (15, 32). Previous attempts to
characterize the effect of this variant in cellular models have been in-
conclusive (38, 39). The rarity of putative LoF alleles in the GLPIR im-
paired our ability to restrict analyses to such variants. Although the
absence of definitive functional characterization is a limitation of this
study, our observation that the minor allele is strongly associated with
lower fasting glucose levels and is protective against T2D supports the

Phenotype Population /2
Fasting glucose - Nondiabetic 0
-8 T2D 91
- Genetics 0
2-hour glucose Nondiabetic
T2D 96
Genetics 0
Fasting insulin Nondiabetic 38
T2D 48
Genetics 21
Body mass/BMI* ° Nondiabetic 5
B T2D 85
Genetics 30
Systolic blood pressure —— Nondiabetic 0
= T2D 63
Genetics 0
Diastolic blood pressure Nondiabetic 0
T2D 56
Genetics 0
Resting heart rate © Nondiabetic 0
8- T2D 76
—— Genetics 54
Total cholesterol a Nondiabetic 0
a8 T2D 23
—or Genetics 37
LDL cholesterol -0~ Nondiabetic 0
a8 T2D 41
—or Genetics 32
HDL cholesterol —+o— Nondiabetic 55
—8— T2D 88
16— Genetics 47
Triglycerides —— Nondiabetic 57
H T2D 37
o Genetics 0
I I I I I I
-1.5 -1 -5-25 0 25 5
Lower with GLP1R agonist ~ Higher with GLP1R agonist
or carriage of 316Thr or carriage of 316 Thr

Standardized mean difference (95% ClI)

—o— Effect of GLP1R agonists in nondiabetics
—B— Effect of GLP1R agonists in patients with type 2 diabetes (T2
—©— Effect of genetic variant per 3.3 copies of 316Thr

Fig. 3. Comparison of the GLP1R variant (rs10305492) associations with effects observed in
clinical trials of GLP1R agonists in nondiabetic individuals and in individuals with T2D.
Genetic associations are all scaled to match the effects of GLP1R-agonists on fasting glucose [that
is, per 3.3 copies of the minor (A) allele]. Genetic variant results are B estimates and 95% Cls from
fixed-effect meta-analysis of linear regression results. Trial results are estimates from fixed-effect
meta-analyses of standardized mean differences between treatment and comparison groups of
the individual trials listed in table S3. *Trials reported effects on body mass, whereas genetic as-

sociations were only available for BMI.
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validity of the variant as a genetic instrument for GLP1R agonist ther-
apy. Future integration of large-scale human genetic data with function-
al characterization in appropriate cell models will allow a broader
application of variants, other than those characterized as LoF, in target
validation.

Although the GLPIR variant was not associated with any of the oth-
er nonglycemic or quantitative cardiovascular parameters, there was in-
sufficient evidence to suggest that the genetic associations and
pharmacological effects were different. Power calculations indicated
that to detect the expected association with systolic blood pressure or
resting heart rate, a sample size of more than 250,000 individuals would
be required. This is considerably larger than most current genetic
consortia, although this limitation could soon be overcome as larger stu-
dies become available (40), further strengthening
the promise of genomics in target validation. Al-
though we did not observe overall evidence for as-

6325 31322 sociation of variants other than the GLPIR variant,

39,469 the discovery phase, from which we selected var-

41 41 iants for follow-up, was relatively small in compar-

2313 391833 ison to the overall sample, and there remains a

o4 ’149 possibility of type II error.in the discovery Phase.

1095 551 As larger resources of genetic data become available,
55,854 these limitations will also be reduced.

531 265 The detection of rare adverse effects of a drug

1244 Jeas  remains a challenge. Pharmacoepidemiological

’ approaches using routine database analysis may

23171? 123;? identify rare adverse outcomes associated with

100,634 treatment, but the approach is rarely conclusive be-

443 173 cause of confounding, particularly by indication.

