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Background
Autism spectrum disorder (ASD) is a complex, neuropsychiatric disease, characterized mainly
by social interaction deficits, language impairments, and repetitive, stereotyped behaviors
already apparent in early childhood. The incidence of ASD is currently about one in 100 new-
borns with an increasing frequency. ASD is a very heterogeneous disease with a high degree of
phenotypic and genotypic variability. More than 100 genes and genomic regions have been
associated with ASD, each associated only with a small subset of patients. ASD is primarily
diagnosed based on the occurrence of two behaviors: (i) stereotyped and repetitive patterns of
behavior and restricted interest and (ii) impaired social interaction and communication. How-
ever, there are additional phenotypic alterations observed, such as mental retardation, anxiety,
attention deficit hyperactive disorder (ADHD), and epilepsy. The genetic complexity and the
behavioral variations pose a major obstacle in modelling ASD in mice. Mice are still necessary
in order to unravel underlying molecular mechanisms. The insights into these molecular mech-
anisms will lead to better treatment regimens. Thus, animal models are valuable and urgently
needed. However, to achieve this goal, at least two major difficulties have to be addressed: (i)
the often imprecise modelling of the human genomic mutation and, foremost, (ii) the neglect
of the effects that genetic background has on the manifestations of symptoms. The latter is of
utmost importance for the field of mouse models in ASD since it is known that behavior,
which is up to now the only diagnostic criteria for ASD (see above), is strongly dependent on
the genetic background [1,2].

What Is New?
In ASD, copy number variations (CNVs) are known to be associated with the disease. While
modelling the effect of disease-associated gene mutations, i.e., loss-of- function (knock-out), is
currently quite straightforward concerning construct validity, modelling the effect of CNVs
affecting a large genomic region is still a challenge. The CNV addressed in the report of Arbo-
gast et al. [3] is located at chromosome 16p11.2, encompassing 600 kb between BP4–BP5
breakpoint (BP) deletions and duplications, and accounts for approximately 1% of all ASD
cases [4]. The affected genomic region accommodates 28 protein-coding genes, most of which
are expressed in the brain. Adding to already existing mouse models of this CNV [5,6], Arbo-
gast et al. have modelled the deletion and duplications in a highly precise manner: 1. They
modelled the CNV at precise orthologous positions to include all protein-coding genes so that
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no additional genomic elements within the syntenic region might interfere with the symptom-
atic outcome. 2. They generated both deletion and duplication of the precise syntenic region in
the mouse in order to assess the copy number effect of the mutation. Thus, they have convinc-
ingly addressed the first criticism concerning appropriate mouse models in ASD.

Arbogast et al. carried out the initial behavioral analysis of the mice carrying either the
duplication or the deletion of this genomic region on a pure C57BL/6N background. Mice car-
rying the deletion of the genomic region displayed hyperactivity, repetitive behaviors, and
memory deficits reminiscent of ASD symptoms. In contrast, the mice carrying a duplication of
the region behaved mostly the opposite. In order to prove the effect of the copy number of this
region, the authors generated pseudo-disomic mice by crossing the deletion mutant with the
duplication mutant. Indeed, most of the observed phenotypes were restored to normal levels in
these mice, proving the implication of dosage-sensitive genes possibly influencing the above
behaviors. This hypothesis is substantiated by the transcriptome analysis performed in this
study, showing that the majority of genes in these genomic regions exhibit mRNA levels pro-
portional to the CNV copy number.

All these findings are in good agreement with earlier mouse models modelling the 16p11.2
BP4-BP5 CNVs. However, the authors carried the analysis further by addressing the effect of
the genetic background, thus addressing the second important criticism concerning modelling
ASD in mice. They found that the genetic background has a profound effect on the behavioral
outcome. The genetic background effect was obvious in very evident phenotypes—such as
rates of neonatal lethality in the deletion mutants—but, most importantly, mice with a C57BL/
6NxC3B hybrid background displayed a social interaction phenotype not yet reported in any
mouse model for this region (Fig 1). This is most likely due to the fact that in C57BL/6N wild-
type mice social interaction phenotypes are hard to detect. Indeed, Arbogast et al. showed that
the level of social interaction of mice of this inbred strain is low when compared to the interac-
tion level of mice on a C57BL/6NxC3B hybrid background. Thus, it is of the highest impor-
tance to include the effects of the genetic background in the analysis of behavioral phenotypes,
both at the level of the analysis and at the level of the experimental design.

Another aspect of this study that jumps out at the reader immediately is the obvious dis-
crepancy concerning the metabolic defects between mice and humans carrying the 16p11.2
BP4-BP5 rearrangements. Even though the mice show a phenotype in this respect, it is the
opposite of what is observed in humans; i.e., deletions lead to weight loss in mice, whereas
humans with deletions in this region exhibit obesity. Interestingly, this phenotype was not
altered by the genetic background indicating that the effects on metabolic function(s) are
robust. A similar discrepancy between human and mouse phenotypes was observed concerning
skull morphology. These phenotypic discrepancies might reflect the occurrence of small geno-
mic changes during evolution affecting the regions, i.e., where the BP take place, resulting in
altered interaction of elements located outside the BP with genes within. This hypothesis again
pushes the first criticism (that is the precise modelling of CNVs in ASD) to the next level, in
which the surrounding regions of the BP also need to be considered.

The Next Levels
With regard to modelling of ASD in mice, the paper by Arbogast et al. made a clear statement
concerning the importance of the genetic background for detecting behavioral ASD-related
phenotypes as well as for the importance of the introduction of the precise mutation. The latter
will be improved due to the discovery of the CRISPR/Cas9 technology, which allows fast gener-
ation of nested, reciprocal gene deletions and duplications. Thus, we will be able to narrow
down the genes responsible for the different phenotypic alterations associated with
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chromosomal 16p11.2 deletions and duplications followed by gene-specific loss- and gain-of-
function studies [7–9]. Furthermore, the dynamic alterations of transcriptional regulation and
protein interaction networks of the genes located within the BPs during critical periods of
development will enable us to unravel the molecular networks and possible mechanisms
underlying the various symptoms [10]. Last but not least, employing an array of brain circuit
visualization and interrogation tools such as CLARITY, viral tracing, and optogenetics in com-
bination with the various deletion and gene knockout models will allow us to determine altered
neuronal subtypes, their projections, biophysical properties, as well as activity patterns [11],
giving insights at the systemic level of the disease.

There are still additional issues to be addressed in the field of modelling ASD: the multifac-
torial etiology of ASD and the evolutionary (species-specific) aspects. Whereas the first might
still be achieved, e.g., evaluation of environmental impact, the latter naturally will preclude a
1:1 modelling of the disease in animals. However, if we curtail our expectations of animal mod-
els in respect to reflecting the full-blown pathology of the diseases by mirroring exactly all
phenotypes—specifically, behavior—we will start to re-appreciate their usefulness for our

Fig 1. Mice carrying a deletion syntenic to the human chromosome 16p11.2 (Sult1a1-Spn) exhibit multiple behavioral phenotypes associated
with ASD. Intriguingly, two of the key behavioral phenotypes (social interaction and social preference) of ASD are highly genetic-background–dependent.

doi:10.1371/journal.pgen.1006013.g001
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understanding of the molecular mechanisms of the disease process. Taken together, the find-
ings and approaches highlighted in this paper—by working towards better genetic modelling
strategies, taking into account the effects of genetic background, and, specifically, combining
phenotypic analysis with molecular analysis—are pointing the way towards understanding dis-
ease-causing molecular and cellular mechanisms, which are the ultimate target for disease-
modifying therapies.
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