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Independent component analysis (ICA) is an essential building block for data analysis in many applications. Selecting the truly
meaningful components from the result of an ICA algorithm, or comparing the results of different algorithms, however, is
nontrivial problems. We introduce a very general technique for evaluating ICA results rooted in information-theoretic model
selection. The basic idea is to exploit the natural link between non-Gaussianity and data compression: the better the data
transformation represented by one or several ICs improves the effectiveness of data compression, the higher is the relevance of
the ICs. We propose two different methods which allow an efficient data compression of non-Gaussian signals: Phi-transformed
histograms and fuzzy histograms. In an extensive experimental evaluation, we demonstrate that our novel information-theoretic
measures robustly select non-Gaussian components from data in a fully automatic way, that is, without requiring any restrictive
assumptions or thresholds.

1. Introduction

Independent component analysis (ICA) is a powerful tech-
nique for signal demixing and data analysis in numerous
applications. For example, in neuroscience, ICA is essential
for the analysis of functional magnetic resonance imaging
(fMRI) data and electroencephalograms (EEGs). The func-
tion of the human brain is very complex and can be only
imaged at a very coarse spatial resolution. Millions of nerve
cells are contained in a single voxel of fMRI data. The neural
activity is indirectly measured by the so-called BOLD-effect,
that is, by the increased supply of active regions with oxy-
genated blood. In EEG, the brain function can be directly
measured by the voltage fluctuations resulting from ionic
current flows within the neurons. The spacial resolution of
EEG, however, is even much lower than that of fMRI. Usually,
an EEG is recorded using an array of 64 electrodes distributed
over the scalp. Often, the purpose of acquiring fMRI or EEG
data is obtaing a better understanding of brain function while

the subject is performing some task. An example for such
an experiment is to show subjects images while they are in
the scanner to study the processing of visual stimuli, see
Section 4.1.4. Recent results in neuroscience, for example [1],
confirm the organization of the human brain into distinct
functional modules. During task processing, some functional
modules are actively contributing to the task. However,
many other modules are also active but not involved into
task-specific activities. Due to the low resolution of fMRI
and EEG data, we observe a partial volume effect: the
signal at one particular voxel or electrode consists of task-
related activities, nontask-related activities, and a lot of noise.
ICA is a powerful tool for signal demixing and, therefore,
in principle very suitable to reconstruct the interesting task-
related activity.

Many ICA algorithms use the non-Gaussianity as implicit
or explicit optimization goal. The rationale behind this
decision is due to a reversion of the central limit theorem: the
sum of a sufficiently large number of independent random
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variables, each with finite mean and variance, will approxi-
mate a normal distribution. Therefore, an algorithm for the
demixing of signals has to optimize for non-Gaussianity in
order to obtain the original signals. We adopt this idea in this
paper and define a data compression method which yields
a high compression rate exactly if the data distribution is
far away from Gaussianity and no compression in the data
distribution is exactly gaussian.

However, the evaluation and interpretation of the result
of ICA is often difficult for two major reasons. First, most
ICA algorithms always yield a result, even if the underlying
assumption (e.g., non-Gaussianity for the algorithm FastICA
[2]) is unfulfilled. Thus, many ICA algorithms extract as
many independent sources as there are mixed signals in
the dataset, no matter how many of them really fulfill
the underlying assumption. Second, ICA has no unique
and natural evaluation criterion to assess the relevance
or strength of the detected result (like, e.g., the variance
criterion for principle component analysis (PCA)). Different
ICA algorithms use different objective functions, and to
select one of them as an overall objective, or neutral criterion
would give unjustified preference to the result of that specific
algorithm. Moreover, if the user is interested in comparing an
ICA result to completely different modeling techniques like
PCA, regression, mixture models, and so forth, these ICA-
internal criteria are obviously unsuitable. Depending on the
actual intension of the user, different model selection criteria
for ICA might be appropriate. In this paper, we investigate
the compressibility of the data as a more neutral criterion for
the quality of single component or the overall ICA result.

