

Reduced suppressive effect of CD4⁺CD25^{high} regulatory T cells on the T cell immune response against myelin oligodendrocyte glycoprotein in patients with multiple sclerosis

Jürgen Haas¹, Andreas Hug¹, Andrea Viehöver¹, Benedikt Fritzsching^{1,2}, Christine S. Falk³, Andrea Filser¹, Tina Vetter¹, Linda Milkova¹, Mirjam Korporal¹, Brigitte Fritz¹, Brigitte Storch-Hagenlocher¹, Peter H. Krammer³, Elisabeth Suri-Payer² and Brigitte Wildemann¹

- ¹ Division of Molecular Neuroimmunology, Department of Neurology, University of Heidelberg, Germany
- ² Division of Immunogenetics/Tumor Immunology Program, DKFZ, Heidelberg, Germany
- ³ GSF-Institute of Molecular Immunology, Munich, Germany

Immunoregulatory T cells of CD4+CD25+ phenotype suppress T cell function and protect rodents from organ-specific autoimmune disease. The human counterpart of this subset of T cells expresses high levels of CD25 and its role in human autoimmune disorders is currently under intense investigation. In multiple sclerosis (MS), a chronic inflammatory disease of the central nervous system (CNS), the activation of circulating self-reactive T cells with specificity for myelin components is considered to be an important disease initiating event. Here, we investigated whether MS is associated with an altered ability of CD4+CD25high regulatory T cells (Treg) to confer suppression of myelin-specific immune responses. Whereas T_{reg} frequencies were equally distributed in blood and cerebrospinal fluid of MS patients and did not differ compared to healthy controls, the suppressive potency of patient-derived CD4⁺CD25^{high} T lymphocytes was impaired. Their inhibitory effect on antigen-specific T cell proliferation induced by human recombinant myelin oligodendrocyte protein as well as on immune responses elicited by polyclonal and allogeneic stimuli was significantly reduced compared to healthy individuals. The effect was persistent and not due to responder cell resistance or altered survival of T_{reg}, suggesting that a defective immunoregulation of peripheral T cells mediated by CD4⁺CD25^{high} T lymphocytes promotes CNS autoimmunity in MS. Received 2/2/05 Revised 27/6/05 Accepted 2/9/05

[DOI 10.1002/eji.200526065]

Autoimmunity

· Human

CD4+CD25high

regulatory T cells

· Multiple sclerosis

Supporting information for this article is available at: http://www.wiley-vch.de/contents/jc_2040/2005/26065_s.pdf

Correspondence: Brigitte Wildemann, Division of Molecular Neuroimmunology, Department of Neurology, University of Heidelberg, Im Neuenheimer Feld 350, 69120 Heidelberg, Germany

Fax: +49-6221-565461

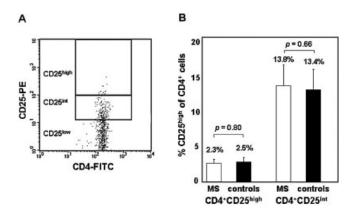
e-mail: brigitte_wildemann@med.uni-heidelberg.de Abbreviations: CNS: central nervous system

CSF: cerebrospinal fluid · **GAPDH:** glyceraldehyde-3-phosphate-dehydrogenase · **MFI:** mean fluorescence intensity · **MOG:** myelin oligodendrocyte glycoprotein · **MS:** multiple sclerosis · $\mathbf{T_{eff}}$: effector T cell · **TREC:** T cell receptor excision circles · $\mathbf{T_{reg}}$: CD4+CD25^{high} regulatory T cells

Introduction

Multiple sclerosis (MS) is an inflammatory and predominantly demyelinating disease of the central nervous system (CNS). The precise pathogenic mechanisms are undetermined. In early stages, neural damage is considered to arise from T cell-mediated autoimmunity targeted against myelin components [1, 2]. In experimental models of autoimmune demyelination a critical determinant for disease induction is the activation of circulating self-reactive T cells with specificity for myelin

peptides [1]. Immunological tolerance and protection from autoimmunity are conferred by central and peripheral mechanisms such as clonal deletion of selfreactive T cells in the thymus and the induction of anergy upon encounter with autoantigens in the periphery [3, 4]. Nevertheless, autoaggressive T lymphocytes may escape these control mechanisms and T cells with specificity against a variety of self antigens are universally detectable within the circulating T cell pool of healthy individuals. More recently, the potential role of specialized suppressor T cells in the maintenance of peripheral immune tolerance has been reappraised. There is experimental evidence that a distinct subset of T cells residing in the CD4⁺ subpopulation is prominently involved in preventing organ-specific autoimmune disease. These naturally occurring immunoregulatory T cells originate in the thymus, constitutively express CD25 and comprise 5-10% of murine and approximately 2% of human peripheral CD4⁺ T cells [5, 6]. Within the human CD4⁺ subset only cells coexpressing high levels of CD25 appear to have potent regulatory function [6, 7]. CD4+CD25high regulatory T cells (Treg) are anergic to antigenic stimulation and actively downregulate activation and expansion of conventional T lymphocytes in a cell-contact-dependent and cytokine-independent manner [5, 8-13]. Although the molecular interactions and signaling pathways that are critical for their generation and function are nut fully elucidated, Treg require forkhead transcription factor scurfin encoded by the Foxp3 gene, which appears to control their development and regulatory properties [14–16]. Implication of T_{reg} in human autoimmune disease is currently under intense investigation. Either reduced numbers or suppressive capacities of Treg were recently reported in patients affected by type-1 diabetes [17, 18], juvenile idiopathic arthritis [19], systemic lupus erythematosus [20], hepatitis C-associated mixed cryoclobulinemia vasculitis [21], autoimmune polyglandular syndrome type II [22], and psoriasis [23].


Viglietta et al. [24] described an impaired inhibitory effect of polyclonally stimulated T_{reg} from the peripheral blood of a small cohort of patients suffering from MS, a chronic inflammatory and predominantly demyelinating disease of the CNS. In murine experimental autoimmune encephalomyelitis, the mouse model for MS, myelin oligodendrocyte glycoprotein (MOG) has the highest capacity of inducing demyelination in mice [25]. Importantly, T_{reg} can delay the onset and progression of autoimmune demyelination [26]. In this context it is interesting that also in humans, MOG is one of the most potent inducers of in vitro CD4⁺ T cell responses among various foreign and self antigens [7, 13, 27]. Importantly these responses could also be blocked by T_{reg} from healthy individuals [27]. Hence, T_{reg} may be critically important to prevent autoimmunity within the CNS. Since myelin-specific T cells are detectable at similar frequencies in the circulation of both MS patients and healthy persons [1], any impairment of $T_{\rm reg}$ function may facilitate the activation of potentially harmful T cells and may promote their entrance into the CNS.

In the present study we isolated T_{reg} from the circulation of 73 patients with early, clinically active and untreated relapsing remitting MS and 73 age-matched healthy controls to determine their prevalence and to assess their downregulatory effects on responder T cell proliferation using recombinant human MOG (rhMOG) as stimulus. We also measured T_{reg} mediated suppression towards T cell responses elicited by antigennonspecific polyclonal or by allogeneic stimuli.

