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Rationale: Coronary artery disease (CAD) is a critical determinant of morbidity and mortality. Previous studies 
have identified several cardiovascular disease risk factors, which may partly arise from a shared genetic basis with 
CAD, and thus be useful for discovery of CAD genes.

Objective: We aimed to improve discovery of CAD genes and inform the pathogenic relationship between CAD and 
several cardiovascular disease risk factors using a shared polygenic signal–informed statistical framework.

Methods and Results: Using genome-wide association studies summary statistics and shared polygenic pleiotropy-
informed conditional and conjunctional false discovery rate methodology, we systematically investigated genetic 
overlap between CAD and 8 traits related to cardiovascular disease risk factors: low-density lipoprotein cholesterol, 
high-density lipoprotein cholesterol, triglycerides, type 2 diabetes mellitus, C-reactive protein, body mass index, 
systolic blood pressure, and type 1 diabetes mellitus. We found significant enrichment of single-nucleotide 
polymorphisms associated with CAD as a function of their association with low-density lipoprotein, high-density 
lipoprotein, triglycerides, type 2 diabetes mellitus, C-reactive protein, body mass index, systolic blood pressure, and 
type 1 diabetes mellitus. Applying the conditional false discovery rate method to the enriched phenotypes, we identified 
67 novel loci associated with CAD (overall conditional false discovery rate <0.01). Furthermore, we identified 53 loci 
with significant effects in both CAD and at least 1 of low-density lipoprotein, high-density lipoprotein, triglycerides, 
type 2 diabetes mellitus, C-reactive protein, systolic blood pressure, and type 1 diabetes mellitus.

Conclusions: The observed polygenic overlap between CAD and cardiometabolic risk factors indicates a pathogenic 
relation that warrants further investigation. The new gene loci identified implicate novel genetic mechanisms 
related to CAD.    (Circ Res. 2016;118:83-94. DOI: 10.1161/CIRCRESAHA.115.306629.)
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Coronary artery disease (CAD) is a leading cause of death 
worldwide. The development of CAD is influenced by 

both genetic and environmental factors, as evident by its high 
heritability (40% to 50%), shown in twin and family stud-
ies.1 Genome-wide association studies (GWAS) in CAD have 
identified a total of 46 genetic variants reaching genome-wide 
significance for CAD.2 However, the identified genetic vari-
ants explain only a small proportion of estimated heritability,2 
that is, only a small amount of the familial clustering of CAD. 
This apparent paradox is widely seen across GWAS for com-
plex traits and is termed the missing heritability problem.3,4 
However, recent discoveries suggest that existing GWAS can 
capture more of the heritability because of common variants if 
proper statistical tools are used.5–7

Editorial, see p 14
Hypertension,8 obesity,9 abdominal fat,10 diabetes mel-

litus,11 dyslipidemia,12–14 and inflammation as reflected by 
high levels of C-reactive protein (CRP) 15 are associated with 
CAD. Several studies have found overlapping pathophysiol-
ogy,16 but the underlying shared genetic factors and the extent 
of the polygenic overlap across these phenotypes are mainly 
unknown. We have developed an analytic framework for com-
plex traits building on the polygenic overlap17 between two or 
more phenotypes.6 This method has the potential to capture 
more of the polygenic effects in complex traits18 and has suc-
cessfully been applied to psychiatric,6 cardiovascular,19 neuro-
logical diseases,20 and cancer.21 This shared polygenic signal 
method could be particularly informative in CAD, a disease 
with known comorbidities and overlapping pathophysiology 
with related cardiovascular and metabolic disorders.2,22–25

We used this approach to leverage the power of multiple 
large genomic studies to describe the extent of the polygenic 
overlap and identify overlapping single-nucleotide polymor-
phisms (SNPs) between CAD and 8 associated traits and car-
diovascular disease (CVD) risk factors, where recent GWAS 
results are available: low-density lipoprotein (LDL) choles-
terol,26 high-density lipoprotein (HDL) cholesterol,26 triglyc-
erides,26 type 2 diabetes mellitus (T2D),27 CRP,28 body mass 
index (BMI),29 systolic blood pressure (SBP),30,31 and type 1 

diabetes mellitus (T1D).32 By combining data from these differ-
ent GWAS, we hypothesized that the shared polygenic signal 
approach can improve discovery of CAD genes and inform the 
pathogenic relationship between CAD and CVD risk factors.

Methods
Participant Samples
We obtained summary statistics from large-scale genomic studies 
(P values and risk allele when available) from public access web-
sites or through collaboration with investigators. The summary 
statistics are based on the Metabochip33 for CAD2 (n=194 427, in-
cluding 63 746 cases) and T2D27 (n=149 830), and standard GWAS 
for LDL26 (n=95 454), HDL26 (n=99 900), triglycerides26 (n=96 568), 
BMI29 (n=123 865), SBP31 (n=203 056), T1D32 (n=16 559), and 
CRP (n=66 185).28 Details on the inclusion criteria and phenotype 
characteristics of the different GWAS are described in the original 
publications.

There were some overlapping controls between CAD and T2D 
and also between CAD and T1D. In both instances, this was mainly 
because of the inclusion of ≥1 substudies using a shared control de-
sign (eg, used by the Wellcome Trust Case Control Consortium and 
deCODE Genetics34; Online Table I). There was also some sample 
overlap between CAD and LDL, HDL, triglycerides, BMI, and SBP 
(Online Table I). Note that even without raw data, an upper bound for 
the amount of sample overlap is obtainable from the original publica-
tions by comparing the substudy definitions and samples sizes for 
CAD and each secondary trait (correlation of uncorrected test statis-
tics because of sample overlap is given in Online Table I; M. LeBlanc 
et al, unpublished data, 2015).

The Women’s Genome Health Study (WGHS), initiated in 1992, is 
an ongoing prospective cohort including 23 294 initially healthy North 
American women of European ancestry with whole-genome genotype 
data and follow-up for major incident health events, including myo-
cardial infarction (MI) and coronary heart disease (CHD; composed of 
MI, CHD death, and coronary revascularization) are recorded.35 Over 
the ≈20 years of follow-up, there were 387 and 1007 cases, respec-
tively, of incident MI and CHD among the 23 294 women.

The relevant institutional review boards or ethics committees ap-
proved the research protocol of the individual GWAS, and all partici-
pants provided written informed consent.

Statistical Analyses
We use Matlab (version R2013a) for all statistical analysis unless 
otherwise indicated. First, we looked for evidence of overlapping 
polygenic signal for CAD and each secondary trait. In the absence of 
an overlapping polygenic signal, the expectation is that the P value 
distribution for CAD is independent from the P values in the sec-
ondary trait. The dependency of the P value distribution for CAD 
on each secondary trait can be visually explored using conditional 
quantile–quantile plots to evaluate genetic ‘enrichment’ in CAD as 
a function of a secondary phenotype. Quantile–quantile plots are a 
descriptive tool for visualizing the difference between an observed 
distribution and a theoretical distribution. With GWAS, quantiles 
of the observed (nominal) P values, denoted by p, are plotted on 
the y axis, and the quantiles of the theoretical null distribution (ie, 
the uniform distribution), denoted by q, are plotted on the x axis. 
Conventionally, the −log10 transform is used to emphasize tail areas. 
If there is no deviation from the null distribution and thus no true 
genetic association present, a quantile–quantile plot falls on the 1:1 
line. Leftward deflections of the observed distribution from the null 
line reflect increased tail probabilities in the distribution of the test 
statistics, and consequently an overabundance of low P values com-
pared with that expected by chance, termed enrichment. Here, we 
constructed conditional quantile–quantile plots to investigate whether 
enrichment in the primary phenotype (CAD) is related to significance 
in a given secondary phenotype, as visualized by a leftward deflection 
from the null line on the conditional quantile–quantile plot. A con-
ditional quantile–quantile plot was separately constructed for CAD 
and each of the 8 secondary traits. To test for statistical significance 

Nonstandard Abbreviations and Acronyms

BMI	 body mass index

CAD	 coronary artery disease

CRP	 C-reactive protein

CVD	 cardiovascular disease

eQTL	 expression quantitative trait locus

FDR	 false discovery rate

GWAS	 genome-wide association study

HDL	 high-density lipoprotein

LCL	 lymphoblastoid cells

LDL	 low-density lipoprotein

SBP	 systolic blood pressure

SNP	 single-nucleotide polymorphism

T1D	 type 1 diabetes mellitus

T2D	 type 2 diabetes mellitus
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associated with these conditional quantile–quantile plots, we used the 
Anderson–Darling test.21 In brief, this is a statistical test of whether 
a given sample of data is drawn from a given probability distribution 
and allows us to determine if an observed leftward deflection is statis-
tically significant.21 In this case, we used set of SNPs (GWAS P>0.1 
in the secondary trait), that is, SNPs that are signal depleted in the 
secondary trait, as the comparison set.

Second, once statistically significant enrichment was confirmed, 
we computed conditional false discovery rate (FDR), a statistical 
framework that leverages shared polygenic signal,6,18 to improve 
the discovery of SNPs for the primary trait of interest, CAD. The 
standard FDR is designed to control the expected proportion of in-
correctly rejected null hypotheses and is used to correct for multiple 
comparisons. An extension of the standard FDR is the conditional 
FDR,6 which in our application, is used to incorporate information 
from GWAS summary statistics of a second phenotype. The condi-
tional FDR is defined as the probability of a SNP being null in the first 
phenotype given that the P values in the first and second phenotype 
are as small as or smaller than the observed ones (Methods in the 
Online Data Supplement). Importantly, ranking SNPs according to 
conditional FDR reorders SNPs compared with their raw CAD P val-
ues, and this new ranking favors SNPs showing signal in both CAD 
and the given secondary trait. In contrast, the standard FDR does not 
rerank the SNPs compared with their raw CAD P values, but instead 
suggests a different significance cutoff compared with the Bonferroni 
correction.

In additional analysis, we computed the conjunctional FDR18 to 
detect loci showing strong evidence of association with both CAD 
and the given secondary trait. Low values in conditional FDR can be 
driven by association with both phenotypes or with the primary phe-
notype alone, whereas low values in conjunctional FDR are driven by 
association with both phenotypes.

