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Scienze Biomediche, Università di Sassari, Sassari, Italy, 8 Genome Technology Branch, National Human Genome Research Institute, Bethesda, Maryland, United States of
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Abstract

Genome-wide association studies have identified hundreds of loci for type 2 diabetes, coronary artery disease and
myocardial infarction, as well as for related traits such as body mass index, glucose and insulin levels, lipid levels, and blood
pressure. These studies also have pointed to thousands of loci with promising but not yet compelling association evidence.
To establish association at additional loci and to characterize the genome-wide significant loci by fine-mapping, we
designed the ‘‘Metabochip,’’ a custom genotyping array that assays nearly 200,000 SNP markers. Here, we describe the
Metabochip and its component SNP sets, evaluate its performance in capturing variation across the allele-frequency
spectrum, describe solutions to methodological challenges commonly encountered in its analysis, and evaluate its
performance as a platform for genotype imputation. The metabochip achieves dramatic cost efficiencies compared to
designing single-trait follow-up reagents, and provides the opportunity to compare results across a range of related traits.
The metabochip and similar custom genotyping arrays offer a powerful and cost-effective approach to follow-up large-scale
genotyping and sequencing studies and advance our understanding of the genetic basis of complex human diseases and
traits.
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Introduction

Recent data emerging from theoretical models [1,2] and

empirical observation through genome-wide association studies

(GWAS) (for example [3,4]) demonstrate that hundreds of genetic

loci contribute to complex traits in humans. These data prompt

two questions: (1) can additional genetic loci be identified by

follow-up of the most significantly associated variants after initial

GWAS meta-analysis? and (2) can further investigation via genetic

fine-mapping refine association signals at established genetic loci?

Systematically addressing these two questions should help improve

understanding of the genetic architecture of complex traits and

their shared genetic determinants, and suggest hypotheses and

disease mechanisms that can be tested in functional experiments or

model systems [5].

Addressing these two questions requires genotyping thousands of

individuals at many genetic markers. For most currently available

genotyping technologies, this kind of characterization is cost-

prohibitive. To address this need in the context of type 2 diabetes,

coronary artery disease and myocardial infarction, and quantitative

traits related to these diseases, we designed the Metabochip, a

custom genotyping array that provides accurate and cost-effective

genotyping of nearly 200,000 single nucleotide polymorphisms

(SNPs) chosen based on GWAS meta-analyses of 23 traits (Table 1).

Metabochip SNPs were selected from the catalogs developed by the

International HapMap [6] and 1000 Genomes [7] Projects,

allowing inclusion of SNPs across a wide range of the allele

frequency spectrum. These included 63,450 SNPs to follow-up the

top ,5,000 or ,1,000 (see Methods) independent association

signals for each of the 23 traits, 122,241 SNPs to fine-map 257 loci

which showed genome-wide significant evidence for association

with one or more of the 23 traits, and 16,992 SNPs chosen for a

variety of other reasons (see Methods and Table 2). In designing the

array, we sought to maximize assay success rates as well as the

number of variants that could be assayed; Illumina custom arrays

include a fixed number of ‘‘beads’’ and some sites can be assayed

with a single bead while others require two [8].

Here, we describe Metabochip array design, and evaluate

performance of the array in common genetic analysis steps,

including quality control steps such as genomic control calculations,

identification of related individuals, and fine-mapping of known

disease susceptibility loci. Our results provide practical guidance to

investigators and show that for fine-mapping loci the Metabochip

provides much greater resolution than prior GWAS arrays.

Methods

Core Features of the Metabochip: Traits and SNPs
The Metabochip was designed by representatives of the Body

Fat Percentage [9], CARDIoGRAM (coronary artery disease and

myocardial infarction) [10], DIAGRAM (type 2 diabetes) [11],

GIANT (anthropometric traits) [3,12,13], Global Lipids Genetics

(lipids) [4], HaemGen (hematological measures) [14], ICBP (blood

pressure) [15], MAGIC (glucose and insulin) [16–18], and QT-

IGC (QT interval) [19,20] GWAS meta-analysis consortia. The

array is comprised of SNPs selected across two tiers of traits

(Table 1). Tier 1 is comprised of eleven traits deemed to be of

primary interest: type 2 diabetes (T2D), fasting glucose, coronary

artery disease and myocardial infarction (CAD/MI), low density

lipoprotein (LDL) cholesterol, high density lipoprotein (HDL)

cholesterol, triglycerides, body mass index (BMI), systolic and

diastolic blood pressure, QT interval, and waist-to-hip ratio

adjusted for BMI (WHR). Tier 2 is comprised of twelve traits of

secondary interest: fasting insulin, 2-hour glucose, glycated

hemoglobin (HbA1c), T2D age of diagnosis, early onset T2D

(diagnosis age,45 years), waist circumference adjusted for BMI,

height, body fat percentage, total cholesterol, platelet count, mean

platelet volume, and white blood cell count.