Results

The frequency of T_{reg} is not altered in MS patients

We screened peripheral blood samples from 73 MS patients and 73 healthy individuals for the presence of $T_{\rm reg}$ by flow cytometry. As only CD4⁺ T cells that coexpress high levels of CD25 exhibit regulatory function [6, 7], the number of $T_{\rm reg}$ was determined as the frequency of CD4-FITC positive cells with the highest CD25-PE fluorescence intensity (Fig. 1A). We did not find significant differences in percentages of CD25^{high} cells between MS patients (mean 2.3%, range 0.4–4.9) and normal individuals (mean 2.5%, range 0.5–5.1)

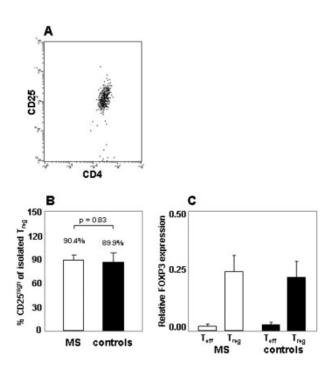


Figure 1. The frequency of T_{reg} is not altered in MS patients. (A) Negatively selected CD4⁺ lymphocytes from peripheral blood obtained from MS patients and healthy controls were double-stained with FITC-labeled anti-CD4 and PE-labeled anti-CD25. After gating on CD4⁺ cells, the frequencies of CD4⁺CD25^{high} and CD4⁺CD25^{int} T cells was determined as percentage of CD4⁺ cells with highest and intermediate CD25 staining, respectively. (B) Numbers of CD4⁺CD25^{high} cells and CD4⁺CD25^{int} cells in peripheral blood samples of 73 MS patients and 73 healthy controls were at comparable levels. The mean percentages are depicted by the bars.

(Fig. 1B). Recently activated helper T cells, defined as cells expressing intermediate levels of CD25 (CD4⁺CD25^{int}) [28], were also detectable in comparable numbers in the peripheral blood of MS patients (mean 13.8%, range 4.4–24.5) and control donors (mean 13.4%, range 3.3–28.2). In a previous study CD4⁺CD25^{int} cells did not exhibit regulatory cell characteristics such as hyporesponsiveness and suppression [6].

The frequency of T_{reg} in blood and cerebrospinal fluid is equivalent

To assess whether $T_{\rm reg}$ are sequestered in the CNS during an acute MS relapse, we analyzed the percentages of $T_{\rm reg}$ in parallel in peripheral blood and cerebrospinal fluid (CSF) specimens of 15 MS patients using flow cytometry as described above. Within the CSF, CD25 high cells constituted 3.0% (range 0.1–8.6) of CD4 T cells. This was comparable to $T_{\rm reg}$ frequencies of 2.4% (range 0.5–6.2) among blood-derived CD4 T cells. There was no correlation between $T_{\rm reg}$ numbers, CD4 numbers,

Figure 2. Immunomagnetic separation reveals highly pure fractions of $T_{\rm reg}$ and $T_{\rm eff}$. (A) Purity of sorted $T_{\rm reg}$, as determined by FACS staining with FITC-conjugated anti-CD4 and PEconjugated anti-CD25. (B) Mean percentage of CD4+CD25high cells is equally high among $T_{\rm reg}$ preparations obtained from 73 MS patients and 73 healthy donors. (C) Quantitative RT-PCR reveals a markedly higher Foxp3 mRNA expression in purified $T_{\rm reg}$ than in $T_{\rm eff}$ in 13 MS patients (white bars) and 13 controls (black bars). Expression levels do not differ between $T_{\rm reg}$ derived from MS patients and healthy controls (black bars). Bars represent mean data plus SEM of Foxp3 mRNA expression divided by GAPDH expression.

and total cell counts in the 15 CSF specimens analyzed (data not shown).

Immunomagnetic separation yields highly pure T_{reg} and effector T cell subsets

We tested the purity of freshly isolated T_{reg} by determining the CD4⁺CD25^{high} cell count as described above (Fig. 2A). All 146 samples were highly enriched for CD4⁺CD25^{high} cells [purity: MS patients 90.4 \pm 7.8% (n=73); controls 89.9 \pm 9.3% (n=73)] (Fig. 2B). Bead separated T_{reg} showed the same purity as compared to T_{reg} isolated by cell sorting (see Supplementary material, figure 1).

The mean fluorescence intensity (MFI) of CD25 expression in purified CD4 $^+$ CD25 high subsets was equal in both experimental groups indicating a similar amount of CD25 high expression (data not shown). Effector T cell (T $_{eff}$) subsets obtained from both MS patients and healthy individuals were equally depleted of CD25 high cells (MS 0.2 \pm 0.2%; controls 0.3 \pm 0.2%) and contained similar numbers of CD25 int T cells (MS 13.4 \pm 5.0%; controls 14.0 \pm 4.3%).

Since T_{reg} require expression of transcription factor scurfin to exert their regulatory properties [14-16], we determined Foxp3 gene transcripts in purified T_{reg} and T_{eff} subpopulations derived from 13 MS patients and 13 normal control individuals. As expected, CD4⁺CD25^{high} cells from MS patients as well as from healthy controls showed a markedly higher expression of Foxp3 mRNA $0.25\,\pm\,0.08\%$ (Foxp3/GAPDH), controls $0.22 \pm 0.06\%$] CD4⁺CD25⁻ than cells (MS $0.02\pm0.01\%$, controls $0.02\pm0.01\%$). There were no significant differences in Foxp3 expression levels between T cells from both study cohorts (Fig. 2C).

Similar frequencies of T cell receptor excision circle-expressing $T_{\rm reg}$ in MS patients and control donors

As $T_{\rm reg}$ have a memory phenotype [8], we additionally studied intracellular levels of T cell receptor excision circles (TREC) in purified $T_{\rm reg}$ derived from 10 MS patients and 10 normal controls. TREC are a marker for recent thymic emigrants and are influenced by both the thymic-dependent T cell generation and the degree of peripheral T cell proliferation [29]. TREC were detectable at very low and comparable levels in $T_{\rm reg}$ derived from both cohorts. Mean frequencies of TREC-expressing $T_{\rm reg}$ were $3.3 \times 10^3/10^6$ cells (range 0.1–16.0) in MS patients versus $1.9 \times 10^3/10^6$ cells (range 0.1–5.5) in control individuals (see Supplementary figure 2). This contrasts to TREC levels of 200×10^3 in 10^6 cells CD4⁺ T cells of healthy donors [30]. Thus, $T_{\rm reg}$ are likely to have undergone several cell divisions in the periphery as

expected for memory T cells. In concordance with this finding >93% of CD4⁺CD25^{high} T cells derived from both cohorts expressed CD45RO.