The application and interpretation of FDR-based methodology 
are more challenging for post-GWAS specialized SNP panels, such 
as the Metabochip.33 The standard FDR is widely applied in GWAS, 
where any given SNP is assumed to have the same prior probability 
of association as all other SNPs. The Metabochip (≈200 000 SNPs) 
is designed to follow up SNPs of interest relating to metabolic and 
cardiovascular traits, including fine mapping around genome-wide 
significant SNPs. As such, the true positives (and the false positives) 
come in large-dependent clumps. Large-scale dependence in the sig-
nal can lead to biased FDR.36 To correct for this bias, we used a link-
age disequilibrium-pruned set of SNPs to estimate the conditional 
FDR distribution, which was then used for estimating the conditional 
FDR for the full SNP set (Detailed Methods of this estimation pro-
cedure are available in the Online Data Supplement). To visualize 
the conditional and conjunctional FDR, we constructed Manhattan 
plots. Detailed information on conditional quantile–quantile plots, 
Manhattan plots, and conditional and conjunctional FDR can be 
found in earlier reports6,18 and in the Online Data Supplement.

The conditional FDR assumes independent samples for CAD 
and each of the secondary traits. However, several of the participants 
were included in both a secondary trait GWAS and in the CAD study. 
Partially overlapping subjects between studies leads to dependencies 
between the test statistics for different traits for a given SNP under the 
null hypothesis.37 We estimated the expected correlation of the cross-
trait GWAS test statistics under the null hypothesis of no genetic as-
sociations using a similar method to the one described for GWAS 
meta-analysis37,38 and corrected for the estimated correlation because 
of shared subjects using the Mahalanobis transformation (LeBlanc 
et al in preparation). These corrected test statistics were used in all 
further analysis.

Stratified Replication Rate
As an internal validation of stratified enrichment, we performed a 
stratified replication rate analysis using methods described previous-
ly,18 where the contributing studies of the CARDIoGRAMplusC4D 
Consortium were repeatedly divided into independent discovery 
and validation sets. The purpose of this analysis is to show that an 
observed pattern of stratified enrichment is not because of spurious 
effects. In brief, we randomly selected half of the studies (24) for 

the discovery set and used the remaining studies for replication and 
repeated this procedure 200 times. For each SNP in the replication 
set and the discovery set, we computed a meta-analysis test statis-
tic (Liptak method). For the discovery set, we calculated the associ-
ated 2-tailed P values, whereas for the replication samples they were 
converted to 1-tailed P values to preserve the direction of effect in 
the discovery sample. We then created a vector of −log10 (P value) 
cutoffs and binned SNPs according to their P values in the discovery 
set SNPs. For each bin, we kept track of their respective P values in 
the replication set. We can then calculate the replication rate for each 
bin as defined by the proportion of SNPs in that bin, which has a rep-
lication P value <0.05. We checked for stratified replication rates by 
plotting the replication rate curves for 4 strata based on significance 
in each secondary trait, using the same strata definitions as for the 
conditional quantile–quantile plots.

Independent Validation
For all novel CAD SNPs identified in the conditional FDR analysis, 
we checked for nominal replication (P<0.05) in the WGHS. Because 
the WGHS data are collected prospectively, we conducted age-ad-
justed Cox regression over ≈20 years of follow-up, ending in 2013 
for both MI and CHD.

Expression Quantitative Trait Loci Annotation
We tested whether the novel CAD SNPs discovered in the current 
study are associated with genotype-dependent gene expression in 
various tissue types. Such SNPs are known as expression quantita-
tive trait loci (eQTLs). To this end, we cross-referenced our novel 
findings from the conditional FDR analysis with 3 cis-eQTL data-
bases: in whole blood39 (the most powerful eQTL database available), 
adipose tissue40 (relevant for metabolic disease), and lymphoblastoid 
cells (LCL).40 The whole-blood eQTL data have been collected in a 
large collaborative effort (n=5311 samples), while the adipose and 
LCL eQTLs are from a sample size of approximately n=850. We con-
sidered a SNP to be an eQTL using an FDR q value cutoff of 0.05. 
The FDR q values were already available for whole blood, whereas 
for adipose tissue and LCL we downloaded the publically available 
eQTL data and calculated q values using the qvalue() package avail-
able from Bioconductor (version 2.14) in R (version 3.1.1).

Biological Pathway Analysis
To better understand the biological context of our results, we con-
ducted an Ingenuity Pathway Analysis (IPA, QIAGEN Redwood 
City, www.qiagen.com/ingenuity) including all previously reported 
CAD genes and the nearest annotated gene for each novel SNP re-
ported in our study. The available molecules and relationships in the 
IPA Knowledge Base for mammal (humans, mouse or rat) were con-
sidered. We set the confidence filter to relationships where the con-
fidence is experimentally observed. We allowed a maximum size of 
35 genes for generating networks, and we allowed ≤25 networks in 
the overall analysis. IPA computes a score for each network accord-
ing to the fit of that network to a set of focus gene, and P values are 
calculated using the right-tailed Fisher exact test.

Results
We used a 2-step analysis strategy. First, we assessed over-
lapping polygenic enrichment for CAD and each of the other 
traits via conditional quantile–quantile plots and applied the 
Anderson–Darling test to define which of the 8 secondary 
traits show significant polygenic overlap. This test requires 
the direction of the association and as this information was 
unavailable for SBP, we relied on a visual inspection of the 
conditional quantile–quantile plot for SBP. As illustrated in 
Online Table II, all testable traits showed significant enrich-
ment after Bonferroni correction for 21 tests, and SBP showed 
strong visual evidence for enrichment. Therefore, all 8 sec-
ondary traits were retained for the second step of the analy-
sis. Second, we applied conditional and conjunctional FDR 
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methods to identify new CAD risk loci and to identify over-
lapping loci between CAD and each of the 8 associated traits. 
Overall, FDR thresholds of 0.01 and 0.05 were chosen for con-
ditional and conjunctional FDR, respectively. Conservatively 
adjusting for the 8 secondary traits being considered,21 this 
translated to thresholds of 0.01/8 and 0.05/8 for conditional 
and conjunctional FDR.

Conditional quantile–quantile plots for CAD conditioned 
on nominal P values of association with LDL, CRP, T1D, and 
T2D showed significant enrichment across different levels of 
significance (Figure  1). Similar significant enrichment pat-
terns were seen for HDL, triglycerides, SBP, and BMI (Online 
Figure I). The increasing leftward shift with more strictly de-
fined strata based on nominal P values of associated pheno-
types suggests a greater proportion of true associations for a 
given nominal CAD P value. This is indicative of cross-trait 
polygenic enrichment. As illustrated in Figure 1A, LDL, the 
proportion of SNPs in the −log

10
 (p

LDL
) ≥3 category reaching a 

given significance level (eg, −log
10

 (p
CAD

) >6) is much greater 
than that of all SNP category, indicating a high level of enrich-
ment (Figure 1).

Stratified replication rates were observed for all secondary 
traits with the exception of BMI (Online Figure II), indicat-
ing that the observed enrichment in the conditional quantile–
quantile plots is also associated with increased replication 
rates. The observed pattern of stratified enrichment does not 
result from spurious effects, and replication rate is increased 
by conditioning on significance in each of the secondary traits, 
with the possible exception of BMI.

Conditional and conjunctional FDR were calculated for 
CAD paired with each of the 8 secondary phenotypes show-
ing enrichment. The results of each analysis were filtered 
as follows. First, we filtered the lists of significant SNPs by 
their linkage disequilibrium patterns as observed in the 1000 
Genomes41 data set and report only the most significant result 
per annotated gene. We considered a SNP to be an independent 

Figure 1. Shared polygenic enrichment. Conditional quantile–quantile plot of nominal vs empirical −log10 P values in coronary artery 
disease (CAD) as a function of significance of association with (A) low-density lipoprotein (LDL) cholesterol, (B) C-reactive protein (CRP), 
(C) type 1 diabetes mellitus (T1D), and (D) type 2 diabetes mellitus (T2D) at the level of −log10(P) >0, –log10(P) >1, –log10(P) >2, and –log10(P) 
>3 corresponding to P<1, P<0.1, P<0.01, and P<0.001, respectively. Because of the linkage disequilibrium structure on the Metabochip, 
a linkage disequilibrium–pruned set of single-nucleotide polymorphisms (SNPs) was used for the quantile–quantile plots. Input P values 
were adjusted for shared subjects, if present. Dotted lines indicate the null-hypothesis.
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Table 1.  Conditional FDR (<0.01), After Controlling for Multiple Testing Across Phenotypes

SNP Gene Chr CAD T2D CAD T1D CAD LDL CAD HDL CAD TG CAD BMI CAD CRP CAD SBP
Minimum 
condFDR