2. Related Work

2.1. Model Selection for ICA. Model selection for ICA or
automatically identifying the most interesting components
is an active research question. Perhaps the most widely used
options for model selection are measures like Kurtosis, Skew-
ness, and approximations of neg-entropy [3]. However, these
measures are also applied as optimization criteria by some
ICA algorithms. Thus, a comparison of the results across
algorithms is impossible. Moreover, these measures are very
sensitive with respect to noise points and single outliers.

In [4], Rasmussen et al. propose an approach for model
selection of epoched EEG signals. In their model order selec-
tion procedure, the data set is split into two sets, training-
and test set, to ensure an unbiased measure of generalization.
With each model hypothesis, the negative logarithm of the
likelihood function is then calculated using a probabilistic
framework on the training and test set. The model having
minimal generalization error is selected. This approach,
however, is based on certain assumptions about source
autocorrelation and tends to be sensitive to noise.

The most common method for model order selection is
based on principal component analysis (PCA) of the data
covariance matrix, which is proposed by Hyvärinen et al.
[3]. The choice of number of sources to be selected is based
on the number of dominant eigenvalues which significantly
contribute to the total variance. This approach is fast and

simple to implement, however, it suffers from a number of
problems, for example, an inaccurate eigenvalue decompo-
sition of the data covariance matrix in the noise-free case
with fewer numbers of sources than sensors and sensitivity to
noise. Moreover, there are no reasons to say that the subspace
spanned by dominant principal components contains the
source of interest [5]. Another approach proposed by James
and Hesse [5] is to do the step-wise extraction of the sources
until it reaches a predefined accuracy. However, the choice
of reasonable accuracy level is also one drawback of this
algorithm.

Related to model selection but still a different problem
is the reliability of ICA results. The widely used iterative fix-
point algorithm FastIca [6] converges towards different local
optima of the optimization surface. The technique Icasso
[7] combines Bootstrapping with a visualization to allow
the user to investigate the relationship between different
ICA results. Reliable results can be easily identified as dense
clusters in the visualization. However, no information on the
quality of the results is provided, which is the major focus
of our work. Similar to Icasso, Meinecke et al. [8] proposed
a resampling method to assess the quality ICA results
by computing the stability of the independent subspaces.
First, they create surrogate datasets by randomly selecting
independent components from an ICA decomposition and
apply the ICA algorithm for each of the surrogate data sets.
Then, they separate the data space into one or multidi-
mensional subspaces by their block structure and compute
the uncertainty for each subspace. This proposed reliability
estimation can be used to choose the appropriate BSS-
model, to enhance the separation performance and, most
importantly, to flag components which have a physical
meaning.

2.2. Minimum Description Length for Model Selection. The
minimum description length (MDL) principle is based on
the simple idea that the best model to describe the data is one
with the overall shortest description of the data and model
itself, and it is essentially the same as Occam’s razor.

The MDL principle has been successfully applied for
model selection for a large variety of tasks, ranging from
linear regression [9], image segmentation [10] to polyhedral
surface models [11].

In data mining, the MDL principle has recently attracted
some attention enabling parameter-free algorithms to graph
mining [12], clustering, for example [13–15], and outlier
detection [16]. Sun et al. [12] proposed GraphScope, a
parameter-free technique to mine information from streams
of graphs. This technique used MDL to decide how and when
to form and modify communities automatically. Böhm et al.
[15] proposed OCI, a novel fully automatic algorithm to
clustering non-Gaussian data with outliers, based on MDL
to control the splitting, filtering, and merging phase in
a parameter-free and very efficient top-down clustering
approach. CoCo [16], a technique for parameter-free outlier
detection, is based on the ideas of data compression and
coding costs. CoCo used MDL to define an intuitive outlier
factor together with a novel algorithm for outlier detection.
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This technique is parameter free and can be applied to a wide
range of data distributions. OCI combines local ICA with
clustering and outlier filtering. Related to this idea, in [17],
Gruber et al. propose an approach for automated image de-
noising combining local PCA or ICA with model selection by
MDL.