We included three design classes of SNPs on the Metabochip

(Table 2):

1. Replication SNPs: ,5,000 (Tier 1) or ,1,000 (Tier 2) SNPs

were selected to follow-up the top independent association

signals from the largest available GWAS meta-analysis for each

of the 23 traits (Supplementary Table S1).

2. Fine-mapping SNPs: SNPs were selected from the catalogs of the

International HapMap Project [6] and the August 2009 release

of the 1000 Genomes Project [7] to fine-map 257 loci associated

at genome-wide significance (P,561028) in preliminary anal-

yses of one or more of the 23 traits (See Figure 1, Supplementary

Table S2 and S3, and Supplementary Text for details).

3. Other SNPs: These were comprised of independent SNPs for

which genome-wide significant associations had been reported

for any trait, SNP tags for copy number polymorphisms

(CNPs), the MHC region, and the mitochondrial genome,

fingerprint SNPs from GWA array products, a set of

chromosome X and Y markers for sex verification, and

‘‘wild-card’’ SNPs based on consortium-specific hypotheses and

interests (for example, based on a known pathway or early

deep-sequencing studies). A detailed description of how SNPs

were selected in each of these categories can be found in the

Supplementary Text [21–25].

In total, 217,695 SNPs were chosen for the array (Table 2).

20,970 SNPs (9.6%) failed during the assay manufacturing process,

resulting in 196,725 SNPs available for genotyping. A summary

file annotating each Metabochip SNP with ascertainment criteria,

SNP assay, a list of unintended duplicate SNPs (Supplementary

Table S4), and reference strand orientation for alleles is provided

at http://www.sph.umich.edu/csg/kang/MetaboChip/.

Metabochip Array Design
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Data Generation and Quality Control (QC)
We evaluated the utility of the Metabochip and accuracy of its

genotype calls in three sample sets: (1) 15,896 northern European

individuals from the FUSION, METSIM, HUNT, Tromsø, and

Diagen studies [26–30] together with 67 HapMap samples

genotyped at least two times each and called using Illumina

GenomeStudio software by re-clustering these data; (2) 6,614

Sardinian individuals organized in 1,243 extended families from

the SardiNIA study [31,32] called by GenomeStudio software

using default cluster data; and (3) 9,715 Nordic individuals from

the Malmø Preventive Project, the Scania Diabetes Registry, and

the Botnia Study [33–35] genotyped using a modified version of

the BIRDSEED genotype calling algorithm [36].

We applied standard SNP- and sample-based QC filters based

on call rate, Hardy-Weinberg equilibrium deviations, duplicate

genotype inconsistencies, and failures of Mendelian inheritance; in

the Nordic sample, we also carried out checks based on plate-

specific characteristics. These filters resulted in final data sets of

163,222 polymorphic SNPs genotyped in 67 HapMap samples,

142,812 polymorphic SNPs genotyped in 6,164 Sardinians, and

Table 1. Summary of Metabochip SNPs by trait: Fine-mapping and replication.