CAD
P Value

rs10747342* HS2ST1 1 2.59E−03 1.16E−03† 3.11E−03 1.67E−03 1.27E−03 2.45E−03 2.94E−03 3.00E−03 T1D 6.57E−06

rs1418458* BC067883 1 6.55E−03 1.21E−03† 4.43E−03 6.45E−03 6.63E−03 5.72E−03 6.97E−03 6.19E−03 T1D 1.81E−05

rs4268379 SARS 1 6.76E−05† 3.20E−04† 8.30E−04† 5.69E−04† 7.20E−04† 2.95E−04† 2.63E−04† 5.81E−04† T2D 7.46E−07

rs11806316 NGF 1 9.55E−04† 2.11E−04† 9.30E−04† 9.70E−04† 5.07E−04† 6.88E−04† 9.78E−04† 1.02E−03† T1D 1.54E−06

rs10788792* GOLPH3L 1 8.12E−03 NA 1.01E−03† 4.44E−03 4.99E−03 8.66E−03 8.30E−03 7.38E−03 LDL 3.35E−05

rs10800418 NME7 1 1.11E−03† 1.06E−04† 1.77E−04† 9.12E−04† 5.83E−04† 6.23E−04† 8.58E−04† 5.96E−04† T1D 1.19E−06

rs6700559 DDX59 1 8.19E−04† 5.55E−05† 6.76E−04† 6.78E−04† 7.20E−04† 4.39E−04† 6.60E−04† 6.00E−04† T1D 7.79E−07

rs2820315 LMOD1 1 1.15E−03† NA 4.83E−04† 1.31E−03 1.28E−03 3.81E−04† 8.68E−04† 9.08E−04† BMI 1.70E−06

rs6663784* CAPN9 1 4.03E−03 3.50E−03 3.11E−03 1.26E−03 1.20E−03† 2.51E−03 3.62E−03 2.55E−03 TG 7.35E−06

rs16986953 AK097927 2 8.33E−04† NA 3.67E−04† 8.64E−04† 6.80E−04† 5.19E−04† 7.53E−04† 7.44E−04† LDL 9.12E−07

rs10186133 IL1F10 2 7.23E−03 5.93E−03 4.81E−03 6.45E−03 7.16E−03 6.75E−03 7.28E−04† 6.19E−03 CRP 2.21E−05

rs2322864* CXCR4 2 8.60E−03 NA 6.07E−04† 5.84E−03 5.19E−03 6.21E−03 6.41E−03 7.48E−03 LDL 2.26E−05

rs6435757* IKZF2 2 2.25E−03 1.19E−03† 1.67E−03 2.19E−03 2.01E−03 1.50E−03 1.31E−03 1.71E−03 T1D 3.13E−06

rs13423088* BC017935 2 NA NA NA NA NA NA 1.25E−03 6.97E−04† SBP 2.48E−06

rs7419961* AX748264 2 4.15E−03 NA 8.96E−04† 2.24E−03 2.40E−03 4.09E−03 3.61E−03 3.13E−03 LDL 9.36E−06

rs748431* FGD5 3 2.88E−03 2.79E−03 1.66E−03 3.01E−03 4.43E−03 3.13E−03 4.68E−03 4.95E−04† SBP 1.18E−05

rs11715915* AMT 3 3.76E−03 NA 2.68E−03 3.35E−03 1.83E−03 2.41E−03 1.12E−03† 2.79E−04† SBP 6.29E−06

rs1512301* GNPDA2 4 5.05E−03 3.79E−03 1.15E−03† 4.24E−03 4.44E−03 3.55E−03 4.21E−03 4.04E−03 LDL 1.09E−05

rs4690974* MAP9 4 8.50E−03 NA 6.62E−03 8.56E−03 8.54E−03 7.94E−03 7.46E−03 8.62E−04† SBP 2.52E−05

rs2736100* TERT 5 2.47E−03 5.57E−04† 1.17E−03† 7.17E−04† 9.36E−04† 2.11E−03 1.00E−03† 1.86E−03 T1D 4.33E−06

rs12916* HMGCR 5 3.54E−03 NA 1.40E−02 3.01E−03 5.18E−03 1.13E−03† 4.21E−03 4.04E−03 BMI 1.10E−05

rs246600 ARHGAP26 5 9.47E−05† 1.07E−04† 8.11E−05† 1.06E−04† 1.36E−04† 4.80E−05† 5.72E−05† 8.63E−05† BMI 7.84E−08

rs2814982* C6orf106 6 3.47E−03 3.35E−03 5.20E−04† 3.03E−03 4.21E−03 3.35E−03 2.54E−03 3.46E−03 LDL 7.83E−06

rs1321309* CDKN1A 6 2.25E−03 NA 1.63E−03 2.46E−03 1.86E−03 2.09E−03 1.08E−03† 2.07E−03 CRP 4.18E−06

rs6905288* VEGFA 6 1.85E−03 2.95E−03 1.46E−03 2.56E−03 3.46E−03 1.66E−03 2.94E−03 2.79E−04† SBP 6.21E−06

rs9367716* PRIM2 6 1.98E−03 2.74E−04† 2.44E−03 2.06E−03 2.91E−03 2.04E−03 1.93E−03 3.42E−03 T1D 7.48E−06

rs4613862 BC038576 6 1.49E−03 8.76E−04† 1.30E−03 4.99E−04† 6.22E−04† 5.35E−04† 1.04E−03† 1.09E−03† HDL 1.73E−06

rs12663498* PLEKHG1 6 5.67E−03 4.25E−03 4.44E−03 2.63E−03 1.86E−03 3.03E−03 1.90E−03 6.73E−04† SBP 1.29E−05

rs1247351 MAP3K4 6 9.58E−04† 7.75E−04† 2.16E−04† 8.64E−04† 7.20E−04† 2.96E−04† 8.00E−04† 5.92E−04† LDL 9.01E−07

rs10278591* MAD1 7 2.25E−03 1.67E−03 1.82E−03 1.35E−03 1.21E−03† 1.65E−03 2.00E−03 1.49E−03 TG 3.78E−06

rs11204085 SLC18A1 8 2.32E−04† NA 1.79E−04† 9.24E−04† 1.50E−03 1.58E−04† 1.38E−04† 1.63E−04† CRP 1.69E−07

rs6984210 BMP1 8 NA NA NA NA NA NA 9.67E−04† 8.66E−04† SBP 1.22E−06

rs12343412* SLC44A1 9 2.55E−03 3.33E−04† 1.34E−03 3.02E−03 2.63E−03 1.47E−03 2.65E−03 2.37E−03 T1D 4.78E−06

rs867764* CAMK1D 10 2.32E−03 1.67E−03 1.97E−03 1.41E−03 1.61E−03 9.86E−04† 1.79E−03 1.44E−03 BMI 3.22E−06

rs3748242 ANXA11 10 5.54E−04† 4.40E−04† 4.98E−04† 4.65E−04† 4.88E−04† 4.32E−04† 2.83E−04† 3.69E−04† CRP 5.29E−07

rs1980653 OBFC1 10 1.43E−03 1.08E−03† 4.54E−04† 9.12E−04† 8.15E−04† 8.21E−04† 1.10E−03† 1.06E−03† LDL 1.59E−06

rs425325* PLEKHA7 11 5.77E−03 NA 3.86E−03 3.64E−03 4.69E−03 4.53E−03 4.46E−03 6.73E−04† SBP 1.29E−05

rs12801636 PCNXL3 11 5.49E−04† 9.15E−04† 2.63E−04† 6.50E−04† 9.87E−04† 6.02E−04† 9.33E−05† 1.77E−04† CRP 1.15E−06

rs590121 SERPINH1 11 6.67E−04† NA 5.97E−04† 7.20E−04† 6.80E−04† 5.66E−04† 5.52E−04† 6.42E−04† CRP 7.76E−07

rs7306455* NDUFA12 12 2.64E−03 9.15E−04† 1.95E−03 2.44E−03 2.49E−03 1.23E−03† 2.00E−03 2.07E−03 T1D 3.70E−06

rs10774613 CUX2 12 3.63E−04† 1.97E−05† 5.87E−05† 3.96E−04† 5.12E−04† 1.91E−04† 2.93E−04† 2.10E−04† T1D 3.96E−07

rs7296651* ALDH2 12 NA 1.25E−04† NA NA NA NA 1.83E−04† 1.54E−04† T1D 3.15E−06

rs11066320 PTPN11 12 1.23E−04† 4.05E−06† 1.28E−05† 8.40E−05† 1.10E−04† 1.14E−05† 6.92E−05† 5.55E−06† T1D 6.70E−08

rs1015249* RPH3A 12 5.01E−03 3.32E−04† 4.25E−04† 4.09E−03 2.15E−03 2.29E−03 4.41E−03 1.58E−03 T1D 9.64E−06

rs2708081 OASL 12 6.75E−05† 6.86E−05† 1.22E−04† 1.14E−04† 3.56E−04† 2.34E−04† 3.41E−05† 2.70E−04† CRP 3.08E−07

rs825483* ZNF664 12 8.27E−04† 3.08E−03 3.11E−03 2.56E−03 2.48E−03 1.49E−03 2.94E−03 2.15E−03 T2D 5.81E−06

rs11057830 SCARB1 12 1.73E−04† NA 7.08E−05† 9.07E−05† 3.17E−04† 8.59E−05† 1.51E−04† 1.04E−04† LDL 1.48E−07

rs9603710* TTL/TEL 13 1.98E−03 NA 1.22E−03† 2.01E−03 2.01E−03 1.62E−03 1.90E−03 1.80E−03 LDL 3.21E−06

rs9316753 BC044614 13 1.01E−03† 7.33E−04† 3.92E−04† 4.08E−04† 7.33E−04† 5.35E−04† 7.53E−04† 6.80E−04† LDL 9.12E−07

rs2273996* LMO7 13 1.40E−02 1.22E−03† 1.20E−02 9.47E−03 1.36E−02 1.16E−02 1.26E−02 1.13E−02 T1D 5.13E−05
(Continued )
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finding if the linkage disequilibrium, defined using r2, was 
<0.2 with all other SNPs in the filtered list. Second, we further 
filtered the list of significant SNPs for novelty with respect 
to previously published CAD SNPs. We filtered out any pre-
viously reported genes and SNPs, including SNPs in linkage 
disequilibrium (r2>0.2) with those previously reported SNPs. 
Thus, the list of significant SNPs presented in Table 1 repre-
sent, to the best of our knowledge, independent novel SNPs 
for CAD. The corresponding conditional Manhattan plot is 
given in Figure 2.

Over all 8 secondary traits, we identify 101 SNPs associat-
ed with CAD, 67 of which have not previously associated with 
CAD (previously reported SNPs not shown). Many of these 
new loci are located in regions with borderline significant as-
sociation with CAD in previous studies,42 as is evident by the 
CAD association P value column given in Table 1. Of interest, 
several of the identified loci are found across the conditional 
analysis from several risk factors. These loci are not found 
using standard methods applying a genome-wide Bonferroni 
correction.

We looked to the WGHS for independent validation of 
these 67 new CAD SNPs and 12 of these show nominal repli-
cation for at least 1 end point (CHD or MI); Online Table III.

Of the 67 novel CAD loci, 32 show genotype-dependent 
gene expression in whole blood regulating the expression of 
57 unique genes, and 42 of these 67 SNPs would not have 
been detected using the standard (unconditioned) FDR. We 
found evidence for 16 and 18 loci having an eQTL effect in 

adipose tissue and LCL, respectively (Table 2). For 6 of these 
loci, we observed an eQTL effect on the same gene in both 
whole blood and adipose tissue. Interestingly, 18 loci show an 
effect on the gene expression of >1 gene.

To further evaluate genetic overlap, we used the con-
junctional FDR to identify SNPs with significant effects in 
both CAD and its associated risk factors. The conjunctional 
Manhattan plot for CAD is shown in Online Figure II. We 
identified 53 loci achieving conjunctional FDR<0.05, after ad-
justment for using multiple risk factors and pruning the results 
in the same manner as for the conditional FDR (Online Table 
IV; corresponding z scores in Online Table V).

Follow-up IPA identified highly significantly associated 
top canonical pathways relevant to CAD (eg, liver X receptor 
[LXR]/retinoid X receptor [RXR]), as well as farnesoid X re-
ceptor/RXR Activation and Atherosclerosis Signaling; Online 
Table V). Additionally, in “Top Diseases and Bio Function,” 
CAD relevant diseases and functions are on top (Cardiovascular 
Disease and Lipid Metabolism) in the subgroups “Diseases 
and Disorders” and “Molecular and Cellular Functions.”