T_{reg} derived from MS patients exhibit reduced suppressive properties

To assay the inhibitory effects of T_{reg} on responder T cell proliferation we used primary in vitro proliferation assays. T_{reg} were co-cultured with autologous T_{eff} under either rhMOG-specific (n=35, MS and controls) or, alternatively under polyclonal (n=21, MS and controls), or allogeneic (n=17, MS and controls), stimulation conditions. There was no statistical difference in levels of T_{eff} cell proliferation between MS patients and healthy controls (Fig. 3A-C). In particular, we did not find differences in proliferative responses of myelin-specific and presumably autoreactive T_{eff} cells obtained from MS patients and healthy control individuals. The degree of antigen-specific T_{eff} proliferation was in concordance with proliferative T cell responses towards rhMOG observed in other studies [31–34]. rhMOG preparations used in this study were tested to be free of endotoxin by HPLC, and in vitro stimulation with β2-microglobulin obtained from the same E. coli expression system did not induce detectable T cell proliferation as previously demonstrated [27]. Furthermore, Teff did not react when either APC or rhMOG were omitted in co-culture experiments (data not shown). These observations strongly support that rhMOG-induced T cell responses were specific and not caused by contaminants.

Moreover, $T_{\rm reg}$ from both cohorts invariably exhibited anergy when stimulated alone. To account for differences in the activation of responder T cells within the $T_{\rm eff}$ subset we analyzed the cytokine gene expression profiles in freshly isolated CD4⁺CD25^{low/int} T cells following depletion of $T_{\rm reg}$ derived from 10 MS patients and 10 healthy individuals. IFN- γ , IL-2, and TNF- α transcripts were barely detectable and comparable in $T_{\rm eff}$ isolated from both study groups, indicating the presence of very low numbers of activated T cells within the $T_{\rm eff}$ subpopulations. Relative cytokine mRNA expressions from MS-derived $T_{\rm eff}$ in relation to mean mRNA levels of controls were 0.8, range 0.2–2.8, p=0.64 (IFN- γ), 1.6, range 0.6–4.3, p=0.25 (IL-2), and 1.6, range 0.3–13.0, p=0.49 (TNF- α).

Under all stimulation conditions, increasing concentrations of patient- and control-derived $T_{\rm reg}$ decreased $T_{\rm eff}$ proliferation in a dose-dependent manner (representative examples are shown in Supplementary figure 3). $T_{\rm reg}$ derived by magnetic isolation showed similar suppressive capacities as compared to $T_{\rm reg}$ purified by cell sorting (see Supplementary figure 1).

However, in marked contrast to inhibition rates obtained with donor $T_{\rm reg}$, suppression of responder

T cell proliferation was significantly less pronounced with $T_{\rm reg}$ isolated from peripheral blood of MS patients independent of the stimulation signal applied in co-culture experiments (Fig. 3A–C). In concordance with other reports suppression by $T_{\rm reg}$ was specific as the addition of $10^5\,T_{\rm eff}$ did not inhibit the proliferation (data not shown).

In the presence of rhMOG stimulation co-culture of T_{eff} with T_{reg} at a 4:1 ratio, T_{reg} obtained from the MS group reduced mean T_{eff} proliferation to a limited extent (from 4.6×10^3 to 3.7×10^3 cpm). In contrast, control donor-derived T_{reg} suppressed T_{eff} proliferation more efficient (from 5.8×10^3 to 3.0×10^3 cpm). This is equivalent to T_{reg} -mediated inhibition of 19.6% (range 0.0–71.0) in MS patients versus 48.2% (range 12.8–98.0) in controls (Fig. 3A).

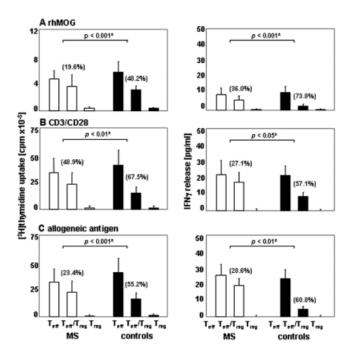


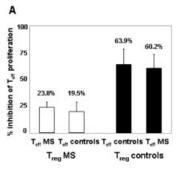
Figure 3. Reduced inhibitory effect of T_{reg} isolated from MS patients. Mean proliferative responses (left side) and IFN-γ production (right side) of T_{eff} and T_{reg} derived from peripheral blood samples of MS patients (white bars) and control donors (black bars). T_{eff} (10⁵ cells) were stimulated alone or in coculture with autologous T_{reg} with 10 $\mu\text{g/mL}$ rhMOG (n=35, MS patients and controls, T_{eff} : T_{reg} ratio 4:1), 1 $\mu g/mL$ soluble anti-CD3/anti-CD28 (n=21, MS patients and controls, Teff:Treg ratio 4:1), or 10⁵ allogeneic irradiated PBMC (n=17, MS patients and controls, Teff:Treg ratio 1:1). Supernatants were harvested on day 4 and analyzed by ELISA. The bars depict the mean data of proliferation and IFN-γ release plus SEM for (A) rhMOG, (B) anti-CD3/anti-CD28, and (C) allogeneic stimulation, respectively. The mean T_{reg} -mediated suppression of T_{eff} proliferation and IFN- γ secretion was calculated and added in parenthesis. While T_{eff} proliferative responses and IFN- γ secretion are equivalent between MS patients and controls, inhibition by T_{reg} originating from MS patients is significantly reduced as indicated by asterisks.

Table 1. Inhibitory activities of T_{reg} from MS patients and control individuals^{a)}

		rhMOG		CD3/CD28		allogeneic antigen	
Suppression		MS	controls	MS	controls	MS	controls
Low	0-33%	26	6	10	0	11	1
Moderate	33-67%	7	19	7	10	6	9
High	67-100%	2	10	4	11	0	7

a) Percent inhibition achieved by purified T_{reg} in in vitro proliferation assays as described in Material and methods. Suppression is indicated as low (0–33%), moderate (33–67%) and high (67–100%).

Upon polyclonal stimulation of T_{eff}/T_{reg} subsets at a 4:1 ratio, mean T_{eff} proliferation was downregulated from 33.3×10^3 to 22.1×10^3 cpm in the MS group and from 43.1×10^3 to 18.1×10^3 cpm in the control group. This corresponds to a T_{reg} -induced suppression of 48.9% (range 0.0–83.8, MS) and 67.5% (range 38.1–89.5, controls), respectively (Fig. 3B). These findings confirm recent observations by Viglietta et~al.~[24], who tested T_{reg} in a cohort of 15 MS patients using polyclonal stimulation with plate-bound anti-CD3 and found a consistently reduced suppressive effect mediated by CD4+CD25 high T cells.


In response to allogeneic T cell stimulation 1:1 coculture of $T_{\rm eff}$ with patient-derived $T_{\rm reg}$ induced a mean reduction of responder T cell proliferation from 31.9×10^3 to 22.3×10^3 cpm in the MS group and from 42.5×10^3 to 18.5×10^3 cpm in the control group. This is equivalent to a $T_{\rm reg}$ -induced suppression of 23.4% (range 0.0–60.6,) in MS patients versus 55.2% (range 10.1–90.6) in controls, respectively (Fig. 3C).

When analyzed individually, 60 donor $T_{\rm reg}$ samples assessed in a total of 73 experimental pairs revealed a superior suppressive ability compared to MS patient-derived $T_{\rm reg}$ tested in parallel (see Supplementary figure 4). The degree of suppression achieved by patient- and donor-derived $T_{\rm reg}$ is indicated in Table 1. Weak $T_{\rm reg}$ activity (<33% inhibition) was found in 47 of 73 MS patients and in 7 of 73 healthy controls.