Consortium Trait Name Fine Mapping Replication SNPs

# Loci Size (Mb) # SNPs

Tier 1

DIAGRAM Type 2 Diabetes 34 6.56 16,717 5,057

CARDIoGRAM MI and CAD 30 9.60 19,558 6,485

Lipids HDL Cholesterol 23 4.62 12,150 5,024

LDL Cholesterol 21 4.06 9,981 5,060

Triglyceride 20 4.68 9,784 5,057

GIANT Body Mass Index 24 7.48 18,211 5,055

Waist-to-Hip Ratio* 15 2.25 5,464 5,056

MAGIC Fasting Glucose 19 5.05 13,644 5,058

ICBP Diastolic Blood Pressure 20 8.34 13,239 5,060

Systolic Blood Pressure 21 6.01 10,641 5,059

QT-IGC QT Interval 18 4.08 10,910 5,041

Tier 2

DIAGRAM T2D Age of Diagnosis 0 0.00 0 1,039

T2D Early Onset 0 0.00 0 1,040

HaemGen Mean Platelet Volume 0 0.00 0 657

Platelet Count 0 0.00 0 577

White Blood Cell 0 0.00 0 598

Lipids Total Cholesterol 0 0.00 0 941

Body Fat Body Fat Percentage 0 0.00 0 1,035

GIANT Height 0 0.00 0 1,050

Waist Circumference* 2 0.50 1,374 1,048

MAGIC 2-Hour Glucose 3 0.61 1,249 1,038

Glycated Hemoglobin 5 0.46 2,181 1,045

Fasting Insulin 2 0.67 1,309 1,046

TOTAL With Redundancy 257 64.97 146,453 68,126

Unique Regions/SNPs 257 45.52 122,241 63,450

SNP counts are numbers of SNPs successfully manufactured on the Metabochip array.
*Waist-to-hip ratio and waist circumference were adjusted for body mass index.
doi:10.1371/journal.pgen.1002793.t001

Author Summary

Recent genetic studies have identified hundreds of regions
of the human genome that contribute to risk for type 2
diabetes, coronary artery disease and myocardial infarction,
and to related quantitative traits such as body mass index,
glucose and insulin levels, blood lipid levels, and blood
pressure. These results motivate two central questions: (1)
can further genetic investigation identify additional associ-
ated regions?; and (2) can more detailed genetic investiga-
tion help us identify the causal variants (or variants more
strongly correlated with the causal variants) in the regions
identified so far? Addressing these questions requires
assaying many genetic variants in DNA samples from
thousands of individuals, which is expensive and time-
consuming when done a few SNPs at a time. To facilitate
these investigations, we designed the ‘‘Metabochip,’’ a
custom genotyping array that assays variation in nearly
200,000 sites in the human genome. Here we describe the
Metabochip, evaluate its performance in assaying human
genetic variation, and describe solutions to methodological
challenges commonly encountered in its analysis.

Metabochip Array Design

PLoS Genetics | www.plosgenetics.org 3 August 2012 | Volume 8 | Issue 8 | e1002793



179,165 polymorphic SNPs genotyped in 8,473 Nordic individ-

uals.

Statistical Analysis Using Metabochip: Genomic Control,
PCA, and Kinship Estimation

Since Metabochip SNPs were selected to be associated with our

23 traits of interest, performing genomic control correction [37]

requires some care. To select a set of (near)-independent SNPs that

are not associated with an analysis trait of interest, we focused on

SNPs selected to replicate signals unrelated to the trait of interest

(for example, QT interval SNPs for a T2D association analysis),

also removing SNPs within 250 kb of SNPs previously associated

with the trait of interest, and then LD-pruning the remaining

SNPs so that no SNP pair is in strong LD (r2..3).

To estimate kinship coefficients or to correct for population

stratification using principal components analysis (PCA) or

multidimensional scaling (MDS) covariates, we require SNPs that

are not too rare and are not in strong pairwise LD. We found that

taking SNPs with MAF..05 and LD-pruning them so that no

SNP pair has r2..3 works well for PCA and MDS (data not

shown). The same subset of SNPs can be used for pairwise IBD

estimation using the maximum-likelihood method of Milligan [38]

implemented in PLINK [39] or the variance-components method

of Balding and Nichols [40] implemented in EMMAX [41].

Imputation Preparation and Evaluation
We carried out genotype imputation in the Sardinian data. We

imputed variants observed in a reference set of 280 Europeans

from the August 2010 1000 Genomes Project data into: (a) 6,164

individuals genotyped on the Metabochip [32], (b) 1,097

individuals genotyped on the Affymetrix 6.0 array, and (c) 1,412

individuals genotyped on the Affymetrix 500 K array [42]. We

evaluated mean estimated r2 within fine-mapping regions using

minimac ([43]; www.genome.sph.umich.edu/wiki/minimac), and

empirically compared the imputation quality using the published

Sanger sequencing data in five fine mapping loci [32]. In addition,

we evaluated mean estimated r2 across different continental

populations by leaving one individual out from the 1000 Genomes

reference panel and imputing them using markers present in each

platform across the fine mapping regions and a 1 Mb window

flanking each region. We also compared association power

obtained by imputation into GWAS and Metabochip samples in

Metabochip fine-mapping regions by comparing LDL cholesterol

association evidence in 2,342 of these individuals genotyped using

both the Metabochip and one of the Affymetrix arrays.