Discussion
Combining data from large-scale genomic studies from dif-
ferent phenotypes in a conditional FDR framework, we 
show polygenic overlap between CAD and several CVD risk 
factor phenotypes and identify 67 novel CAD susceptibil-
ity loci. Furthermore, conjunctional FDR analysis identified 
53 novel loci associated with both CAD and the CVD risk 

rs2146238 CYP46A1 14 8.55E−04† NA 1.00E−04† 8.60E−04† 7.20E−04† 5.19E−04† 8.00E−04† 7.22E−04† LDL 9.54E−07

rs6494488* RBPMS2 15 1.58E−03 1.17E−03† 1.42E−03 1.56E−03 1.30E−03 6.60E−04† 1.25E−03† 1.22E−03† BMI 1.99E−06

rs7202877* CTRB1 16 5.30E−03 7.07E−04† 6.99E−03 7.59E−03 8.89E−03 5.07E−03 7.12E−03 6.82E−03 T1D 2.65E−05

rs4888378* CFDP1 16 7.52E−03 1.99E−03 2.72E−03 3.62E−03 3.65E−03 4.41E−03 6.09E−03 7.17E−04† SBP 1.80E−05

rs4299203 LRRC48 17 2.14E−04† NA 1.90E−04† 1.94E−04† 1.67E−04† 7.01E−05† 1.67E−04† 1.51E−04† BMI 1.59E−07

rs17608766* GOSR2 17 1.74E−03 9.00E−04† 1.30E−03 2.72E−04† 1.50E−03 6.52E−04† 1.50E−03 1.26E−04† SBP 2.37E−06

rs3179840* ZNF652 17 8.77E−03 7.73E−03 5.47E−03 4.25E−03 4.61E−03 7.15E−03 7.46E−03 9.99E−04† SBP 2.43E−05

rs1867624* AX746971 17 1.66E−03 1.40E−03 4.46E−04† 8.74E−04† 1.58E−03 6.70E−04† 1.68E−03 1.26E−04† SBP 2.25E−06

rs13465* ILF3 19 1.56E−03 4.71E−04† 1.62E−03 1.55E−03 1.61E−03 1.06E−03† 1.33E−03 1.13E−03† T1D 2.12E−06

rs17616661* KANK2 19 3.08E−03 1.38E−03 7.09E−04† 1.55E−03 2.35E−03 1.97E−03 1.19E−03† 2.48E−03 LDL 5.03E−06

rs12459996* CYP2F1 19 1.67E−03 1.82E−03 5.87E−04† 6.31E−04† 2.23E−03 9.48E−04† 1.69E−03 7.70E−04† LDL 3.35E−06

rs12460848 MARK4 19 1.61E−03 NA 1.04E−03† 1.13E−03† 1.42E−03 8.05E−04† 5.76E−04† 1.02E−03† CRP 1.68E−06

rs4802322* STRN4 19 1.01E−02 8.50E−04† 5.33E−03 8.59E−03 9.51E−03 9.74E−03 7.49E−03 8.05E−03 T1D 3.00E−05

rs867186 EDEM2 20 4.54E−05† 1.46E−04† 1.56E−04† 1.15E−04† 1.05E−04† 1.21E−04† 1.21E−04† 1.21E−04† T2D 1.36E−07

rs3827066* ZNF335 20 5.77E−03 NA 1.46E−03 1.55E−03 1.22E−03† 5.07E−03 2.52E−03 4.72E−03 TG 1.35E−05

rs1882961* NRIP1 21 7.63E−03 9.09E−03 4.64E−03 9.43E−03 1.10E−02 1.04E−02 3.48E−03 1.04E−03† SBP 3.39E−05

rs9608859* OSM 22 1.76E−03 NA 1.81E−03 8.06E−04† 1.79E−03 1.48E−03 1.41E−03 1.43E−03 HDL 2.68E−06

Independent (r2<0.2) SNP(s) with a condFDR <0.01 (after Bonferroni correction for 8 traits) in CAD given the significance level in the associated phenotype. We defined 
the most significant CAD SNP in each linkage disequilibrium (LD) block based on the minimum condFDR for each associated phenotype. The most significant SNPs 
in each gene of the LD block are listed along with the associated phenotype that provided the signal. BMI indicates body mass index; CAD, coronary artery disease; 
Chr, chromosome number; condFDR, conditional FDR; CRP, C-reactive protein; FDR, false discovery rate; HDL, high-density lipoprotein; LDL, low-density lipoprotein; 
SBP, systolic blood pressure; SNPs, single-nucleotide polymorphisms; T1D, type 1 diabetes; T2D, type 2 diabetes; and TG, triglycerides. The most significant phenotype 
association per gene is shown (min condFDR). NA indicates that a given SNP was not available for a given trait.

*SNP would not have been detected using standard (unconditioned) FDR methodology at the same threshold.
†CondFDR values <0.01, after adjusting for multiple testing across phenotypes.

Table 1.  Continued

SNP Gene Chr CAD T2D CAD T1D CAD LDL CAD HDL CAD TG CAD BMI CAD CRP CAD SBP
Minimum 
condFDR

CAD
P Value
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Table 2.  Novel Coronary Artery Disease SNPs That Are Also eQTLs in Blood and Adipose Tissue and LCL

SNP Chr Nearest Gene Blood eQTL for
Blood eQTL  

P Value Adipose eQTL for
Adipose eQTL  

P Value LCL eQTL for
LCL eQTL  
P Value

rs10747342 1 HS2ST1 LMO4 2.63E−05 LMO4 6.08E−05

rs10788792 1 GOLPPH3L ARNT 2.38E−05 CTSS 3.01E−04 CTSS 6.35E−36

CTSK 4.98E−32 LASS2 4.72E−06

CTSS 3.86E−150 CTSK 2.19E−16

rs2820315 1 LMOD1 IPO9 4.10E−06 LMOD1
RNPEP

1.43E−11
7.19E−05

rs6700559 1 DDX59 DDX59 4.10E−106 DDX59 6.27E−08

rs10800418 1 NME7 NME7 2.58E−12 NME7 5.12E−18

rs6663784 1 CAPN9 AGT 6.65E−06

rs10186133 2 IL1F10 PSD4 9.43E−07

rs6435757 2 IKZF2 IKZF2 4.96E−06

rs748431 3 FGD5 FGD5 2.31E−04

rs11715915 3 AMT USP4 1.86E−24 RBM6 1.24E−04 KLHDC8B 1.08E−04

NICN1 9.50E−29 APEH 2.51E−05

rs1321309 6 CDKN1A CDKN1A 4.12E−23 CDKN1A 6.74E−19

Z85996.1-1 1.04E−42

rs2814982 6 C6orf106 c6orf106 1.56E−11

rs9367716 6 PRIM2 RAB23 6.47E−15

rs10278591 7 MAD1 MAD1L1 1.05E−06 MAD1L1 2.46E−04

rs11204085 8 SLC18A1 LPL 1.00E−04

rs3748242 10 ANXA11 AL512662.8- 
2,SFTPD

7.62E−05 c10orf58 3.45E−05

ANXA11 2.24E−19 ANXA11 1.93E−05

rs12801636 11 PCNXL3 SIPA1 1.19E−06

rs590121 11 SERPINH1 GDPD5 8.69E−10

rs1015249 12 RPH3A OAS1 2.77E−13

rs2708081 12 OASL CAMKK2 1.83E−10 c12orf43 1.15E−05 CAMKK2 2.86E−04

c12orf43 5.55E−20

P2RX4 1.95E−10

OASL 7.32E−10

rs10774613 12 CUX2 IFT81 2.92E−04

rs7296651 12 ALDH2 ERP29 1.96E−21 c12orf30 3.97E−05 c12orf30 3.84E−04

TMEM116 1.49E−67 TMEM116 1.12E−08 TMEM116 7.17E−12

ACAD10 4.64E−04

FLJ30092 4.62E−08

rs7306455 12 NDUFA12 NDUFA12 8.57E−06

rs825483 12 ZNF664 CCDC92 9.29E−06 CCDC92 2.48E−16

rs6494488 15 RBPMS2 ANKDD1A 2.21E−18 TRIP4 1.55E−04 TRIP4 1.53E−09

RBPMS2 1.29E−72

rs4888378 16 CFDP1 CFDP1 1.63E−10 CHST6 1.50E−04

rs7202877 16 CTRB1 CFDP1 6.33E−12

rs17608766 17 GOSR2 GOSR2 6.42E−06

rs3179840 17 ZNF652 GNGT2 1.23E−36 GNGT2 8.18E−10

PHOSPHO1 2.62E−08

rs4299203 17 LRRC48 ATPAF2 3.97E−09 DRG2 3.11E−07

c17orf39 1.73E−19

DRG2 1.73E−09

TOM1L2 7.10E−08

SREBF1 6.45E−51
(Continued )
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factors, LDL, HDL, triglycerides, T1D, T2D, CRP, and SBP. 
Importantly, we validated the conditional FDR approach by 
showing that replication rates in independent CAD substudies 
increase as a function of P value in each secondary trait, with 
the possible exception of BMI. Furthermore, we see nomi-
nal replication for 12/67 SNPs in the WGHS. Overall, these 
results suggest that a proportion of the clinically and epide-
miologically observed association between these phenotypes 
can be explained by overlapping genetic loci (pleiotropy) and 
not simply shared environmental risk factors. Furthermore, 
the findings provide further evidence that CAD is a highly 
polygenic disease.