The determination of IFN- γ release in cell culture supernatants after 4 days of co-culture yielded similar results (Fig. 3A–C). The suppression of $T_{\rm eff}$ proliferation by increasing concentrations of $T_{\rm reg}$ coincided with their ability to inhibit IFN- γ secretion in a dose-dependent manner (data not shown). $T_{\rm reg}$ originating from MS patients inhibited IFN- γ secretion only modestly by 36.0% (range 0.0–87.8, rhMOG), 27.1% (range 3.6–40.3, anti-CD3/anti-CD28), and 28.6% (range 0.5–50.4, allogeneic PBMC). In contrast, co-culture with healthy donor derived $T_{\rm reg}$ was associated with a more efficient reduction of IFN- γ production by $T_{\rm eff}$ [73.8% (range 12.9–100), 57.1% (range 41.1–80), and 60.8% (range 21.4–88.4)].

The reduced suppressive properties of T_{reg} in MS patients are related to a functional impairment rather than a resistance of T_{eff} towards suppression

To dissect whether the reduced inhibitory activity of $T_{\rm reg}$ in MS patients is due to a functional impairment of $T_{\rm reg}$ or by an altered susceptibility of responder T cells towards suppression, we performed cross-over *in vitro* proliferation assays. We reciprocally mixed $T_{\rm reg}$ from healthy individuals with anti-CD3/anti-CD28-stimulated $T_{\rm eff}$ from MS patients or from control donors,

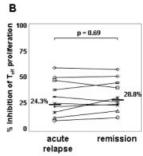
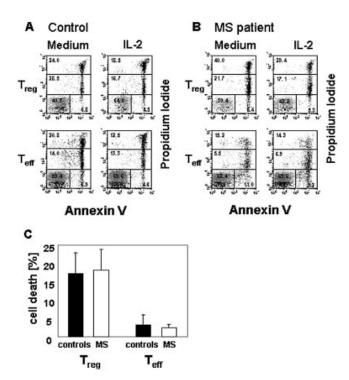


Figure 4. Reduced suppression in MS is due to dysfunction of T_{reg} and independent from disease activity. (A) In three independent cross-over experiments, T_{reg} obtained from three different healthy donors were co-cultured with anti-CD3/anti-CD28-stimulated T_{eff} obtained from three different individuals with MS, and vice versa (T_{eff}:T_{reg} ratio 4:1). Patient-derived T_{reg} (white bars) exhibited weak suppression on both autologous $T_{\rm eff}$ (23.8%, range 17.5–29.7, right white bar) and responder cells from control donors (19.5% range 8.3-31.1, left white bar). In reciprocal assays T_{reg} derived from healthy individuals (black bars) exhibited high suppression towards T_{eff} obtained from the same donor (63.9% range 48.2–82.6, right black bar) as well as on T_{eff} isolated from MS patients (60.2% range 50.6–78.0, left black bar). Bars represent mean data plus SEM of Treg suppressive activity in these three different experiments. (B) Percentages of inhibition of rhMOG-induced proliferation of T_{eff} by T_{reg} (T_{eff} : T_{reg} ratio 4:1) obtained from 10 MS patients during acute relapse (left side) and in remission 12-18 weeks thereafter (right side). Differences in mean Treg-mediated suppression between both time points (depicted by the bars) were statistically not significant.


and *vice versa*, in three independent experiments. As illustrated in Fig. 4A, T_{reg} isolated from MS patients exhibited a weak anti-proliferative effect on target responder cells from either MS patients (23.8%, range 17.5–29.7) or healthy donors (19.5%, range 8.3–31.1). In contrast, T_{reg} from healthy persons markedly reduced proliferation of T_{eff} isolated from both MS patients (60.2%, range 50.6–78.0) and control donors (63.9%, range 48.2–82.6). These findings suggest that the impaired downregulatory properties detectable in CD4⁺CD25^{high} T cells from MS patients are most likely due to a T_{reg} dysfunction instead of responder cell resistance.

The suppressive effect of T_{reg} in MS patients is reduced to a similar extent during clinical remission

To determine, whether the impaired downregulatory abilities of T_{reg} correlate with active disease, we repeatedly isolated and tested $T_{\rm reg}$ and $T_{\rm eff}$ subsets from 10 MS patients under rhMOG stimulation co-culture conditions within 12-18 weeks following an acute relapse. In all patients relapse-associated symptoms had resolved and none of the subjects had initiated immunomodulatory therapy at second assessment. Serial magnetic resonance imaging data were not available. Treg isolated in clinical remission displayed similar inhibition rates of T_{eff} proliferative responses compared to effects observed with T_{reg} selected during the acute relapse in all individuals assessed. Mean T_{reg}mediated suppression of rhMOG-stimulated T_{eff} was 24.3%, range 8.2–59.3 in remission versus 28.8%, range 10.1–58.0 during relapsing disease phases. Importantly, in each patient the T_{reg} suppressive activity as well as the proliferation of $T_{\rm eff}$ stayed remarkably constant (Fig. 4B). This argues for reliable purification of Teff and Treg and against fluctuations of MOG-specific Teff and T_{reg} in blood. Thus, it appears unlikely that T_{reg} impairment is influenced by disease activity and argues against a significant depletion of Treg from peripheral blood during relapse.

T_{reg} from MS patients do not display enhanced sensitivity towards IL-2 deprivation cell death

 $T_{\rm reg}$ promptly die *in vitro* without further stimulation or addition of exogenous IL-2. To exclude the possibility that $T_{\rm reg}$ derived from MS patients die more rapidly *in vitro* than normal donor $T_{\rm reg}$, we determined the rate of apoptosis after 48 h of culture in medium with or without IL-2 (Fig. 5). As previously reported, $T_{\rm reg}$ died more quickly than $T_{\rm eff}$ [12]. Furthermore, IL-2 rescued significantly more $T_{\rm reg}$ than $T_{\rm eff}$ from cell death, which reflects the well known dependency of highly purified

Figure 5. Apoptosis sensitivity of T_{reg} is not enhanced in MS patients. Rate of apoptosis of T_{reg} and T_{eff} from normal donors (A) and MS patients (B) after 48 h of culture in medium alone versus medium supplemented with IL-2. Four populations can be distinguished as described in Material and methods; data shown represents at least three independent experiments for each patient. (C) Effect of IL-2 deprivation on T_{reg} and T_{eff} (n=8, MS patients and normal donors); IL-2 deprivation = (cell death rate without IL-2) – (spontaneous cell death rate).

CD4⁺CD25^{high} cells on exogenous IL-2 in vitro [35, 36]. Most importantly, we did not detect an increase of apoptotic or necrotic cell death in T_{reg} from MS patients (spontaneous apoptosis $45.2 \pm 7.5\%$ (MS, n=8) vs. $45.7 \pm 5.0\%$ (controls, n=8) (Fig. 5A, B), and IL-2 led to a comparable increase in cell viability (Fig. 5C). Stimulation with soluble anti-CD3 and anti-CD28 under the conditions used in our proliferation assays also increased cell survival (data not shown). This is in line with other reports showing that defective suppressor function of T_{reg} in human autoimmune disease was not linked to altered survival rates of patient-derived T_{reg} under cell culture conditions [23]. Teff taken from MS patients $(18.4 \pm 8.9\%)$ healthy donors and $(20.0 \pm 9.9\%)$ also showed similar spontaneous apoptosis (data not shown).