In this paper, we propose a model selection criterion
based on the MDL principle suitable for measuring the qual-
ity of single components as well as complete ICA results.

3. Independent Component Analysis and
Data Compression

One of the fundamental assumptions of many important
ICA algorithms is that independent sources can be found by
searching for maximal non-Gaussian directions in the data
space. Non-Gaussianity leads to a decrease in entropy, and
therefore, to a potential improvement of the efficiency of
data compression. In principle, the achievable compression
rate of a dataset, after ICA, is higher compared to the
original dataset. The principle of minimum description
length (MDL) uses the probability P(x) of a data object x to
represent it according to Huffman coding. Huffman coding
gives a lower bound for the compression rate of a data set
D achievable by any concrete coding scheme, as follows:∑

x∈D − log2(P(x)). If x is taken from a continuous domain
(e.g., the vector space Rd for the blind source separation
of a number d of signals), the relative probability given
by a probability density function p(x) is applied instead
of the absolute probability. The relative and absolute log-
likelihoods (which could be obtained by discretizing x)
are identical up to a constant value which can be safely
ignored, as we discuss in detail in Section 3.1. For a complete
description of the dataset (allowing decompression), the
parameters of the probability density function (PDF) such as
mean and variance for Gaussian PDFs need to be coded and
their code lengths added to the negative log-likelihood of the
data. We call this term the code book. For each parameter,
a number of bits equal to (1/2)log2(n) where n is the
number of objects in D, is required, as fundamental results
from information theory have proven [18]. Intuitively, the
term (1/2)log2(n) reflects the fact that the parameters need
to be coded more precisely when a higher number n of
data objects is modeled by the PDF. The MDL principle is
often applied for model selection of parametric models like
Gaussians, or Gaussian mixture models (GMMs). Gaussian
mixture models vary in the model complexity, that is, the
number of parameters needed for modeling. MDL-based
techniques are well able to compare models of different
complexity. The main purpose of the code book is to punish
complexity in order to avoid overly complex, over-fitted
models (like a GMM having one component exactly at the
position of each data object: such a model would yield a
minimal Huffman coding, but also a maximal code-book
length). By the two concepts, Huffman coding using the
negative log-likelihood of a PDF and the code-book for
the parameters of the PDF, the principle of MDL provides
a very general framework which allows the comparison of

very different modeling techniques like principal component
analysis (based on a Gaussian PDF model), clustering [13],
regression [19] for continuous domains, but, in principle,
also for discrete or mixed domains. At the same time, model
complexity is punished and, therefore, overfitting avoided.
Related criteria for general model selection include, for
example, the Bayesian information criterion and the Aikake
information criterion. However, these criteria are not adapt-
ed to the ICA model. In the following section, we discuss how
to apply the MDL principle in the context of ICA.

3.1. General Idea of the Minimum Description Length Princi-
ple. The minimum description length (MDL) principle is a
well-established technique for selecting the best model out of
a finite or infinite number of possible models for a given data
set D (in our case, a signal). The model is usually given in
terms of a probability function f (x) which assigns to every
element x ∈ D a probability that this element occurs in
the dataset. For continuous domains, f (x) is a probability
density function satisfying

∫ +∞
−∞ f (x)dx = 1. The idea of MDL

is that f (x) can be used as a basis to compress the data
set D using Huffman coding and to exploit that this coding
becomes the more efficient (w.r.t. the achievable compression
rate, or more precisely the code length after compression) the
better f (x) represents the true data distribution. According
to Huffman coding, the minimum code length corresponds
to the negative log-likelihood of the data set, that is,

NLLH f (D) = −
∑

x∈D
log2 f (x). (1)

While only for discrete domains the values of f (x) are
scaled between 0 and 1, this negative log-likelihood is also
applied for continuous domains, but then some caveats
apply. Basically, we can always reduce the continuous case to
the noncontinuous case by discretizing the data (e.g., by a
regular grid with a fixed resolution g). In this case,