Our findings of polygenic overlap provide novel in-
sights into the relationship between CAD and major CVD 
risk factors. We demonstrate an interesting genetic dissocia-
tion among these risk factors and CAD, with strong enrich-
ment for lipids, inflammation, and metabolic disorders. The 
combination of dyslipidemia (ie, high triglycerides and LDL 
cholesterol and low HDL cholesterol), T2D, and high blood 
pressure forms the metabolic syndrome,12–14,43,44 and all of 
these factors (particularly LDL) showed strong genetic over-
lap with CAD. This is in agreement with a recent reports sug-
gesting a common genetic basis for regulation of lipid and 
glucose homeostasis,45 whereas previous studies did not show 
common genes for the different components of the metabolic 
syndrome,46 but revealed strong lipid gene contribution. It 
is further supported by the pathway analysis that identified 

atherosclerosis signaling and farnesoid X receptor /RXR acti-
vation among the 3 most relevant pathways. Genes activated 
by the farnesoid X receptor has been shown to influence vas-
cular tension and regulate the unloading of cholesterol from 
foam cells.47 Another important finding is the overlap be-
tween CAD and T2D. Based on conditional analysis of these 
2 phenotypes, 21 novel loci were identified. This is in line 
with previous single gene studies suggesting a genetic link 
between T2D and CAD.48

The strong shared polygenic signal between LDL and 
CAD emphasizes the important role of LDL in CAD devel-
opment and supports the notion that risk genes for athero-
sclerosis, such as LDL genes, are causal for CAD as recently 
suggested.49 Finally, 2 of the phenotypes most strongly over-
lapping with CAD were CRP and T1D, 2 immune-related 
phenotypes. CRP is regarded as a reliable marker of sys-
temic inflammation, and its role as a biomarker in CAD has 
been attributed to its ability to reflect upstream inflammatory 
pathways. However, the finding in this study suggests that 
the link between CRP and CAD may also reflect overlap-
ping genetic loci. T1D is related to autoimmune mechanisms, 
and its genetic overlap with CAD underlines the important 
role of the immune system in CAD and could be because of 
a large number of overlapping genes between immune and 
lipid phenotypes.50 In fact, the bidirectional interaction be-
tween inflammation and lipids is regarded as a phenotypic 
hallmark of atherosclerosis, and our findings suggest that this 

rs1867624 17 AX746971 PECAM1 5.97E−10

rs12459996 19 CYP2F1 HNRNPUL1 3.86E−16 BLVRB 5.69E−04

SNRPA 4.01E−04

B9D2 2.97E−04

rs12460848 19 MARK4 CKM 7.91E−08

KLC3 4.92E−12

VASP 5.67E−14

rs17616661 19 KANK2 KANK2 5.60E−17 KANK2 5.26E−06

rs4802322 19 STRN4 CALM3 7.14E−06 FKRP 2.53E−07

PRKD2 1.10E−23

FKRP 3.11E−31

SLC1A5 6.12E−10

rs3827066 20 ZNF335 AL162458.10– 
3,MMP9

1.13E−04 WFDC3 1.78E−04 PLTP 1.20E−06

CD40 1.27E−05 NEURL2 6.50E−09

DNTTIP1 2.52E−14 PLTP 1.60E−06

TNNC2 3.98E−19

rs867186 20 EDEM2 ACSS2 2.99E−07 PROCR 3.24E−15

EIF6 2.25E−101

TRPC4AP 8.04E−108

rs9608859 22 OSM SF3A1 4.29E−94 THOC5 6.97E−05

MTP18 1.63E−08

A SNP was considered to be an eQTL using an false discovery rate threshold of 0.05. Chr indicates chromosome number; eQTL, expression quantitative 
trait locus; LCL, lymphoblastoid cell; and SNPs, single-nucleotide polymorphisms.

Table 2.  Continued

SNP Chr Nearest Gene Blood eQTL for
Blood eQTL  

P Value Adipose eQTL for
Adipose eQTL  

P Value LCL eQTL for
LCL eQTL  
P Value
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phenotype could reflect overlapping genes between these 2 
interacting pathophysiological arms of atherogenesis. The 
pathway analysis revealed LXR/RXR activation as the top-
ranked canonical pathway. LXR/RXR is heterodimer nuclear 
receptors/transcription factors. LXR acts as a cholesterol sen-
sor, and LXR pathway activation has been shown to stimulate 
lipogenesis and hypertriglyceridemia.51 LXR/RXR can also 
modulate inflammatory responses to cholesterol exposure 
and could represent a regulator of the interaction between 
lipids and inflammation, being the most important pathway 
in the pathogenesis of CAD.

In the original CAD GWAS and follow-up Metabochip 
study, 46 loci were identified.2 By combining the original 
CAD results with the CVD risk factor phenotypes GWAS, 
we identified 101 significant loci associated with CAD, of 
which 67 are novel, using the conditional FDR approach. 
Even though the original CAD study was large,2 the in-
creased power provided by additional GWAS of associated 
phenotypes together with the conditional FDR method 
more than doubled gene discovery. The novel SNPs dis-
covered here contribute to explaining more of the missing 
heritability for CAD, but we cannot quantify how much 
more is explained because we are working at the summary 
statistic level. These findings underline the cost-effective-
ness of the current statistical methods and highlight several 

interesting genes in CAD pathology. IL1F10 (interleukin 
1 family, member 10 [theta]) was identified in the path-
way analysis of the CAD GWAS, it is known to bind IL1R 
and stimulate nuclear factor-κB pathway. VEGFA is well 
known in the CVD field, but to the best of our knowledge, 
this has never been shown in genetic studies. SLC18A1 
(solute carrier family 18 [vesicular monoamine transport-
er], member 1) has been implicated in neuropsychiatric 
disorders, but not previously in CVD. SERPINH1 (serpin 
peptidase inhibitor, clade H [heat shock protein 47], mem-
ber 1 [collagen-binding protein 1]) is a heat shock protein, 
known to be involved in atherosclerosis. ILF3 (interleukin 
enhancer–binding factor 3, 90 kDa) is a matrix metallo-
proteinase, well studied in the CVD research field, and the 
findings of ILF10 and ILF3 underscore the role of the IL-1 
cytokine family in CAD.

Although nearest gene annotation can be informative, 
the vast majority of discovered SNPs are located outside 
coded DNA regions.52 Therefore, annotating the identified 
genetic variants to the correct causal genes for the pheno-
type of interest often remains challenging.52 One of the po-
tential mechanisms whereby SNPs may affect phenotype 
variations is through altered gene expression. We success-
fully identified eQTL effects in whole blood, LCL, and 
adipose tissue, suggesting these genes as potential causal 

Figure 2. Conditional false discovery rate (FDR) Manhattan plot of –log10 (FDR)* values for coronary artery disease (CAD) alone 
(black), and –log10 (conditional FDR) for CAD given type 2 diabetes mellitus (T2D; CAD T2D; navy blue), CAD given type 1 diabetes 
mellitus (T1D; CAD T1D; light green), and CAD given low-density lipoprotein (LDL; CAD LDL; aqua), CAD given high-density 
lipoprotein (HDL; CAD HDL; dark green), triglycerides (TG; CAD TG; fuchsia), and body mass index (BMI; CAD BMI; mustard 
yellow), CAD given C-reactive protein (CRP; CAD CRP; royal blue) and CAD given systolic blood pressure (SBP; CAD SBP; 
maroon). Single-nucleotide polymorphisms (SNPs) with –log10 (conditional FDR) >2.9 (ie, overall FDR<0.01 after Bonferroni correction 
for 8 traits) are shown with large points. A black circle around the large points indicates the most significant SNP in each linkage 
disequilibrium block, and this SNP was annotated with the closest gene, which is listed above the symbols in each locus, except for the 
HLA (human leukocyte antigen) region on chromosome 6, which was excluded from the analysis. Details for the novel loci with –log10 
(conditional FDR) >2.9 are given in Table 1. *For the –log10 (FDR) for CAD alone, the maximum value displayed in this figure is 6.5. This is 
done purely for display purposes and as such should be interpreted as >6.5.
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candidates. Of interest, some of the genetic variants showed 
an effect on the gene expression of >1 gene. We speculate 
that the shared effect of the genetic variants on the pheno-
types under study might be explained by the regulation of 
several different genes, but further studies would be neces-
sary to connect the genes with altered gene expression seen 
in Table 2 to the clinical phenotypes. Moreover, the majority 
of the genes regulated by the genetic variants were differ-
ent from the nearest annotated gene. Given that the original 
whole blood has markedly different power and used differ-
ent statistical eQTL definitions than the LCL and adipose 
tissue eQTL studies, a detailed cross-tissue comparison is 
not possible. Further studies are needed to determine the 
functional mechanisms involved in the novel CAD loci 
identified here.

There are certain limitations associated with the present 
results. Because of the overlap in some of the GWAS samples 
examined, we cannot completely exclude the contribution 
from environmental or behavioral factors. The shared partici-
pants between genomic studies could also affect the findings. 
However, we did adjust for overlapping subjects and used 
strict FDR thresholds to account for the 8 secondary traits. 
Although clinical comorbidity and shared pathophysiology 
between these phenotypes pose a challenge for the interpreta-
tion of the basis of the shared polygenetic signals, their utility 
for increasing the power to detect new loci for CAD is not 
affected. The question remains whether the identified shared 
genes are independent of other phenotypes (biological pleiot-
ropy) or the current findings are results of overlapping pheno-
types (mediated by other phenotypes), as several of these risk 
factors can be co-occurring (mediated pleiotropy).53 However, 
it seems reasonable to interpret our findings as reflecting the 
existence of shared genetically determined pathophysiologi-
cal processes across CAD and the associated phenotypes. In 
general, FDR methodology is a less conservative approach to 
multiple testing than Bonferroni correction. However, using 
the conditional FDR, we are not simply relaxing the signifi-
cance threshold, but are increasing power and incorporating 
useful information from a second trait into the analysis, al-
lowing us to identify the SNPs more likely to replicate. We 
have not strictly replicated all of these findings in independent 
samples, but we have shown that replication rates increase by 
conditioning on significance in the secondary traits and have 
shown that 12 SNPs nominally replicate in the WGS. Although 
the prospective design of the WGHS makes it suitable for vali-
dation of the candidate CAD associations, the numbers of in-
cident events of MI and CAD were much smaller than in the 
discovery sample, which was composed of a preponderance of 
men compared with the all-female composition of the WGHS. 
However, in spite of much lower power and possibility of dif-
ferences according to sex, the WGHS is the largest and most 
relevant independent data set we were able to access, and we 
found nominal association for novel CAD 12 loci.

In conclusion, we found substantial polygenic overlap be-
tween CAD and several-related conditions, importantly LDL, 
T2D, and CRP, providing more evidence for fundamental 
pathogenic relationship between these phenotypes that can-
not be explained by lifestyle factors. The 67 novel CAD loci 

identified here provide new insight into genetic mechanisms 
of CAD and may form the basis for earlier diagnosis and new 
prevention and treatment strategies.
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What Is Known?

•	 Previous work has identified 46 genetic risk variants associated with 
coronary artery disease (CAD).

•	 Genetic data for traits with overlapping pathophysiology can be com-
bined to improve power for identifying novel genetic risk variants.

What New Information Does This Article Contribute?

•	 We identified 67 new genetic risk variants for CAD.
•	 CAD and several cardiometabolic traits share a large number of genetic 

risk factors.