Discussion

Among several T cell subsets exerting a primarily suppressive action CD4⁺CD25^{high} T cells have recently been extensively characterized [5]. The murine counter-

part of this T cell subset has an established role in the prevention of organ-specific autoimmune disease, including experimental allergic encephalomyelitis [5, 26]. A similar subpopulation of CD4⁺CD25^{high} T cells is present in human peripheral blood and lymphoid organs [6–13]. From a few recent studies, it appears that T_{reg} numbers are reduced or their function is impaired in patients with various autoimmune disorders [17–24]. The impact of CD4⁺CD25^{high} T cells in immunoregulation is critically supported by observations of Bennett *et al.* [37] who demonstrated that mutations of Foxp3, a transcription factor which is essential for CD4⁺CD25^{high} T cell function, cause the immune dysregulation, polyendocrinopathy, enteropathy, and X-linked syndrome (IPEX).

In this study, we analyzed the function of CD4⁺CD25^{high} T cells in patients with relapsing remitting MS in comparison to age-matched healthy individuals. The MS population consisted of treatment-naïve patients who had early stage MS and clinically active disease. This allowed the role of CD4+CD25high T cells to be specifically examined in the context of acute inflammatory CNS damage. As the inflammatory process leading to myelin destruction in MS is likely to be initiated by autoimmune T cell reactivity against myelin components, we specifically tested the ability of CD4+CD25high T cells to regulate antigen-specific immune responses against rhMOG. Our data are the first to demonstrate a significantly altered average ability of CD4⁺CD25^{high} T cells to suppress rhMOG-specific T_{eff} immune responses in MS patients compared with healthy individuals.

The reduced downregulatory effect in patient-derived $CD4^+CD25^{high}$ T cells was detectable in the presence of unaltered $CD4^+CD25^-T_{eff}$ proliferation and concomitant IFN- γ production, as previously described in several studies [8–13].

A less complete suppression of CD4⁺CD25⁻ T_{eff} expansion mediated by patient-derived CD4⁺CD25^{high} T cells was also detectable in co-cultures responding to stimulation with anti-CD3/CD28 monoclonal antibodies or to allogeneic stimuli thereby confirming earlier studies by Viglietta et al. [24]. In the vast majority of 73 experimental pairs (MS patient vs. control donor) tested in independent in vitro proliferation assays, CD4⁺CD25^{high} T cells purified from healthy persons exhibited a superior suppressive effector function compared to T_{reg} derived from the MS patient. The impaired downregulatory activity of T_{reg} in MS patients coincided with an equal number of CD25high and CD25^{int} T cells within the CD4⁺ T cell pool of MS patients and control donors. The degree of suppression observed in MS patient was not influenced by the severity of relapses, and there was also no correlation between Treg-associated suppressive potencies and disease duration, relapse rate, and neurological disability as determined by the expanded disability status scale [38].

In the absence of a clear phenotypic marker other than CD25, which defines regulatory T cells within the human CD4⁺CD25⁺ T cell pool, a prerequisite to study target T_{reg} is the selection of CD4⁺ T cells expressing high levels of CD25. Regulatory function is confined to CD4⁺CD25^{high} T lymphocytes as opposed CD4⁺CD25^{low} and CD4⁺CD25^{int} T cell fractions, which do not exhibit regulatory properties [6, 7] and, within the CD4+CD25int T cell subset, contain recently activated and proliferating T cells which transiently upregulate CD25 [28]. To proceed with highly purified immunoregulatory and responder T cell subsets we used low affinity-immunomagnetic beads to enrich only the brightest CD25⁺ cells from purified CD4⁺ T cells. In MS patients and control donors, the isolation procedure consistently selected a small CD4⁺ cell subpopulation that coexpressed CD25 at high levels and, as a typical feature of immunoregulatory T cells, invariably exhibited anergy towards both rhMOG-specific and antigennonspecific polyclonal or allogeneic stimuli. Furthermore, CD4⁺CD25^{high} T cells purified from both study cohorts expressed equal levels of Foxp3 and had identical levels of intracellular TREC. Separate experiments comparing the suppressive activity of beadpurified vs. FACS-sorted CD4+CD25high T cells from the same blood specimen revealed similar results (data not shown), confirming that our immunomagnetic purification yielded pure CD4⁺CD25^{high} T cells. These observations indicate that the functional properties of immunoregulatory T lymphocytes of patient origin were not due to a higher prevalence of activated Teff cells isolated CD25^{high} subpopulation. CD4+CD25high T cells also did not differ as to their propensity to undergo apoptotic cell death, suggesting that the functional capacities of subsets isolated from MS patients were not affected by an altered survival compared to their counterparts from control individuals.

Suppression of responder T cell proliferation may not only be influenced by $T_{\rm reg}$ -mediated effects but also by the susceptibility of $T_{\rm eff}$ towards inhibitory signals. To exclude responder T cell resistance in MS patients, we mixed $T_{\rm eff}$ from MS patients with $T_{\rm reg}$ from healthy subjects, and *vice versa*, in cross-over *in vitro* proliferation assays. Whereas donor-derived $T_{\rm reg}$ induced an appropriate and comparable downregulation of responder T cell subsets from both study cohorts, $T_{\rm reg}$ isolated from MS patients exhibited weak suppressive effects when tested against both autologous and donor $T_{\rm eff}$. Similar observations were recently reported by Viglietta *et al.* [24]. This clearly suggests that a functional impairment of $T_{\rm reg}$ rather than a responder T cell resistance accounts for the reduced inhibition. More-

over, we did not observe alterations in frequency or activation state of responder T cells originating from MS patients. Peripheral blood samples of both study groups had similar frequencies of CD4+CD25^{int} T cells as assessed by flow cytometry, and there were no differences in the proportion of CD4⁺CD25^{low/int} T cells among immunomagnetically separated T_{eff} subsets. Likewise, responder T cells from MS patients and control donors did not differ in the expression of T cell activation markers CD69 and CD38 (data not shown) and in both groups CD4+CD25^{low}/CD4+CD25^{int} T cells expressed equivalent amounts of IFN- γ , IL-2, and TNF- α mRNA transcripts. Cytokine mRNA expressions were extremely low, suggesting that Teff subsets harbored a very low number of activated T cells prior to in vitro stimulation. In addition, both antigen-specific and antigen-nonspecific stimuli applied in the co-culture experiments induced comparable T_{eff} proliferation levels. From these observations it appears unlikely that variations in the composition of responder T cells and, as a result, differing responses to both stimulatory and immunoregulatory signals may account for the lower inhibitory effects mediated by patient derived T_{reg}.