Fg(x) =
∫ g·�x/g+1�

g·�x/g� f (ξ)dξ (2)

is a probability function scaled between 0 and 1 with

lim
g→ 0

Fg(x)

g
= f (x). (3)

For the negative log-likelihood of the so-discretized dataset
Dg , we get

NLLH f

(
Dg

)
= −

∑

x∈D
log2Fg(x)

≈ −
∑

x∈D
log2g · f (x)

= NLLH f (D)− n log2g,

(4)

where in the case g → 0 we have exact equality and also
−n log2g → ∞, corresponding to the obvious fact that we
need an infinite number of bits to represent a real number
with infinite precision. However, when comparing different
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models of the data (i.e., different probability functions f1(x)
and f2(x)), we simply have to ensure that all data are basically
discretized with the same (and sufficiently high) resolution g
in the original data space and then ignore the term −n log2g
which is equal in all compared models of the data (note that
data in a computer is always represented with finite precision,
and, therefore, always implicitly discretized):

lim
g→ 0

(
NLLH f2

(
Dg

)
−NLLH f1

(
Dg

))

= lim
g→ 0

((
NLLH f2 (D)− n log2g

)

−
(

NLLH f1 (D)− n log2g
))

= NLLH f2 (D)−NLLH f1 (D).

(5)

We simply have to observe that (1) the resolution is not
implicitly changed by any transformations of the dataset
(like, e.g., a linear scaling α · x of the data objects) and (2)
that ignoring the term might lead to negative values of
NLLH f (D) (so we partly lose the nice intuition of a number
of bits encoding the data objects, and particularly that 0 is a
lower limit of this amount of information).

The principle of coding a signal with a pdf f (x) is vis-
ualized in Figure 1 where a signal (a superposition of three
sinuses) is coded. To represent one given point of the signal
(at t = 15.5), we should actually use a discretization of x as
indicated in the right part of the diagram to obtain an actual
code length for the value x. However, we can also directly
use the negative log-likelihood of the value x with the above-
mentioned implications.

In addition to the amount of information which is caused
by the negative log-likelihood of the data, we need also to
code the function f . From an information-coding perspec-
tive, we need this information in order to be able to decode
the data again after transferring it through a communication
channel. The function f tells us which code words translate
back to what original data objects, so it serves as a code
book. From a statistical perspective, the coding of f is needed
to avoid overfitting. The intention of f is to generalize the
data, and not to anticipate it, as a weird function would do
which has simply a peak at every position where a data object
is available. For both purposes, the representation of the
code book must require considerably less information than
the data itself. In this paper, we will propose two different
methods to represent the function f . In Figure 1, a kernel
density estimator (KDE) was used. However, KDE needs a
number of parameters which is the same as the number of
points, and, therefore, it is not suitable for our purpose.
The classical (parametric) method is to use a class of model
functions (like a Gaussian pdf) and to code the parameters
(for Gaussian, μ and σ) with an amount of information
corresponding to (1/2)log2n per parameter. This number
can be derived by an optimization process which takes into
account that a small error in the parameters does not lead to
a serious deterioration of the NLLH, particularly if n is small
and only a few data objects are modeled by f . The number of
(1/2)log2n bits represents an optimal trade-off (and includes
this deterioration of NLLH already). Throughout this paper,

we will use the minimum description length of a dataset as
goal for minimization:

MDL f (D) = NLLH f (D) +
1
2

#PAR
(
f
) · log2n. (6)

We will in the following sections propose nonparametric
methods which are both related to histograms. Therefore,
the number of parameters in principle corresponds to the
number of bins. We do not use histograms directly since
our goal is to code the signals in a way that punishes
the Gaussianity and rewards the non-Gaussianity. Thus, we
propose two different methods which modify the histogram
concept in a suitable way.