Results

Evaluation of Array Design and Genotype Quality
Of 217,695 SNPs chosen for the Metabochip across all design

categories, 196,725 (90.4%) were successfully manufactured on the

array (Table 2). The 48,846 previously manufactured SNPs had

higher success rate (95.4%) than the 168,849 new SNP assays

(88.7%). Illumina design score was predictive of the quality of

manufactured SNP assays. For example, 25% of SNPs with design

score,0.6 failed to produce genotype calls due to poor clustering

of the intensity data, compared to 3.1% of SNPs with design score

between 0.6 and 1.0 (Supplementary Figure S1).

We evaluated genotype calling accuracy for 67 HapMap

samples genotyped multiple times using three different calling

strategies: (a) Illumina GenomeStudio with reclustering the

intensity data using .15,000 samples; (b) Illumina GenomeStudio

based on default clusters provided by Illumina; and (c) GenoSNP

[44], which calls genotypes based on a within-sample-between-

markers analysis of intensity data rather than a between-sample-

within-marker analysis.

The large majority of Metabochip SNPs yielded high quality

genotypes. For the 67 HapMap samples called using GenomeS-

tudio with reclustering, only 8,344 (4.2%) of the 196,725 SNP

assays had genotype call rates ,95%, while another 25,958 SNPs

(13.2%) were monomorphic. Using GenomeStudio and default

clusters, these numbers were 12,131 (6.2%) and 25,311 (12.9%),

while using GenoSNP, they were 18,107 (9.2%) and 25,532

(13.0%).

Using GenomeStudio with reclustering, genotype concordance

between Metabochip genotypes for duplicate pairs was 99.998%

overall and 99.990% for heterozygotes. Comparing Metabochip

genotypes to HapMap 3 genotypes for the 59,935 SNPs in

common, genotype concordance was 99.93% overall and 99.84%

for heterozygotes, similar to the 99.87% Mendelian consistency

rate reported in the HapMap3 data [45]. We observed similar

concordance rates for these sample sets using the Illumina caller

with default clusters (99.93% overall, 99.84% for heterozygotes),

or using GenoSNP [44] (99.85% overall, 99.81% for heterozy-

gotes).

Table 2. Summary of Metabochip SNPs by SNP category.

SNP Category Chosen for Array Passed Manufacture Among 67 HapMap samples

.95% Called MAF.0 MAF,.05

Replication 66,130 63,450 (95.9%) 61,386 (96.7%) 60,585 (98.7%) 6,121 (10.1%)

Fine-Mapping 139,877 122,241 (87.4%) 116,779 (95.5%) 92,731 (79.4%) 37,552 (40.5%)

Prior Trait Association 2,210 2,116 (95.7%) 2,043 (96.5%) 2,039 (99.8%) 235 (11.5%)

CNP tags 6,888 6,626 (96.2%) 6,250 (94.3%) 6,160 (98.6%) 941 (15.3%)

MHC 3,203 2,909 (90.8%) 2,550 (87.7%) 2,537 (99.5%) 185 (7.3%)

Mitochondrial 144 135 (93.8%) 102 (75.6%) 66 (64.7%) 28 (42.4%)

Chromosome X/Y 112 107 (95.5%) 106 (99.1%) 104 (98.1%) 0 (0%)

Fingerprint 46 43 (93.5%) 40 (93.0%) 40 (100%) 0 (0%)

Wildcard 5,323 5,056 (95.0%) 4,847 (95.9%) 4,108 (84.8%) 493 (12.0%)

TOTAL (without redundancy) 217,695 196,725 (90.4%) 188,395 (95.8%) 163,107 (86.6%) 44,967 (27.6%)

Numbers in parenthesis represents the proportion of the SNPs in the previous column. A SNP may fall into multiple categories.
doi:10.1371/journal.pgen.1002793.t002

Metabochip Array Design
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Genotype concordance for less common variants was slightly

lower than for common variants. For example, among the

singleton SNPs in the 67 HapMap samples, 98.9% of heterozy-

gous genotypes were concordant with HapMap3 for the two

GenomeStudio call sets and 97.8% for the GenoSNP set.

Heterozygous genotype concordances for singleton SNPs between

duplicate pairs were 99.76%, 99.70%, and 99.83% for the three

call sets.

Frequency Spectrum and Coverage
We evaluated the allele frequency spectrum for Metabochip

SNPs in the 67 HapMap samples (Figure 2). Mean MAF of

Metabochip SNPs was .152 overall, .109 among fine-mapping

SNPs, and .224 among replication SNPs. Among these three SNP

sets, 38%, 53%, and 12% of SNPs had MAF,.05, and 14%, 21%,

and 2% were monomorphic.