It is also critical to exclude that immunoregulatory T cells migrate to the CNS to locally regulate the inflammatory T cell response and, as a consequence are depleted from the peripheral blood of MS patients. CD4⁺CD25^{high} cells were detected in the CSF specimens from MS patients, and the proportion of CD25^{high} T cells contained within total CD4⁺ cells did not differ between CSF and peripheral blood with average frequencies of 2–3%. Furthermore, serial assessment of T_{reg} performed in 10 MS patients during active disease and again in clinical remission revealed both similar frequencies and a consistently impaired suppressive potency. These findings argue against an accumulation of T_{reg} to the CNS during relapse and suggest that the functional alteration detectable in CD4+CD25high T cells from MS patients is not influenced by disease activity. However, studies with rheumatoid arthritis patients revealed thus far diverging results, showing either stable or reduced numbers of CD25^{high} regulatory T cells in the peripheral blood [39, 40], therefore further studies regarding T_{reg} distribution in active disease are warranted.

In conclusion, our findings indicate that in patients with MS a persistent functional deficiency rather than a reduced survival of $T_{\rm reg}$ or a resistance of responder T cells accounts for the impaired suppression of autoantigen-specific and general T cell responses. The defective control of rhMOG-responsive T lymphocytes together with the beneficial effect of CD4 $^+$ CD25 $^{\rm high}$ T cells in MOG-related EAE as previously demonstrated by Kohm *et al.* [26] strongly imply that a failure to maintain peripheral immune tolerance may have a pathogenic role in MS and may contribute to the

emergence of CNS autoimmunity against myelin components. Therefore, studies addressing the responsiveness of this specialized T cell subset to pharmacological modulation should be performed.

Material and methods

Patients

The study included 73 patients with definite relapsing remitting MS according to the Poser criteria [41], and a mean age of 32.6 years (range 15-58 years) as well as 73 agematched healthy control individuals (mean 31.5 years, range 20-55 years). All MS patients had clinically active disease and had not yet received treatment with corticosteroids or immunomodulatory agents. Patients had a mean disease duration of 15 months, a mean EDSS score of 2.5, and had previously experienced an average of two relapses. Ten patients were serially tested within 12-18 weeks following treatment with a 3-day course of methylprednisolone 1000 mg daily for relapse-associated symptoms. None of these patients had initiated treatment with immunomodulatory agents at second assessment. The protocol was approved by the University of Heidelberg ethics committee and all individuals gave written informed consent.

Magnetic cell separation

PBMC were obtained from 50 mL EDTA-blood by density gradient centrifugation using Ficoll/Hypaque (Biochrom, Berlin, Germany). $\mathrm{CD4}^+$ T cells were isolated from PBMC using a negative $\mathrm{CD4}^+$ T cell isolation kit (Dynal, Hamburg, Germany). $\mathrm{T_{reg}}$ and $\mathrm{CD4}^+\mathrm{CD25}^{\mathrm{low}}/\mathrm{CD4}^+\mathrm{CD25}^-$ Teff were isolated from the pure, untouched $\mathrm{CD4}^+$ T cells using CD25 magnetic beads (Dynal). Magnetic beads were removed from $\mathrm{T_{reg}}$ using Detachabead CD4 solution (Dynal).

CSF specimens were collected from a subset of 15 MS patients. Cells were collected by centrifugation at $800 \times g$ for 10 min and resuspended in 200 μ L PBS for flow cytometric analysis.

Cell sorting and flow cytometry

Alternatively, CD4+CD25high and CD4+CD25 T cells were separated by the use of a FACSVantage SE cell sorter (Becton Dickinson, NJ). Briefly, freshly isolated peripheral T cells or CSF cells were directly stained for 30–45 min at 4°C with fluorescein (FITC)- or phycoerythrin (PE)-labeled antibodies specific for human CD4 (M-T477, Becton Dickinson), CD25 (M-A251, PharMingen, San Diego, CA), CD45RA (HI-100, PharMingen), and CD45RO (UCHL-1, PharMingen) as recently described [42]. Standard FACS analysis for detection of various markers and quantification of apoptosis was performed using a FACScan and the CellQuest software (Becton Dickinson).

Cell proliferation assay

 $T_{\rm eff}$ (10⁵ cells) were incubated in 96-well plates (Nunc, Wiesbaden, Germany) in 200 µL RPMI 1640, supplemented with 5% AB serum, 100 U/mL penicillin, 100 µg/mL streptomycin, 2 mM L-glutamine, and 1 mM sodium pyruvate, alone or in co-culture with 10^5 or 2.5×10^4 CD4 $^+$ CD25 high T_{reg} (T_{eff}/ T_{reg} ratios 1:1 or 4:1). For stimulation of myelin-specific T cells, 10 µg/mL recombinant MOG (rhMOG, kind gift from Bob Harris, Neuroimmunology Unit, Karolinska Sjukhuset, Stockholm, Sweden) was added to the culture medium and 2×10^5 irradiated (30 Gray) T cell-depleted PBMC served as APC. Alternatively, stimulation was performed with either 10⁵ irradiated, T cell-depleted allogeneic PBMC or with soluble anti-CD3 (1 µg/mL) and anti-CD28 antibodies (1 µg/mL). After 4 days at 37°C in 5% CO₂, 1 μ Ci [³H]thymidine per well was added for additional 16 h. Proliferation was measured using a scintillation counter. Inhibition rate (%) of T_{reg} in coculture experiments was defined as [1 – (cpm of [3H]thymidine uptake within T_{reg} – T_{eff} co-culture/cpm of T_{eff} alone)] \times 100. To measure IFN- γ release, 50 μ L cell culture supernatant was removed from each well after 4 days of incubation. IFN-γ concentrations were determined using an IFN-γ-ELISA kit (Biosource, Nivelles, Belgium). Cell culture medium, rhMOG-peptide, anti-CD3 and anti-CD28 antibodies were endotoxin free (<10 pg/mL) as assessed by the Limulus assay (Sigma, Taufkirchen, Germany).

Quantitation of TREC in CD4⁺CD25^{high} regulatory T cells

To study the degree of peripheral proliferation, we determined the number of TREC in 2×10^5 T_{reg} as described previously [30]. Results were expressed as TREC per 10^6 cells.

Quantitative real time PCR

Total RNA was isolated from freshly separated $T_{\rm reg}~(2\times10^5)$ or $T_{\rm eff}~(10^6)$ using an Absolutely RNA Microprep kit (Stratagene, Heidelberg, Germany). cDNA conversion was performed with oligo(dT) primers using a Superscript II cDNA synthesis kit (Invitrogen, Karlsruhe, Germany).

To measure cytokine mRNA expression in T_{eff} , real time PCR was performed with primers and TaqMan® probes specific for human IFN- γ , IL-2, and TNF- α . Primers and FAMTM dyelabeled TaqMan® MGM probes were purchased as Assay-on-DemandTM Gene Expression Product from Applied Biosystems (Weiterstadt, Germany). Each PCR reaction (30 μ L) consisted of 500 ng cDNA, 1× TaqMan Universal PCR Mastermix, 200 nM primers and 100 nM TaqMan probe. As a positive control for cytokine gene expression, we tested T_{eff} stimulated *in vitro* for 3 days with soluble anti-CD3 (1 μ g/mL) and anti-CD28 (1 μ g/mL). A reaction mixture without cDNA served as a negative control in each run.