2106 o5 Our demonstration that the GLPIR variant is not

associated with pancreatic, breast, prostate, or ovar-

30317 1 4% ian cancer or with Parkinson’s or Alzheimer’s dis-

68,280 ease is limited by the upper bounds of CIs, which are

456 187  too high to allow strong inference about the likely

951 74 22‘21 long-term safety of GLP1R agonists with regard to

' these outcomes. Although these data represent the

225 157 largest resources available globally, the accumulation

71440  of studies with greater numbers of individuals with

456 g7  genetic data and robust disease outcome classifica-

710 _ 337 tion will considerably enhance the potential of this

5732 type of investigation. Comparisons of other traits

gg? ;g; and disease outcomes, beyond the primary indica-

73679  tions, make the assumption that pharmacological

effects are mediated via “on-target” effects and not
“off-target” effects (that is, those mediated by
effects of the agent on other nonspecific targets).
Thus, while our results offer insight into the effects
of GLP1R agonists, they do not necessarily apply to
other agents targeting the incretin pathway
through different mechanisms, such as by DPP-4
inhibition (41).

In conclusion, through a targeted exome sequen-
cing approach, we identified that a low-frequency
missense variant in GLPIR was associated with lower
fasting glucose and risk of T2D, similar to the effects
of GLPIR agonist therapy. This variant was also as-
sociated with lower risk of CHD, thus providing sup-
portive evidence that these agents are not likely to be
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available in a larger sample size
from 11 studies (Fig. 1) and were
Type 2 diabetes 25,868 122,393 * 0.83(0.76 —0.91) 9.4x10750 ana_lyzed together, We provide
the sample sizes for the discov-
Coronary heart 61,846 163,728 —— 093(087-098) 92x100 €Iy analyses in Fig. 1 and trait-
disease specific sample sizes in Table
1 (n =505 to 11,806). We aug-
_ 15082161 043 o mented the sequence data for
Pancreatic cancer 4987 8627 15(0.82-1.61) 0. the CoLaus study with imputed
Ovarian cancer 1879 5118 0.98(0.73-1.31) 0.92 data in the remainder of the
Breast cancer 5157 4838 0.88(0.70—-1.11) 0.28 study (n = 3539), where variants
. 2 .
Prostate cancer 3937 4423 1.16(0.91-1.48) 0.25 were imputable (R > 0.5), using
a custom imputation process on
individuals genotyped on the
Parkinson's disease 1.07 (0.80 - 1.43) 0.65 Aﬁ'}ﬂnetrix 500K chip but not in-
Alzheimer's disease 14,753 16,354 e 0.94(0.81-1.09) 04 cluded in the targeted sequencing
, , , , , , experiment (Supplementary
0.7 08 09 1 1.2 14 1.6 Materials).

OR per minor allele

Fig. 4. Association of the GLP1R variant (rs10305492) with disease outcomes. Association with disease outcomes are
reported per minor allele at rs10305492. Data show ORs and 95% Cls from logistic regression models.

associated with an unacceptable increase in cardiovascular risk and may
indeed be associated with benefit, a question currently being addressed in
randomized controlled trials. We propose that future drug development
and investment decisions could be informed by genomic data much ear-
lier in the development process, providing insight into both efficacy and
side effects.