Within the 257 fine-mapping regions (45.52 Mb), 109,855 SNPs

were catalogued by the 1000 Genomes Project [7] pilot studies

and 240,805 SNPs are in the current Phase 1 release (as of

November 2011). Of these, 122,241 fine-mapping SNPs were

genotyped on the Metabochip (Supplementary Table S2). In the

1000 Genomes European samples, Metabochip SNPs tag 82.0%

and 54.5% of all Pilot and Phase 1 1000 Genomes variants in

these regions at r2$.8, compared to 61.3% and 40.3% coverage

using HapMap 3 SNPs (Figure 3). Among SNPs with MAF,.05,

Metabochip SNPs tag 61.9% and 33.8% at r2$.8, compared to

24.3% and 17.0% using HapMap 3. Using genotype imputation,

we can impute 82% of 1000 Genomes Phase 1 European SNPs

with MAF.0.5% with an estimated r2$0.8.

Genotype Imputation within the Metabochip Fine-
Mapping Regions

We next investigated accuracy of genotype imputation into the

257 Metabochip fine-mapping regions using the 280 Europeans

from 1000 Genomes Project [7] as reference set and the 6,164

individuals in the Sardinian Metabochip sample as target. Figure 3

displays estimated r2 values in the Metabochip fine-mapping

regions as a function of MAF. Also displayed are estimated r2

values for SNPs in these regions using the 280 European 1000

Genomes project samples as reference set and 1,412 Sardinians

genotyped on the Affymetrix 500 K and 1,097 Sardinians

genotyped on the Affymetrix 6.0 chips as targets. Imputation

accuracy into the Sardinian Metabochip sample is greater in all

allele frequency ranges than for the samples genotyped using the

GWAS arrays. For example, among SNPs with .02#MAF,.05,

mean estimated r2 for the Affymetrix 500 K, Affymetrix 6.0, and

Metabochip samples were .47, .62, and .84, respectively (Figure 4).

The improved imputation accuracy for Metabochip compared to

GWAS array is primarily due to increased marker density of the

Metabochip in these regions.

Figure 1. Example of signal fine mapping (SFM) and locus fine mapping (LFM) regions. A SFM region seeks to map the initial association
signal. SFM regions were designed using linkage disequilibrium (LD) r2 estimates from the 1000 Genomes Project and HapMap CEU data. Initial
boundaries were determined by identifying all SNPs satisfying r2$.5 with the index SNP, and then expanded to the nearest flanking recombination
hotspot, but stopped if there was no hotspot nearby. LFM regions (blue) were similarly designed but expanded to capture functional units of interest
such as nearby coding genes. The figure plots LD r2 for SNPs (red dots) within the region and recombination rate (blue lines) as a function of position
on the chromosome. Gene positions and structures are displayed in the lower panel. MI = myocardial Infarction; CAD = cardiovascular disease;
HDL = high-density lipoprotein; LDL = low-density lipoprotein; T2D = type 2 diabetes.
doi:10.1371/journal.pgen.1002793.g001

Metabochip Array Design
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Imputation quality in the Metabochip fine-mapping regions

using Metabochip is also improved for non-European individuals

compared to imputation using GWAS platforms. Using a leave-

one-sample-out approach, we evaluated the average r2 from the

1000 Genomes reference panel into Affymetrix 500 k, Affymetrix

6.0, and Metabochip. For example, among SNPs with

.02,MAF,.05, mean estimated r2 across European individuals

for the chips were .78, .83, and .93, respectively. For individuals

with African ancestry, corresponding values were .78, .85, and .94,

and for individuals of Asian ancestry, they were .67, .72, and .89

(Supplementary Figure S2). The fact that imputation of rare

variants in African ancestry populations is more accurate than in

European populations is probably explained by noting that – in

the short regions evaluated here – there will be only a limited

number of common variant haplotypes in Europeans and, in some

cases, these will not effectively tag specific rare variants. In African

populations, with a larger variety of rare haplotypes, it is more

likely (relative to Europeans) that at least one haplotype will

capture rare variants of interest.

In addition, we empirically evaluated the quality of experimen-

tally determined and imputed SNPs within the five fine mapping

regions by comparing individual genotypes with those obtained by

Sanger sequencing. For 126 SNPs evaluated, the average r2 in

analyses based on the Affymetrix 500 k and 6.0 arrays was .46 and

.55, respectively. Analyses based on Metabochip showed average

r2 = .79. Focusing on 48 SNPs that were imputed in all three

analyses, the average r2 was .31 (Affymetrix 500 K), .41

(Affymetrix 6.0), and .57 (Metabochip) (Supplementary Figure S3).