Clinical and epidemiological evidence suggests a relationship be-
tween CAD and cardiometabolic traits. In the presence of a shared 
polygenic signal (ie, a large number of shared risk variants each 

with a small effect), traits with overlapping pathophysiology with 
CAD can be used in combination with novel statistical methodol-
ogy to improve discovery of variants associated with CAD. Using 
large-scale genetic data from CAD and genetic data from hyper-
tension, obesity, abdominal fat, diabetes mellitus, dyslipidemia, 
and inflammation (C-reactive protein), we found a polygenic over-
lap between CAD and each of these related traits. We identified 
67 novel CAD risk variants and 53 risk variants jointly associated 
with CAD and at least 1 other related trait. These results highlight 
the importance of shared polygenic risk factors between coro-
nary artery disease and cardiovascular risk factors. Our findings 
provide important insights into molecular mechanisms underly-
ing coronary artery disease and have potential implications for 
prevention and treatment strategies.

Novelty and Significance
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LeBlanc et al. Supplemental Material 

 

Supplemental Methods 

False Discovery Rate (FDR) 

 The tail-area based FDR for a given p-value, p, is defined as 

(standard unconditioned) FDR(p) = π0F0(p) / F(p).  [1]    

where F0(p) is the cumulative distribution function (cdf) for null SNPs, F(p) is the cdf for all SNPs 

and π0 is the a priori proportion of null SNPs. In practice the FDR needs to be estimated from the 

data and a conservative estimate can be obtained by setting π0 to 1. For p-values, F0(p) is the cdf for 

the uniform distribution and F(p) is estimated by the empirical cdf, q = Np / N, where Np is the 

number of SNPs with p-values less than or equal to p, and N is the total number of SNPs.  

 

Leveraging pleiotropy by conditional FDR 

Conditional FDR exploits the shared polygenic signal between coronary artery disease 

(CAD) and each secondary trait to increase power for detection of CAD SNPs. Conditional FDR is 

defined as the posterior probability that a given SNP is null for the first phenotype given that the p-

values for both phenotypes are as small or smaller as their observed p-values.  

Conditional FDR: FDR(p1 | p2) = π0(p2) p1 / F(p1 | p2),  [2] 

where p1 is the p-value for the first phenotype, p2 is the p-value for the second,  F(p1 | p2) is the 

conditional cdf and π0(p2) the conditional proportion of null SNPs for the first phenotype given that 

p-value for the second phenotype is p2 or smaller. As with FDR, we obtain a conservative estimate 

of the conditional FDR by setting π0  to 1. F(p1 | p2) is estimated from the data by constructing a 

two-dimensional grid, with CAD p-value category for columns, and the secondary trait p-value 

category for rows, and then counting how many SNPs fall into each bin on the grid. The empirical 

conditional cdf was estimated using the binomial regression model that estimates the probability for 

falling into a bin conditional on the sum over all bins in one row. 
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Conjunctional FDR 

The conjuctional FDR is defined as follows: 

  FDRCAD & trait2 = max(FDR CAD |trait2, FDR trait2 | CAD). [3] 

 

FDR calculations for the Metabochip 

To estimate the conditional and conjunctional FDR, the joint distribution for p-values for the 

primary trait (CAD) and the secondary trait (e.g. T2D), F(p1,p2), needs to be estimated from the 

observed data. For GWAS data, this is a straightforward process since SNPs on standard GWAS 

chips can be treated as a random sample of common variants from the human genome and the size 

of the LD blocks will be unrelated to the effect of the SNPs on the traits of interest. Therefore there 

is no a priori reason to believe that this estimate of F(p1,p2) is biased.  Here we use the CAD 

metabochip data rather than standard GWAS chip data.  Here the estimation of F(p1,p2) will be 

incorrect if we use the whole dataset. The reason for this is that by design since the metabochip 

follows up previously described cardiometabolic SNPs with fine mapping. This means that there is 

non-independence between the size of the LD block and statistical significance. Larger blocks of 

SNPs will be found for non-null SNPs.  As such, an unbiased estimate of F(p1,p2) was obtained 

from an LD-pruned set of SNPs. 
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Online Figure Legends 
 
Online Figure I. Pleiotropic Enrichment. Conditional quantile-quantile plot of nominal versus 

empirical -log10 p-values in Coronary Artery Disease (CAD) as a function of significance of 

association with A) body mass index (BMI) B) high density lipoprotein (HDL) C) systolic blood 

pressure (SBP) and D) triglycerides (TG), at the level of  -log10(p) > 0, –log10(p) > 1, –log10(p)  > 2,  

–log10(p) > 3 corresponding to p < 1, p < 0.1, p < 0.01, p < 0.001, respectively. Due to the linkage 

disequilibrium structure on the metabochip, a linkage disequilibrium-pruned set of SNPs was used 

for the quantile-quantile plots.  Input p-values were adjusted for shared subjects, if present.  Dotted 

lines indicate the null-hypothesis.  

Online Figure II. Stratified replication rates plots showing the average rate of replication (p < 

0.05) within the CARDIoGRAMplusC4D contributing studies as a function of significance in a 

secondary trait: (A) C-reactive protein (CRP), (B) type 1 diabetes (T1D), (C) type 2 diabetes (T2D), 

(D) low density lipoprotein (LDL), (E) high density lipoprotein (HDL), (F) systolic blood pressure 

(SBP), (G) body mass index (BMI) and (H) triglycerides (TG), at the level of  -log10(p) > 0, –

log10(p) > 1, –log10(p)  > 2,  –log10(p) > 3 corresponding to p < 1, p < 0.1, p < 0.01, p < 0.001, 

respectively. 

 
Online Figure 3 III. Conjunctional FDR Manhattan plot of –log10 (conjunctional FDR) for 

coronary artery disease (CAD) and type 2 diabetes (T2D; CAD&T2D; navy blue), CAD and type 1 

diabetes (T1D; CAD&T1D; light green), CAD and low density lipoprotein (LDL; CAD&LDL; 

aqua).  CAD and high density lipoprotein (HDL; CAD&HDL; dark green), CAD and triglycerides 

(TG; CAD&TG; fuchsia), CAD and body mass index (BMI; CAD&BMI; mustard yellow).  CAD 

and C-reactive protein (CRP; CAD&CRP; royal blue) and CAD and systolic blood pressure (SBP; 

CAD&SBP; maroon).  SNPs with –log10 (conjunctional FDR) > 2.2 (i.e. overall FDR < 0.05 after 

Bonferroni correction for eight traits) are shown with large points. A black circle around the large 

points indicates the most significant SNP in each linkage disequilibrium block and this SNP was 
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annotated with the closest gene which is listed above the symbols in each locus, except for the HLA 

region on chromosome 6, which was excluded from the analysis. Details for the novel loci with –

log10 (conjunctional FDR) > 2.2 are given in Supplemental Table 3. 
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Online Tables 
 
Online Table I. Correlation due to cross-trait sample overlap and corresponding overlap numbers. 
Trait 1 Trait 2 Correlation Description of overlap 
CAD T2D 0.09 (0.14) Cases: 

26,874 cases unique to T2D 
55,780 cases unique to 
CAD; 
7966 shared cases 
 
Controls: 
75,282 controls unique to 
T2D 
90,982 controls unique to 
CAD 
39,699 shared controls 
 

CAD T1D 0.03 (NA) Cases: 
7514 cases unique to T1D; 
63,746 cases unique to 
CAD; no shared cases 
 
Controls: 
5703 controls unique to 
T1D; 127,339 controls 
unique to CAD, 3342 
shared controls 
 

CAD LDL <0.19 (0.10) 188,577 total subjects LDL; 
194,427 total subjects CAD, 
up to which 36,432 are 
shared subjects 
 

CAD HDL <-0.19 (-0.10) 188,577 total subjects HDL; 
194,427 total subjects CAD, 
up to which 36,432 are 
shared subjects 
 

CAD TG <0.19 (0.11) 188,577 total subjects HDL; 
194,427 total subjects CAD, 
up to which 36,432 are 
shared subjects 
 

CAD BMI <0.23 (0.05) 123,865 total subjects BMI; 
194,427 total subjects CAD, 
up to which 37,131 are 
shared subjects 
 

CAD SBP <0.31 (NA) 69,395 total subjects SBP; 
194,427 total subjects CAD, 
up to which 36,545 are 
shared subjects 
 

Cross-trait correlation of the GWAS test statistics for CAD and each secondary trait calculated 
using the methods presents in LeBlanc et al. (in prep).  Correlation is presented as estimated 
(observed in data). Where a less than sign, <, is shown, the phenotypic correlation of trait 1 and trait 
2 needs to be estimated from epidemiological studies. 
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Online Table II. Anderson Darling test for enrichment.  

 
Logp threshold 

 
 

>3 >2 >1 
BMD 2.64E-01 2.36E-01 1.20E-01 
T2D 1.70E-03 5.69E-02 3.47E-01 
T1D 3.58E-04 9.56E-04 3.81E-01 
LDL 1.87E-29 4.90E-09 7.80E-05 
HDL 7.65E-06 8.60E-03 7.47E-02 
TG 1.68E-04 5.44E-02 5.82E-01 
BMI 1.13E-01 3.48E-06 2.10E-03 
CRP 3.69E-04 1.60E-02 2.23E-01 
SBP* NA NA NA 