METHODS

Study design

We studied six genes encoding therapeutic targets licensed or in devel-
opment for obesity or T2D (CNR2, DPP4, GLPIR, SLC5A1, HTR2C,
and MCHRI), drawn from a recent targeted exome sequencing study
of 202 genes encoding drug targets (8), which represented about 1% of
the coding genome and 7% of all genes considered current or potential
drug targets (8). In the “discovery analysis,” we investigated the associ-
ation of common and rare variants in these six genes with seven T2D-
and obesity-related traits (Fig. 1). We analyzed all variants that had an
(i) MAF >0.5% or well imputed (R* > 0.5) in CoLaus; (i) MAF >0.5%
in GEMS; or (iii) MAF >0.1% in BMI (given the larger sample size) in
the CoLaus study (42), the GEMS study (43), or all individuals with BMI
measurements. We examined 121 variants for association with six traits
in the CoLaus study (6 x 121 = 726 tests), four traits in GEMS (4 x 121 =
484 tests), and one trait in the BMI study, comprising a total of 1331
tests of association. First, we analyzed a subset of the population-based
CoLaus study (n = 2086) for T2D, obesity, waist circumference, fasting
glucose, fasting insulin, and 2-hour glucose traits. Second, in the GEMS
dyslipidemic case and normolipidaemic control study (#1c,ses = 787,
Neontrols = 792), we analyzed obesity, waist circumference, fasting glu-
cose, and fasting insulin traits. We performed discovery analyses in
the CoLaus and GEMS studies separately because of the different study
designs and traits analyzed in an attempt to maximize sensitivity to detect
associations that might be masked by context-dependent associa-
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Using results from the dis-
covery analyses, we identified
variants that were associated
with T2D- or obesity-related
traits at the P < 0.001 level or
were located in genes encoding targets of strategic interest to GSK, in-
cluding GLPIR, DPP4, CNR2, and HTR2C with a P value threshold of
<0.05. To maximize sensitivity to detect associations in these genes of
highest interest, we took forward to follow up those variants reaching
P < 0.05 in the discovery analyses. However, this did not affect the
threshold for statistical significance or overall o value (3.8 x 107°),
for which we accounted for all association tests performed in the dis-
covery analyses (n = 1331). The principal reason for prioritizing specific
genes was to ensure a balance between sensitivity for targets of high
priority to GSK and to maintain specificity: given that initial replication
was performed by de novo large-scale targeted genotyping, we were
practically unable to follow up vast numbers of variants. This does
not bias the variants selected for follow-up nor raise the risk of type I
error. The only variant we determined to be mimicking pharmaco-
logical manipulation was well beyond “genome-wide significance”
even if all possible low-frequency and common variants in the genome
had been tested.

We then genotyped seven variants in six genes in up to 39,979
follow-up participants of European ancestry drawn from multiple studies
(Fig. 1): CoLaus (when GEMS was the discovery sample), GEMS (when
CoLaus was the discovery set), Ely (44) (n = 1,722), EPIC-Norfolk (45)
(n = 25,313), Fenland (46) (n = 6379), and LOLIPOP (47) (n = 6565)
studies. The follow-up analysis of T2D included participants from the
Norfolk Diabetes Study (Mases = 5587 and #1controls = 19,012), the GenOA
study (Meases = 129 and noperors = 1501), and individuals with T2D from
the ADDITION study (48) (Mcases = 816) who were combined with ad-
ditional cases from the Ely study (#1c,ses = 116) and compared to non-
diabetic controls from the Ely study (ncontrols = 1,487).

We also performed additional in silico follow-up analysis to further
evaluate associations in collaborative studies utilizing results from the
MAGIC and CHARGE consortia. Five of the seven variants were avail-
able for in silico analysis (Table 1). Further details on each of the studies
and consortia are provided in the Supplementary Materials and tables S1
and S4.
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Statistical analyses

We carried out genetic association analyses on variants identified via tar-
geted sequencing using an additive genetic model by linear or logistic regres-
sion, adjusting for age and sex and other study-specific covariates. We
combined study-specific estimates using fixed-effect meta-analysis. We per-
formed analyses on standardized variables (mean, 0; SD, 1) and, as such,
expressed effect sizes as SDs for quantitative traits. In total, we analyzed
121 single nucleotide variants. Overall, we performed 1331 tests of associa-
tion in the discovery analyses, and, as such, associations that were P < 3.8 x
10~ in the combined analysis were deemed to be statistically significant.