High-Resolution Association Analysis within Metabochip
Fine-Mapping Regions

To compare the power and resolution for association testing in

the Metabochip fine-mapping regions to that of standard GWAS

arrays, we revisited the LDL cholesterol association analysis from

the SardiNIA study [32] in 2,342 individuals genotyped for both

Metabochip and an Affymetrix (6.0 or 500 k) GWAS chip. Here,

we focus on five of the six most strongly associated loci from

Willer et al. [46], in and around PCSK9, LDLR, APOE/APOC1/

APOC2, SORT1, and APOB (Figure 5A–J), all of which were

designated for locus fine mapping by the Global Lipids Genetics

Consortium.

In the SORT1 and APOB regions, the peak association signals for

the two data sets are similar (Figure 5A–D). For PCSK9, LDLR,

and APOE/APOC1/APOC2, Metabochip based analysis resulted in

considerably stronger association signals. For PCSK9 and APOE/

APOC1/APOC2, the most strongly associated variants were low-

frequency SNPs (MAF = 1.1% for PCSK9, MAF = 3.4% for APOE)

that were directly genotyped on the Metabochip but not on the

Affymetrix chips (Figure 5E–J). Although the signals from

common variants are similar, the peak SNPs were not imputed

accurately in the Affymetrix data (estimated r2 = .04 and .08,

respectively). Within the LDLR region, there are 165 SNPs in the

1000 Genomes European panel. None of these SNPs are on the

Affymetrix chips and only eight could be imputed at estimated

r2$.3 using the Affymetrix data; the locus is also hard to impute

using HapMap 2 as a reference, with the peak association signals

corresponding to r2 of ,.40. In contrast, 36 of the 165 SNPs were

directly genotyped in Metabochip, and 122 were imputed at

estimated r2$.3. As a result, imputation into the Metabochip data

resulted in a substantial association signal (p = 7.361026), while

for the Affymetrix data, p..02 at all markers (Figure 5I–J). These

results demonstrate that dense genotyping may substantially

improve imputation accuracy, increasing association power even

for common variants.

Performing Standard Statistical Analyses Using
Metabochip Genotype Data

We carried out kinship estimation between pairs of individuals

and calculated genotype-based principal components for inclusion

as covariates in genetic association analysis using all Metabochip

SNPs that passed QC, and then using the pruned subset of SNPs

described in the Methods section. When using all QC-passing

Figure 2. Allele frequency spectrum for Metabochip SNPs by design category. Blue dots, red squares, and green triangles display fractions
of replication, fine-mapping, and all other SNPs (see Table 2) in each of the tabulated minor allele-frequency bins. CNP = copy number polymorphism.
doi:10.1371/journal.pgen.1002793.g002
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SNPs, estimates of pairwise kinship coefficients in the Sardinia

sample had inflated variance (Supplementary Table S5), and

kinship coefficient estimates for the Nordic sample calculated using

PLINK suggested (incorrectly) that essentially all pairs of

individuals were related (Supplementary Figure S4). For each

analysis, using the pruned set of SNPs gave sensible results,

Figure 3. Coverage of 257 Metabochip fine-mapping regions. Fraction of 1000 Genomes Project SNPs in strong linkage disequilibrium (r2$.8)
with HapMap 3 (green squares) or Metabochip (blue dots) SNPs as a function of minor allele frequencies: (A) 1000 Genomes Pilot 1 SNPs, (B) 1000
Genomes Phase 1 SNPs (May 2011 release).
doi:10.1371/journal.pgen.1002793.g003
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reducing variance in estimated kinship coefficients in the Sardinia

sample and removing the artifactual estimates of close relatedness

in the Nordic sample.

Because many Metabochip SNPs were included specifically due

to prior evidence for association of T2D, CAD/MI and related

traits, controlling for potential population stratification in

Metabochip analysis requires some care. Not surprisingly, carrying

out T2D association analysis in the Nordic sample on all SNPs

passing QC without inclusion of genotype-based principal

components resulted in a large genomic control inflation factor

(lGC = 1.44). Including all SNPs that passed QC to estimate

principal components (PCs), and then including those PCs as

covariates in the association analysis gave reduced but still

substantial inflation (lGC = 1.13). When we instead estimated test

statistic inflation based only on the 3,772 LD-pruned QT interval

replication SNPs (not expected to associate with T2D) we obtained

a genomic control inflation factor near unity (lGC = 1.01).