The bold strata are significant for an overall level of α=0.05 after correction for multiple testing. 
The set of SNPs (GWAS p>0.1 in the secondary trait), i.e., SNPs that are signal depleted in the 
secondary trait, was used as the comparison set. 
*Note that SBP was excluded from the Anderson Darling test since the effect direction was not available and for 
technical reasons this made the Anderson Darling test unreliable after correction for sample overlap. 
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Online Table III!SNPs!that!replicate!in!the!WGHS!at!a!nominal!p5value!of!less!than!0.05.!
SNP Event P 
rs4888378 CHD 0.0043 
rs6905288 MI 0.0048 
rs6905288 CHD 0.0066 
rs12801636 CHD 0.0088 
rs7296651 CHD 0.014 
rs7296651 MI 0.017 
rs11066320 MI 0.022 
rs867764 MI 0.023 
rs12801636 MI 0.030 
rs1882961 CHD 0.031 
rs10747342 MI 0.032 
rs10774613 MI 0.034 
rs10774613 CHD 0.036 
rs2146238 MI 0.037 
rs3179840 MI 0.043 
MI,!myocardial!infarction;!CHD,!coronary!heart!disease!(composed!of!MI,!CHD!death,!and!
coronary!revascularization)!
!
!
!
!
!
!
!
!
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Online Table IV. Conjunctional FDR (<0.05), after controlling for multiple testing across phenotypes 
 

snp gene chr CAD&T2
D 

CAD&T1
D 

CAD&L
DL 

CAD&HD
L CAD&TG CAD&B

MI 
CAD& 
CRP CAD&SBP 

Min 
ConjFD
R 

rs4268379 SARS 1 5.07E-02 6.98E-01 8.30E-04 4.16E-01 1.00E+00 6.94E-01 4.61E-01 8.89E-01 LDL 
rs12740374 CELSR2 1 3.82E-01 NA 3.37E-08 7.40E-09 2.22E-01 5.68E-01 3.58E-01 1.00E+00 HDL 
rs7515901 MYBPHL 1 1.00E+00 NA 2.31E-03 3.70E-01 1.00E+00 9.68E-01 9.97E-01 1.00E+00 LDL 
rs10495907 DYNC2LI1 2 8.91E-01 1.00E+00 3.97E-03 6.77E-01 8.46E-01 9.50E-01 7.41E-01 9.60E-01 LDL 
rs10186133 IL1F10 2 9.63E-01 9.24E-01 4.69E-01 8.11E-01 5.75E-01 1.00E+00 7.28E-04 8.89E-01 CRP 
rs934287 ICA1L 2 1.00E+00 3.63E-01 1.57E-06 3.28E-01 1.41E-01 2.61E-01 5.17E-01 1.00E+00 LDL 
rs1250255 FN1 2 1.00E+00 1.00E+00 5.66E-03 9.04E-01 5.75E-01 9.00E-01 9.97E-01 4.61E-01 LDL 
rs2176042 BC017935 2 3.36E-03 NA 4.69E-01 7.07E-03 5.37E-03 1.26E-01 7.90E-01 1.99E-01 T2D 
rs7642590 MAP4 3 1.00E+00 NA 6.95E-01 2.89E-01 3.73E-01 4.47E-01 9.17E-01 2.26E-03 SBP 
rs695238 TRAIP 3 9.15E-01 NA 9.29E-01 8.35E-03 1.00E+00 3.43E-01 5.13E-03 7.44E-01 CRP 
rs7638389 BC040632 3 5.30E-03 1.00E+00 1.04E-01 2.89E-01 4.70E-01 2.61E-01 7.90E-01 6.91E-01 T2D 
rs10512987 PPP2R3A 3 1.00E+00 9.58E-01 3.73E-03 1.68E-01 7.37E-03 3.43E-01 3.13E-01 8.89E-01 LDL 
rs7356185 USP53 4 1.00E+00 8.93E-01 7.46E-01 9.04E-01 9.27E-01 9.68E-01 1.00E+00 4.18E-03 SBP 
rs1508798 SNORD123 5 1.00E+00 9.58E-01 5.85E-01 2.38E-02 2.34E-03 1.00E+00 9.17E-01 1.00E+00 TG 
rs10477741 C5orf56 5 6.96E-01 NA 1.03E-03 5.68E-01 1.00E+00 1.00E+00 9.47E-01 8.36E-01 LDL 
rs2814982 C6orf106 6 9.63E-01 1.00E+00 5.20E-04 3.03E-03 8.46E-01 5.06E-01 8.32E-01 1.00E+00 LDL 
rs1321309 CDKN1A 6 8.11E-01 NA 4.69E-01 7.38E-01 1.86E-03 1.00E+00 5.74E-01 8.89E-01 TG 
rs6905288 VEGFA 6 3.44E-01 1.00E+00 6.41E-01 2.56E-03 3.46E-03 8.61E-01 9.97E-01 1.51E-02 HDL 
rs1564348 SLC22A1 6 8.56E-01 1.00E+00 5.66E-03 5.15E-01 1.26E-02 9.68E-01 6.32E-01 7.44E-01 LDL 
rs9365233 MAP3K4 6 1.00E+00 1.00E+00 5.78E-03 1.00E+00 7.33E-01 5.06E-01 1.00E+00 6.34E-01 LDL 
rs2237659 COG5 7 6.96E-01 1.00E+00 2.60E-02 7.38E-01 2.66E-03 8.61E-01 5.17E-01 8.89E-01 TG 
rs6997340 NAT2 8 6.35E-01 9.58E-01 3.97E-03 6.22E-01 1.20E-02 9.68E-01 7.41E-01 1.00E+00 LDL 
rs11204085 SLC18A1 8 7.56E-01 NA 9.29E-01 9.24E-04 1.50E-03 1.00E+00 9.17E-01 1.00E+00 HDL 

rs343494 RANBP6 9 1.00E+00 5.94E-03 1.00E+0
0 6.22E-01 1.00E+00 1.00E+00 9.97E-01 7.44E-01 T1D 

rs7902355 TSPAN14 10 9.63E-01 1.00E+00 3.17E-01 5.80E-03 8.46E-01 1.00E+00 9.97E-01 5.75E-01 HDL 
rs7926335 PLEKHA7 11 9.63E-01 NA 9.29E-01 3.70E-01 1.00E+00 9.39E-01 9.97E-01 7.17E-04 SBP 
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rs12801636 PCNXL3 11 4.70E-01 1.00E+00 3.17E-01 6.50E-04 1.02E-03 9.26E-01 4.40E-02 6.43E-02 HDL 
rs644740 OVOL1 11 6.35E-01 8.93E-01 1.38E-02 1.15E-02 8.46E-02 1.00E+00 7.90E-01 2.26E-03 SBP 
rs7933887 ST3GAL4 11 1.00E+00 NA 1.04E-01 4.69E-03 3.73E-01 1.00E+00 1.00E+00 7.91E-01 HDL 
rs4149033 SLCO1B1 12 1.00E+00 1.00E+00 6.41E-01 1.00E+00 3.98E-03 9.26E-01 1.00E+00 8.89E-01 TG 

rs2681472 ATP2B1 12 8.11E-01 1.00E+00 1.00E+0
0 1.00E+00 4.70E-01 1.00E+00 7.90E-01 3.40E-03 SBP 

rs1056618 AJ276555 12 1.00E+00 NA 5.78E-03 7.38E-01 9.27E-01 5.68E-01 8.32E-01 1.00E+00 LDL 
rs7398833 CUX2 12 9.15E-01 1.85E-04 1.94E-03 3.70E-01 3.25E-03 8.11E-01 2.02E-01 2.29E-04 TG 
rs11066320 PTPN11 12 9.63E-01 4.05E-06 1.28E-05 8.40E-05 3.73E-01 1.88E-02 9.17E-01 5.55E-06 T1D 
rs7315519 RPH3A 12 8.91E-01 4.86E-04 2.99E-03 3.59E-03 9.27E-01 1.26E-01 1.00E+00 1.21E-01 T1D 
rs692902 SPPL3 12 3.19E-02 9.24E-01 2.75E-01 2.89E-02 7.85E-01 1.00E+00 4.77E-03 8.89E-01 CRP 
rs2708081 OASL 12 1.02E-01 3.10E-01 6.70E-04 1.94E-01 8.46E-01 9.26E-01 3.41E-05 8.89E-01 CRP 
rs825461 ZNF664 12 4.29E-03 1.00E+00 9.29E-01 3.59E-03 1.65E-01 5.68E-01 1.00E+00 3.60E-01 T2D 
rs11057830 SCARB1 12 9.36E-01 NA 3.49E-04 1.95E-02 2.69E-03 9.26E-01 9.97E-01 4.09E-01 LDL 
rs4932370 FURIN 15 3.82E-01 9.24E-01 4.69E-01 3.28E-01 3.73E-01 9.50E-01 7.41E-01 7.93E-05 SBP 
rs2072142 DHX38 16 9.15E-01 NA 1.93E-03 6.22E-01 7.85E-01 8.02E-02 1.00E+00 NA LDL 
rs9927309 CTRB2 16 5.30E-03 8.50E-04 9.29E-01 4.64E-01 1.00E+00 9.00E-01 1.00E+00 7.91E-01 T2D 
rs1838105 GOSR2 17 1.00E+00 NA 1.48E-01 5.97E-03 6.29E-01 8.11E-01 1.00E+00 8.76E-02 HDL 
rs12940887 ZNF652 17 9.36E-01 NA 7.46E-01 8.89E-02 1.92E-02 8.61E-01 9.97E-01 5.15E-03 SBP 
rs2812 PECAM1 17 9.36E-01 NA 6.41E-01 1.24E-01 9.27E-01 8.61E-01 7.41E-01 3.63E-03 SBP 
rs13465 ILF3 19 9.63E-01 4.89E-01 1.62E-03 2.22E-01 8.46E-01 9.68E-01 1.00E+00 7.44E-01 LDL 
rs12052058 SMARCA4 19 8.91E-01 8.14E-01 7.34E-06 7.38E-01 1.00E+00 8.11E-01 5.74E-01 1.00E+00 LDL 
rs892115 SPC24 19 9.63E-01 1.19E-01 4.75E-03 9.04E-01 1.00E+00 9.00E-01 6.88E-01 7.44E-01 LDL 
rs17616661 KANK2 19 1.00E+00 6.98E-01 1.57E-03 1.55E-03 3.29E-01 9.50E-01 5.17E-01 9.60E-01 HDL 
rs2241718 CYP2F1 19 9.63E-01 NA 2.99E-03 9.04E-01 5.75E-01 1.00E+00 9.97E-01 NA LDL 
rs1415771 EDEM2 20 1.00E+00 1.02E-01 5.89E-02 4.25E-03 1.00E+00 8.61E-01 1.00E+00 9.60E-01 HDL 
rs3827066 ZNF335 20 1.00E+00 NA 2.75E-01 1.55E-03 7.00E-03 9.68E-01 5.74E-01 1.00E+00 HDL 

rs4822458 DDT 22 1.00E+00 8.58E-01 1.00E+0
0 9.04E-01 5.76E-03 9.50E-01 8.66E-01 1.00E+00 TG 

Independent (r2 < 0.2) of SNP(s) with a conjunctional FDR (conjFDR) < 0.05 (after Bonferonni correction for 8 traits) in Coronary Artery Disease 
(CAD) given the significance level in the associated phenotype. We defined the most significant CAD SNP in each LD block based on the minimum 
conjunctional FDR for each associated phenotype. The most significant SNPs in each gene of the LD block are listed along with the associated 
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phenotype that provided the signal. Coronary artery disease (CAD), low density lipoprotein (LDL) cholesterol, high density lipoprotein (HDL) 
cholesterol, triglycerides (TG), type 2 diabetes (T2D), C-reactive protein (CRP), body mass index (BMI), systolic blood pressure (SBP), type 1 
diabetes (T1D), chromosome number (Chr). Conjunctional FDR values < 0.05, after adjusting for multiple testing across phenotypes are in bold. The 
most significant phenotype association per gene is shown (min conjFDR). NA indicates that a given SNP was not available for a given trait. 
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Online Table V. Signed z-scores for the SNPs presented in Supplemental Table 3.  
snp gene chr CAD 