Foxp3 mRNA quantitation in $T_{\rm reg}$ was performed with a SYBR Green PCR Core Reagent Kit (Applied Biosystems). Reaction mixtures contained 100 ng cDNA, $1\times$ SYBR Green PCR buffer, 3 mM MgCl₂, 1 mM dNTP, 900 nM of each primer (forward: 5'-AGCTGGAGTTCCGCAAGAAAC; reverse 5'-TGTTCGTCCATCCTCCTTTCC), 0.75 U AmpliTaq GoldTM, and 1 U AmpErase in a total volume of 30 μ L.

All real time PCR reactions were performed in triplicate by the use of a standard two-step cycle program utilizing an ABI Prism 5700 sequence detector system (Applied Biosystems). Expression of glyceraldehyde-3-phosphate-dehydrogenase (GAPDH) was used to correct for different levels of inhibition during reverse transcription of RNA and during PCR. Relative expression levels of cytokine and FoxP³ mRNA were calculated by the $2^{-\Delta ACt}$ method as outlined in the manufacturer's technical bulletin and expressed as mean target mRNA expression in patient derived T cells relative to the mean target mRNA expression in T cells obtained from control donors.

Quantification of apoptosis

Freshly isolated $T_{\rm reg}$ or $T_{\rm eff}$ (3 \times 10⁴ cells) were kept in culture medium alone or supplemented with either 100 U/mL IL-2 or soluble anti-CD3 (1 μ g/mL) and anti-CD28 antibodies (1 μ g/mL) for 48 h in round-bottom microtiter plates. For detection of cell death cells were washed with annexin V-binding buffer and stained with Alexa Fluor® 488 annexin V (Molecular probes) for 15 min in the dark. Cells were washed and resuspended in 3 μ g/mL propidium iodide (Sigma) followed by flow cytometry analysis. Annexin V staining allows viable cells (annexin V negative and propidium iodide negative) to be distinguished from early apoptotic cell populations (annexin V positive and propidium iodide negative), whereas propidium iodide labels later stages of cell death (annexin V positive and propidium iodide positive) with necrotic cells taking up the highest amount of propidium iodide.

Statistical analysis

To analyze for differences in $T_{\rm reg}$ -mediated suppression, in $T_{\rm reg}$ and $T_{\rm eff}$ mRNA expression as well as in $T_{\rm reg}$ and $T_{\rm eff}$ prevalence, we used Wilcoxon-signed rank sum test and Pearson's correlation coefficients. Analysis of covariance was used to assess differences in $T_{\rm reg}$ TREC numbers between MS patients and healthy controls, adjusted for age. A p value of < 0.05 was considered significant.

Acknowledgements: Supported by Gemeinnützige Hertie-Stiftung (1.319.110/01/11 and 1.01.1/04/003), Biogen GmbH, Serono GmbH, Deutsche Forschungsgemeinschaft (SFB 405, 5H, and SFB 571, B7), and the Young Investigator Award from the Faculty of Medicine, University of Heidelberg to B.F. We are very grateful to Ms. Nina Oberle and Simone Prinz for establishing the Foxp3 PCR and to Mr. Bob Harris for providing rhMOG.

References

- 1 Steinman, L., Multiple sclerosis: a coordinated immunological attack against myelin in the central nervous system. Cell 1996. 85: 299–302.
- 2 Noseworthy, J. H., Progress in determining the cause and treatment of multiple sclerosis. *Nature* 1999. 399: A40.
- 3 Walker, L. S. and Abbas, A. K., The enemy within: keeping self-reactive T cells at bay in the periphery. Nat. Rev. Immunol. 2002. 2: 11–19.
- 4 Stockinger, B., T lymphocyte tolerance: from thymic deletion to peripheral control mechanisms. Adv. Immunol. 1999. 71: 229–265.
- 5 Shevach, E. M., CD4⁺CD25⁺ suppressor T cells: more questions than answers. Nat Rev *Immunol* 2002. 2: 389–400.

- 6 Baecher-Allan, C., Brown, J. A., Freeman, G. J. and Hafler, D. A., CD4+CD25^{high} regulatory cells in human peripheral blood. *J. Immunol.* 2001. 167: 1245–1253.
- 7 Wing, K., Ekmark, A., Karlsson, H., Rudin, A. and Suri-Payer, E., Characterization of human CD25⁺CD4⁺ T cells in thymus, cord and adult blood. *Immunology* 2002. **106**: 190–199.
- 8 Dieckmann, D., Plottner, H., Berchtold, S., Berger, T. and Schuler, G., Exvivo isolation and characterization of CD4(+)CD25(+) T cells with regulatory properties from human blood. J. Exp. Med. 2001. 193: 1303–1310.
- 9 Jonuleit, H., Schmitt, E., Stassen, M., Tuettenberg, A., Knop, J. and Enk, A. H., Identification and functional characterization of human CD4(+)CD25(+) T cells with regulatory properties isolated from peripheral blood. *J. Exp. Med.* 2001. **193**: 1285–1294.
- 10 Levings, M. K., Sangregorio, R. and Roncarolo, M. G., Human cd25(+)cd4(+) t regulatory cells suppress naive and memory T cell proliferation and can be expanded in vitro without loss of function. J. Exp. Med. 2001. 193: 1295–1302.
- 11 Stephens, L. A., Mottet, C., Mason, D. and Powrie F., Human CD4⁺CD25⁺ thymocytes and peripheral T cells have immune suppressive activity in vitro. Eur. J. Immunol. 2001. 31: 1247–1254.
- 12 Taams, L. S., Smith, J., Rustin, M. H., Salmon, M., Poulter, L. W. and Akbar, A. N., Human anergic/suppressive CD4⁺CD25⁺ T cells: a highly differentiated and apoptosis-prone population. *Eur. J. Immunol.* 2001. 31: 1122–1131
- 13 Taams, L. S., Vukmanovic-Stejic, M., Smith, J., Dunne, P. J., Fletcher, J. M., Plunkett, F. J., Ebeling, S. B. et al., Antigen-specific T cell suppression by human CD4⁺CD25⁺ regulatory T cells. Eur. J. Immunol. 2002. 32: 1621–1630.
- 14 Fontenot, J. D., Gavin, M. A. and Rudensky, A. Y., Foxp3 programs the development and function of CD4⁺ CD25⁺ regulatory T cells. *Nat. Immunol.* 2003. 4: 330–336.
- 15 Hori, S., Nomura, T. and Sakaguchi, S., Control of regulatory T cell development by the transcription factor Foxp3. *Science* 2003. 299: 1057–1061.
- 16 Khattri, R., Cox, T., Yasayko, S. A. and Ramsdell, F., An essential role for Scurfin in CD4⁺CD25⁺ T regulatory cells. *Nat. Immunol.* 2003. 4:337–342.
- 17 Kukreja, A., Cost, G., Marker, J., Zhang, C., Sun, Z., Lin-Su, K., Ten, S. et al., Multiple immunoregulatory defects in type-1 diabetes. J. Clin. Invest. 2002. 109:131–140.
- 18 Putman, A. L., Vendrame, F. and Gottlieb, P. A., Characterization of CD4+CD25hi T cells in human type 1 diabetes. Clin. Immunol. 2003S1: 177a.
- 19 de Kleer, I. M., Wedderburn, L. R., Taams, L. S., Patel, A., Varsani, H., Klein, M., de Jager, W. et al., CD4⁺CD25^{bright} regulatory T cells actively regulate inflammation in the joints of patients with the remitting form of juvenile idiopathic arthritis. *J. Immunol.* 2004. 172: 6435–6443.
- 20 Crispin, J. C., Martinez, A. and Alcocer-Varela, J., Quantification of regulatory T cells in patients with systemic lupus erythematosus. J. Autoimmun. 2003. 21: 273–276.
- 21 Boyer, O., Saadoun, D., Abriol, J., Dodille, M., Piette, J. C., Cacoub, P. and Klatzmann, D., CD4⁺CD25⁺ regulatory T cell deficiency in patients with hepatitis C-mixed cryoglobulinemia vasculitis. *Blood* 2004. 103: 3428–3430.
- 22 Kriegel, M. A., Lohmann, T., Gabler, C., Blank, N., Kalden, J. R. and Lorenz, H. M., Defective suppressor function of human CD4⁺ CD25⁺ regulatory T cells in autoimmune polyglandular syndrome type II. *J. Exp. Med.* 2004. 199: 1285–1291.
- 23 Sugiyama, H., Gyulai, R., Toichi, E., Garaczi, E., Shimada, S., Stevens, S. R., McCormick, T. S. and Cooper, K. D., Dysfunctional blood and target tissue CD4+CD25^{high} regulatory T cells in psoriasis: mechanism underlying unrestrained pathogenic effector T cell proliferation. *J. Immunol.* 2005. 174: 164–173.
- 24 Viglietta, V., Baecher-Allan, C. M., Weiner, H. L. and Hafler, D. A., Loss of functional suppression by CD4⁺CD25⁺ regulatory T cells in patients with multiple sclerosis. *J. Exp. Med.* 2003. 199: 971–979.