Assessing Overlap among SNPs across Traits
We were interested whether the replication SNP sets submitted

by the GWAS consortia for the different traits showed more or less

overlap than expected by chance. To address this question, we

counted the number of SNPs in common across pairs of traits, and

used simulation to test whether the observed overlaps were

different than expected under the null hypothesis of genetic

independence of pairs of traits (Supplementary Table S6). Not

surprisingly, we observed substantial SNP set overlaps (and greater

than expected assuming independence) for multiple pairs of

correlated traits, notably SBP and DBP (38% proportion of

maximum possible overlap), HDL and TG (17%), and TC and

LDL (87%). We also observed substantial genetic overlap (4%)

between LDL and SBP, which are nearly uncorrelated traits.

Overall, we observed an excess of nominally significant SNP set

overlaps, consistent with (but in no way proof of) the hypothesis a

shared genetic etiology between these cardiometabolic traits.

Discussion

We designed the Metabochip, a custom genotyping array for

replication of the top association signals from the largest available

GWAS meta-analysis for 23 T2D and CAD/MI related traits and

for fine-mapping 257 genome-wide significant association signals for

15 of these traits (Table 1). The Metabochip also includes a set of

SNPs representing genome-wide significant associations across a

range of human traits; SNPs that tag known copy number

polymorphisms, the MHC, and mitochondrial variants; X and Y

chromosome SNPs for sex verification, fingerprint SNPs for sample

tracking, and ‘‘wildcard’’ SNPs selected by the participating GWAS

consortia (Table 2). The array has already been genotyped on DNA

samples from hundreds of thousands of individuals and preliminary

analyses across the contributing GWAS consortia have identified

hundreds of new genome-wide association signals (manuscripts

being prepared by each of the consortia).

In designing the Metabochip, 90.4% of chosen SNPs were

successfully designed and manufactured onto the array, and of

these, ,82% passed QC filters in our three example studies,

resulting in very complete coverage of variation in our 257

fine-mapping regions. Of course, as time passes and catalogs of

SNPs expand, potential shortcomings in coverage should

become apparent. Currently, coverage of 1000 Genomes Pilot

Study European SNPs in the fine-mapping regions is 82.0% at

a tagging threshold of r2$.8. Coverage of Phase 1 European

SNPs in these regions is 54.5%, and the number increases to

73.7% for SNPs at MAF.0.5%. Using genotype imputation,

we can impute 82% of 1000 Genomes Phase 1 European SNPs

with MAF.0.5% with estimated r2$0.8. The resulting data

are of high quality, with 99.99% duplicate consistency in

heterozygotes and 99.77% Mendelian consistency in hetero-

zygotes in our studies. Further, Metabochip fine-mapping

regions provide an excellent target for genotype imputation

from relevant reference sets, and in our experience can provide

more complete coverage than provided by standard HapMap-

Figure 4. Imputation accuracy (estimated r2) in fine mapping regions. Imputation accuracy for differing numbers of Sardinian individuals as
measured by estimated r2 value across the 257 Metabochip fine mapping regions for Metabochip (red squares), Affymetrix 6.0 GWAS SNPs (green
triangles), and Affymetrix 500 k GWAS SNPs (blue circles) as a function of minor allele frequency bin.
doi:10.1371/journal.pgen.1002793.g004
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Figure 5. Regional association plots for LDL cholesterol association in the SardiNIA study. Association plots for a study of 2,432 Sardinian
individuals for five Metabochip fine-mapping regions using 1000 Genomes data as reference set and Affymetrix genotypes (left panels : A,C,E,G,H) or
Metabochip genotypes (right panels : B,D,F,H,J) as target sets. The figures plot 2log10 of the association p-value within the region and recombination
rate (blue lines) as a function of position on the chromosome. Blue, green, and red dots and triangles indicate genotyped and imputed SNPs with
minor allele frequencies less than 0.02, greater than or equal 0.02 and less than 0.05, and greater than or equal 0.05, respectively. Gene positions and
structures are displayed in the lower panel.
doi:10.1371/journal.pgen.1002793.g005
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based GWAS arrays (Figure 3) for both common and less

common variants.

A key decision in the fine-mapping of any GWAS signal concerns

the size of the region where genetic variation will be examined

exhaustively. In designing the Metabochip, we focused on relatively

small regions surrounding each lead SNP – these included all variants

in strong linkage disequilibrium (r2..5) and a small shoulder

extending .02 cM beyond that (typically, ,20 kb). This decision

was informed by the observation that, in cases where GWAS signals

and Mendelian disease loci overlap, they are typically very close

together (typically within ,10 kb of each other and nearly always

within ,100 kb; see [4] for a discussion of the issue), although there

are exceptions to this rule (see [47], for example).