z-score 
BMI z-
score 

T2D 
z_score 

LDL z-
score 

HDL z-score TG z-
score 

CRP z-
score 

Min 
conjFDR 

Trait 

rs4268379 SARS 1 -4.95 1.64 3.57 -12.00 1.85 -0.42 2.09 8.30E-04 LDL 
rs12740374 CELSR2 1 8.70 -1.91 -2.22 36.59 -8.37 2.75 -2.24 7.40E-09 HDL 
rs7515901 MYBPHL 1 4.48 -0.57 -0.06 9.40 -1.98 0.15 0.43 2.31E-03 LDL 
rs10495907 DYNC2LI1 2 -4.22 -0.98 -1.29 -7.81 1.21 -0.96 -1.51 3.97E-03 LDL 
rs10186133 IL1F10 2 4.24 -0.10 -0.46 1.84 0.41 1.59 -5.98 7.28E-04 CRP 
rs934287 ICA1L 2 5.84 -2.49 0.08 -5.46 -2.20 -2.48 -1.93 1.57E-06 LDL 
rs1250255 FN1 2 3.44 -1.22 0.50 -4.75 0.24 -1.25 0.47 5.66E-03 LDL 
rs2176042 BC017935 2 -4.33 2.72 -6.59 -1.84 8.47 -7.43 -1.38 3.36E-03 T2D 
rs7642590 MAP4 3 -3.96 2.01 -0.75 -1.36 2.11 -2.11 -0.90 2.26E-03 SBP 
rs695238 TRAIP 3 -4.04 -2.43 -1.19 0.32 4.38 -0.12 -4.02 5.13E-03 CRP 
rs7638389 BC040632 3 3.95 2.62 -5.33 -2.40 1.78 -1.38 -1.44 5.30E-03 T2D 
rs10512987 PPP2R3A 3 -4.07 -2.43 -0.09 -3.85 2.50 -4.20 2.36 3.73E-03 LDL 
rs7356185 USP53 4 3.80 -0.49 -0.10 1.19 -0.68 -0.18 0.24 4.18E-03 SBP 
rs1508798 SNORD123 5 4.24 0.51 0.01 -1.15 2.95 -4.55 -0.83 2.34E-03 TG 
rs10477741 C5orf56 5 -4.75 -0.26 -1.88 -4.25 1.49 -0.25 -0.58 1.03E-03 LDL 
rs2814982 C6orf106 6 -4.47 -2.16 0.45 4.44 6.75 -0.94 -1.21 5.20E-04 LDL 
rs1321309 CDKN1A 6 -4.60 -0.31 -1.65 -1.84 1.11 -4.56 -1.81 1.86E-03 TG 
rs6905288 VEGFA 6 -4.52 1.24 -2.53 1.05 6.61 -7.61 -0.44 2.56E-03 HDL 
rs1564348 SLC22A1 6 -4.23 0.56 1.31 -9.62 1.67 -3.64 1.77 5.66E-03 LDL 
rs9365233 MAP3K4 6 4.57 -1.97 0.23 3.78 -0.32 1.32 -0.04 5.78E-03 LDL 
rs2237659 COG5 7 -4.22 1.26 1.63 -3.28 1.00 3.92 1.99 2.66E-03 TG 
rs6997340 NAT2 8 4.02 -0.52 1.92 4.07 0.87 6.24 1.54 3.97E-03 LDL 
rs11204085 SLC18A1 8 5.23 0.31 1.80 -0.19 -14.03 14.24 0.78 9.24E-04 HDL 
rs343494 RANBP6 9 3.53 -0.05 0.73 -0.05 -1.26 -0.15 -0.38 5.94E-03 T1D 
rs7902355 TSPAN14 10 4.24 0.63 -0.41 2.21 3.58 -0.45 0.40 5.80E-03 HDL 
rs7926335 PLEKHA7 11 -4.25 0.84 -0.78 -0.76 -1.54 -0.29 0.40 7.17E-04 SBP 
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Coronary artery disease (CAD), low density lipoprotein (LDL) cholesterol, high density lipoprotein (HDL) cholesterol, triglycerides (TG), type 2 
diabetes (T2D), C-reactive protein (CRP), body mass index (BMI), systolic blood pressure (SBP), type 1 diabetes (T1D), chromosome number (Chr). 

rs12801636 PCNXL3 11 4.86 1.25 2.25 -1.73 -5.60 4.43 3.28 6.50E-04 HDL 
rs644740 OVOL1 11 3.95 0.06 1.94 -3.05 -4.41 2.94 1.40 2.26E-03 SBP 
rs7933887 ST3GAL4 11 4.47 -0.29 -0.05 2.80 -3.88 2.10 -0.23 4.69E-03 HDL 
rs4149033 SLCO1B1 12 -3.82 1.04 -0.43 1.05 0.00 3.72 0.14 3.98E-03 TG 
rs2681472 ATP2B1 12 -3.84 -0.12 1.37 -0.35 0.36 1.41 1.45 3.40E-03 SBP 
rs1056618 AJ276555 12 3.96 -1.86 0.30 -3.32 -1.03 0.67 1.30 5.78E-03 LDL 
rs7398833 CUX2 12 4.56 -1.45 1.17 -3.81 -2.03 4.08 2.58 3.25E-03 TG 
rs11066320 PTPN11 12 5.40 -3.80 0.86 -6.24 -5.54 2.18 0.92 4.05E-06 T1D 
rs7315519 RPH3A 12 4.34 -2.76 -0.91 -3.71 -4.36 -0.17 0.18 4.86E-04 T1D 
rs692902 SPPL3 12 3.65 0.27 4.76 2.24 2.91 1.02 -9.03 4.77E-03 CRP 
rs2708081 OASL 12 5.12 1.28 3.35 4.38 1.97 1.03 -12.98 3.41E-05 CRP 
rs825461 ZNF664 12 -4.44 1.84 -4.49 -0.71 6.37 -2.68 -0.35 4.29E-03 T2D 
rs11057830 SCARB1 12 -5.26 1.02 0.52 -4.52 3.48 -4.15 -0.54 3.49E-04 LDL 
rs4932370 FURIN 15 -5.69 0.75 -2.47 1.31 -1.90 1.50 1.53 7.93E-05 SBP 
rs2072142 DHX38 16 -4.27 -3.22 -1.17 -4.90 -0.87 -1.14 -0.06 1.93E-03 LDL 
rs9927309 CTRB2 16 4.18 -1.17 5.20 0.62 -1.76 0.12 -0.14 5.30E-03 T2D 
rs1838105 GOSR2 17 3.96 -1.40 0.48 2.63 4.19 1.56 0.08 5.97E-03 HDL 
rs12940887 ZNF652 17 -3.73 -1.55 0.61 -1.16 2.83 -5.09 -0.54 5.15E-03 SBP 
rs2812 PECAM1 17 -4.48 1.27 0.57 1.00 -2.24 -0.79 1.54 3.63E-03 SBP 
rs13465 ILF3 19 -4.74 0.57 0.44 -12.12 2.41 -0.95 0.34 1.62E-03 LDL 
rs12052058 SMARCA4 19 6.42 -1.52 -1.21 17.44 -1.10 0.10 1.85 7.34E-06 LDL 
rs892115 SPC24 19 4.11 -1.18 0.91 6.60 -0.77 0.42 1.65 4.75E-03 LDL 
rs17616661 KANK2 19 -4.56 -0.95 -0.62 -4.14 4.41 -2.16 -1.96 1.55E-03 HDL 
rs2241718 CYP2F1 19 4.15 0.12 0.88 -3.48 0.18 -1.16 0.38 2.99E-03 LDL 
rs1415771 EDEM2 20 -4.22 -1.52 -0.62 2.54 4.03 0.12 0.06 4.25E-03 HDL 
rs3827066 ZNF335 20 -4.35 -0.74 -0.22 1.77 -4.33 3.32 -1.82 1.55E-03 HDL 
rs4822458 DDT 22 4.21 -0.70 -0.30 0.46 0.26 3.85 -1.08 5.76E-03 TG 
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Note that signed z-scores for T1D and SBP are not publically available and are therefore excluded from this table. The most significant phenotype 
association per gene is shown (min conjFDR).



 14 

 
Online Table VI. Ingenuity Pathway Analysis (IPA) including our novel CAD SNPs and previously published CAD SNPs. 

Top Canonical Pathways 
Name p-value 
LXR/RXR Activation  2.22E-14 
Atherosclerosis Signaling   1.36E-11 
FXR/RXR Activation  3.66E-10 
Clathrin-mediated Endocytosis Signaling  2.18E-07 
Production of Nitric Oxide and Reactive Oxygen 
Species in Macrophages  

1.57E-05 

Diseases and Disorders 
Name p-value #candidate genes 
Cardiovascular Disease  4.24E-14 -5.02E-04 47 
Organismal Injury and Abnormalities  9.65E-14 - 5.02E-04 

 
57 

Metabolic Disease  1.80E-12 - 3.71E-04 41 
Neurological Disease  1.28E-09 - 1.54E-04 29 
Psychological Disorders  1.28E-09 - 1.54E-04 26 
Molecular and Cellular Functions 
Name p-value #candidate genes 
Lipid Metabolism  5.06E-14 - 3.71E-04 40 
Molecular Transport  5.06E-14 - 4.12E-04 50 
Small Molecule Biochemistry  5.06E-14 - 3.71E-04 51 
Vitamin and Mineral Metabolism  1.30E-13 - 3.71E-04 17 
Protein Synthesis  1.41E-13 - 4.45E-05 14 

*P-values are from a right-tailed Fisher exact test and represent significance of overrepresentation of candidate genes within respective gene groups. P-
value ranges indicate values for various disease sub-classifications (not shown). 
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Online Figure I. Conditional Q-Q plots for BMI, HDL, SBP and TG. 
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Online Figure II. Stratified replication rates plots  
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Online Figure III. Conjunctional Manhattan plot 
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