- 25 Mendel, I., Kerlero de Rosbo, N. and Ben-Nun, A., A myelin oligodendrocyte glycoprotein peptide induces typical chronic experimental autoimmune encephalomyelitis in H-2b mice: fine specificity and T cell receptor V beta expression of encephalitogenic T cells. Eur. J. Immunol. 1995. 25: 1951–1959.
- 26 Kohm, A. P., Carpentier, P. A., Anger, H. A. and Miller, S. M., Cutting edge: CD4⁺CD25⁺ regulatory T cells suppress antigen-specific autoreactive immune responses and central nervous system inflammation during active experimental autoimmune encephalomyelitis. *J. Immunol.* 2002. 169: 4712–4716.
- 27 Wing, K., Lindgren, S., Kollberg, G., Lundgren, A., Harris, R. A., Rudin, A., Lundin, S. and Suri-Payer, E., CD4 T cell activation by myelin oligodendrocyte glycoprotein is suppressed by adult but not cord blood CD25⁺ T cells. *Eur. J. Immunol.* 2003. 33: 579–587.
- 28 Reem, G. H., Yeh, N. H., Urdal, D. L., Kilian, P. L. and Farrar, J. J., Induction and upregulation by interleukin 2 of high-affinity interleukin 2 receptors on thymocytes and T cells. *Proc. Natl. Acad. Sci. USA* 1985. 82: 8663–8666.
- 29 Hazenberg, M. D., Verschuren, M. C., Hamann, D., Miedema, F. and van Dongen, J. J., T cell receptor excision circles as markers for recent thymic emigrants: basic aspects, technical approach, and guidelines for interpretation. J. Mol. Med. 2001. 79: 631–640.
- 30 Hug, A., Korporal, M., Schröder, I., Haas, J., Glatz, K., Storch-Hagenlocher, B. and Wildemann, B., Thymic export function and T cell homeostasis in patients with relapsing remitting multiple sclerosis. *J. Immunol.* 2003. 171: 432–437.
- 31 Lindert, R. B., Haase, C. G., Brehm, U., Linington, C., Wekerle, H. and Hohlfeld, R., Multiple sclerosis: B and T cell responses to the extracellular domain of the myelin oligodendrocyte glycoprotein. *Brain* 1999. 122: 2089–2100.
- 32 Diaz-Villoslada, P., Shih, A., Shao, L., Genain, C. P. and Hauser, S. L., Autoreactivity to myelin antigens: myelin/oligodendrocyte glycoprotein is a prevalent autoantigen. J. Neuroimmunol. 1999. 99: 36–43.
- 33 Traggiai, E., Biagioli, T., Rosati, E., Ballerini, C., Mazzanti, B., Ben Nun, A., Massacesi, L. and Vergelli, M., IL-7-enhanced T cell response to myelin proteins in multiple sclerosis. *J. Neuroimmunol.* 2001. 121: 111–119.
- 34 Hellings, N., Baree, M., Verhoeven, C., D'hooghe, M. B., Medaer, R., Bernard, C. C., Raus, J. and Stinissen, P., T cell reactivity to multiple myelin antigens in multiple sclerosis patients and healthy controls. *J. Neurosci. Res.* 2001. **63**: 290–302.
- 35 **Thornton, A. M. and Shevach, E. M.,** CD4⁺CD25⁺ immunoregulatory T cells suppress polyclonal T cell activation *in vitro* by inhibiting interleukin 2 production. *J. Exp. Med.* 1998. **188**: 287–296.
- 36 Bensinger, S. J., Walsh, P. T., Zhang, J., Carroll, M., Parsons, R., Rathmell, J. C., Thompson, C. B. et al., Distinct IL-2 receptor signaling pattern in CD4⁺CD25⁺ regulatory T cells. J. Immunol. 2004. 172: 5287–5296.
- 37 Bennett, C. L., Christie, J., Ramsdell, F., Brunkow, M. E., Ferguson, P. J., Whitesell, L., Kelly, T. E. et al., The immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) is caused by mutations of Foxp3. Nat. Genet. 2001. 27: 20–21.
- 38 Kurtzke, J. F., Rating neurologic impairment in multiple sclerosis: an expanded disability status scale (EDSS). *Neurology* 1983. **33**: 1444–1452.
- 39 Ehrenstein, M. R., Evans, J. G., Singh, A., Moore, S., Warnes, G., Isenberg, D. A. and Mauri, C., Compromised function of regulatory T cells in rheumatoid arthritis and reversal by anti-TNFα therapy. *J. Exp. Med.* 2004. 200: 277–285.
- 40 Cao, D., Malmstrom, V., Baecher-Allan, C., Hafler, D., Klareskog, L. and Trollmo, C., Isolation and functional characterization of regulatory CD25^{bright}CD4⁺ T cells from the target organ of patients with rheumatoid arthritis. Eur. J. Immunol. 2003. 33: 215–223.
- 41 Poser, C. M. and Paty, D. W., Scheinberg L., New diagnostic criteria for multiple sclerosis: guidelines for research protocols. *Ann. Neurol.* 1983. 13: 227–231.
- 42 Fritzsching, B. F., Schwer, B., Kartenbeck, J., Pedal, A., Horejsi, V. and Ott, M., Release and intercellular transfer of cell surface CD81 via microparticles. J. Immunol. 2002. 169: 5531–5537.