Within each fine-mapping region, we selected variants identified

by the HapMap consortium and early analyses of the 1000

Genomes Consortium data. The 1000 Genomes Project and other

sequence based catalogs of genetic variation are now more

extensive that at the time of array design, but (as noted above) our

analyses show that the SNPs selected for inclusion in the

Metabochip form a useful reagent for genotyping imputation –

not only for the imputation of newly discovered SNPs in the fine-

mapping regions (see above) but also for the imputation of other

types of variants, such as indel polymorphisms, that have become

part of newer 1000 Genomes Project analyses (unpublished data).

Several other design choices for Metabochip were to some

degree arbitrary: which traits to include; balance in numbers of

SNPs for replication, fine mapping, and other purposes; and how

to prioritize among SNPs available for each purpose. Were we to

design a similar chip now, we would take advantage of the now

available more extensive and deeply annotated SNP catalogs. In

addition, we would likely include a set of randomly ascertained

SNPs to facilitate analysis that control for population structure and

other artifacts. Finally, with empirical evidence from this and other

projects on the relationship between SNP design score and

empirical probability of successful design, we would likely replace

design score by probability of successful design. This approach

would likely result in even higher call rates.

Because Metabochip SNPs are highly enriched for trait-

associated SNPs and .60% are clustered in the ,1.5% of the

genome that comprises the fine-mapping regions, Metabochip

genotype data present some challenges to standard analyses such

as relationship estimation, principal components analysis, and

genomic control determination. However, as we demonstrated,

these challenges can be overcome by focusing on replication SNPs

expected to be unrelated to the trait of interest. An alternative

approach is to use SNPs that were not associated with the trait(s) of

interest in the corresponding GWAS (for example, p-value..50

for all such traits) and then to LD-prune the resulting set of SNPs

to identify a near-independent set. An alternative that is also

worthy of investigation in the analysis of case-control samples is

the application of principal component factor loadings derived

from a controls-only analysis to the combined sample of cases and

controls. When this last alternative is considered, it is important to

check that PCA axes derived from controls represent all relevant

ancestries present in cases. The design of the array, focused on

replication and fine-mapping and selecting SNPs from early

releases of the HapMap and 1000 Genomes Projects, resulted in a

highly non-random ascertainment of SNPs. Thus, we cannot

recommend use of Metabochip SNPs for population genetic

analyses that rely on unbiased, and/or comprehensive ascertain-

ment schemes for SNPs.

The need for follow-up genotyping is a frequent requirement of

GWAS and sequencing studies of complex human traits.

Approaching array design in a coordinated fashion across related

studies and traits can be particularly cost-effective, since per array

costs often drop dramatically with increasing numbers of

individuals to be genotyped, and (given sufficient numbers of

individuals) may increase only modestly with increasing numbers

of SNPs. For example, a custom chip designed to genotype the

,22,000 DIAGRAM-selected type 2 diabetes Metabochip SNPs

in the ,80,000 individuals genotyped on Metabochip by the

DIAGRAM consortium studies would have cost ,$55 compared

to the Metabochip cost of $39, delivering only 1/9 as many

genotypes at .40% greater cost. Furthermore, examining the

association between SNPs tentatively associated with one trait for

other related traits can also be informative, highlighting pleiotropy

across related traits and helping discover new association signals;

for example, two of the ten novel type 2 diabetes loci identified to

date by Metabochip analysis by the DIAGRAM consortium were

placed on Metabochip for other traits [48]. In the case of the

Metabochip, which is less expensive than many smaller trait

specific arrays, this opportunity to collect more information and

investigate the effects of SNPs associated with other traits actually

comes with reduced costs (compared to trait specific arrays),

although with the need to organize across multiple consortia and

to share the number of SNPs that can be cost-effectively

genotyped. The ‘‘Immunochip’’ [49] follows this same paradigm

and supports genotyping of ,200,000 SNPs identified on the basis

of GWAS meta-analyses for immunological disorders, while the

recently designed ‘‘exome chip’’ (Benjamin Neale, Gonçalo

Abecasis, personal communication) supports genotyping of

,250,000 exonic SNPs identified via large-scale exome sequenc-

ing studies totaling .12,000 individuals. These and other similar

array products represent valuable tools in ongoing efforts to

understand the genetic architecture of complex human traits.
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