We performed targeted genotyping of selected variants from discovery
analyses using Sequenom for the Ely, EPIC-Norfolk, Fenland, and ADDI-
TION studies and KASPar for the LOLIPOP study. Imputed data were also
available in the GenOA study using reference haplotypes from participants
in the previous sequencing study (8). We carried out genetic association
analyses in each study under an additive genetic model using linear or lo-
gistic regression, again adjusting for age-, sex-, and study-specific covariates.
We sought further in silico follow-up from summary association results
from the MAGIC and CHARGE consortia (Table 1). We converted sum-
mary association result effect sizes to SDs using the SD of fasting glucose
from the population-based Fenland study (SD, 0.65 mM) (46). We
meta-analyzed results from the discovery analysis, follow-up analysis,
and in silico follow-up analysis using a fixed-effect inverse-variance
weighted approach. The discovery analysis of the CoLaus study included
association results from the sequence variants and imputed variants (Table
1). In the entire CoLaus study, we later directly genotyped (KASPar tech-
nology) variants that had been imputed in the unsequenced CoLaus parti-
cipants study as part of the original follow-up analysis. The combined
analysis results in Table 1 therefore represent those from the directly gen-
otyped data.

For variants that showed statistically significant associations in the
combined analysis (P < 3.8 x 10°), we investigated their association
with a range of anthropometric, metabolic, and cardiovascular risk
factors and disease outcomes in the studies described previously, as well
as in additional studies described in tables S1 and S4 and in the Supple-
mentary Materials. We also investigated the association of variants
reaching statistical significance after follow-up (o < 3.8 x 107°) with
CHD through targeted genotyping and collaboration with large-scale
exome chip consortia (table S1). For these variants, we also investigated
association with a range of other disease outcomes (table S1), with a
particular focus on diseases previously suggested as potential opportu-
nities for repositioning (that is, where existing drugs might be used for
alternative indications). However, as the variant reaching statistical sig-
nificance was not well covered on existing GWAS (genome-wide asso-
ciation study) arrays or in HapMap, we were limited to those disease
outcomes for which we could obtain association data. For genes that
contained variants with P < 3.8 x 107" in the combined analysis, we
investigated the presence of putative LoF alleles in individuals in whom
we had performed targeted sequencing (8) and in individuals with
whole-genome sequencing from the UK10K study (www.uk10k.org).

Comparison of clinical trial effects and genetic associations.
Randomized clinical trials of GLP1R agonists were identified through
previous systematic reviews and by performing a supplementary liter-
ature search, as detailed in the Supplementary Materials. Only trials
with placebo or no-drug comparison groups (that is, no trials with
active comparison groups) with >4 weeks of drug treatment (that
is, no single-dose studies) and >10 participants per trial arm were in-
cluded. Treatment effects were expressed in SDs before pooling across

www.ScienceTranslationalMedicine.org

trials using random-effects meta-analysis (see table S3 for details of
clinical trials included). P values derived from Cochrane’s Q test were
used as a guide to assess whether there were pairwise differences be-
tween the rescaled genetic and trial estimates.

SUPPLEMENTARY MATERIALS

www.sciencetranslationalmedicine.org/cgi/content/full/8/341/341ra76/DC1
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Editor's Summary

At risk by association

Genetics could soon routinely tell clinicians whether certain drugs are putting patients at risk of
developing heart disease or cancer. Scott et al. looked at six genes that encode the targets of various
drugs for type 2 diabetes or obesity, to see whether any genetic variations were linked to metabolic
traits like body mass index and fasting glucose levels. Using several cohorts totaling more than 50,000
individuals, they landed on one particular variant in GLP1R--the gene encoding glucagon-like
peptide-1 receptor, which is the target for certain glucose-lowering drugs frequently used in the clinic,
like exenatide and liraglutide——associated with fasting glucose. The authors then compared this variant
against disease outcomes, like coronary heart disease (CHD). In more than 200,000 individual s——some
with heart disease, some as controls——the GLPR1 variant was actually protective against CHD, rather
than causing any additional risk, and was not associated with various cancers or neurological diseases.
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