3.2. Phi-Transformed Histograms. Techniques like [15] or
[20] successfully use the exponential power distribution
(EPD), a generalized distribution function including Gaus-
sian, Laplacian, uniform, and many other distribution func-
tions for assessing the ICA result using MDL. The reduced
entropy of non-Gaussian projections in the data allows a
higher compression rate and thus favors a good ICA result.
However, the selection of EPD is overly restrictive. For in-
stance, multimodal and asymmetric distributions cannot be
well represented by EPD but are highly relevant to ICA. In
the following, we describe an alternative representation of the
PDF which is efficient if (and only if) the data is considerably
different from Gaussian. Besides the non-Gaussianity, we
have no additional assumption (like for instance EPD) on
the data. To achieve this, we tentatively assume Gaussianity in
each signal of length n and transform the assumed Gaussian
distribution into a uniform distribution in the interval (0, 1)
by applying the Gaussian cumulative distribution function
Φ((x − μ)/σ) (the Φ-transformation) to each signal of the
data representation to be tested (e.g., after projection on the
independent components). Then, the resulting distribution
is represented by a histogram (H1, . . . ,Hb) with a number
b of equidistant bins where b is optimized as we will show
later. Hj(1 ≤ j ≤ b) is the number of objects falling in the
corresponding half open interval [( j−1)/b, j/b). If the signal
is Gaussian indeed, then the signals after Φ-transformation
will be uniform and the histogram bins will be (more or
less) uniformly filled. Therefore, a trivial histogram with
only one bin will in this case yield the best coding cost
(and thus, no real data compression comes into effect).
The Φ-transformation itself causes a change of the coding
cost which is equivalent to the entropy of the Gaussian
distribution function, as we show in as follows.

The negative log-likelihood of the signal before the Φ-
transformation with the tentative assumption that the signals
are compressed by the Gaussian pdf correspond to

NLLHbefore =
∑

x∈D
− log2

(
1√

2πσ2
e−(x−μ)2/2σ2

)

= n · log2

(√
2πσ2

)
+

1
2σ2 ln 2

∑

x∈D

(
x − μ

)2,
(7)
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Figure 1: MDL-based compression of signals by Huffman coding.

and since (1/n)
∑

(x − μ)2 is exactly the definition of the
variance σ2, we have

NLLHbefore = n · log2

(√
2πeσ2

)
, (8)

which is independent from the distribution which the signal
x actually has. After the Φ-transformation, we code the signal
under the assumption that it is uniformly distributed in
(0, 1). Thus, we obtain

NLLHafter =
∑

x∈D
− log2(1) = 0, (9)

and again, we do not worry that it appears as if no
information is necessary to code the signals after the Φ-
transformation. But the difference between coding of the
signals before and after the Φ-transformation corresponds to

PRE = NLLHbefore −NLLHafter = n · log2

(√
2πeσ2

)
. (10)

Representing the histogram (H1, . . . ,Hb) as a probability
density function (integrating to 1) leads to

fH(x) = H�b·x+1� · b
n
. (11)

The negative log-likelihood of this Φ-transformed signal
corresponds to

NLLH fH (D) =
∑

x∈D
− log2

(

H�b·x+1� · b
n

)

=
∑

x∈D
log2

n

H�b·x+1�
−
∑

x∈D
log2b,

(12)

and since we have Hi objects in histogram bin i, we can
change the first sum into the entropy of the histogram:

NLLH fH (D) =
∑

1≤i≤b

(

Hi · log2
n

Hi

)

− n · log2b. (13)

Using this coding scheme, the overall code length
(CLRG(D, b), code length relative to Gaussianity) of the
signal is provided by

CLRG(D, b) =
histogram entropy

︷ ︸︸ ︷
∑

1≤ j≤b
Hj · log2

n

Hj

−
offset cost
︷ ︸︸ ︷
n · log2b

+

code book
︷ ︸︸ ︷
b− 1

2
log2n

+

preproc
︷ ︸︸ ︷
PRE .

(14)

As introduced in Section 3, the first two terms represent the
negative log-likelihood of the data given the histogram. The
first corresponds to the entropy of the histogram, and the
second term, stemming from casting the histogram into a
PDF, has also the following intuition: when coding the same
data with a varying number of histogram bins, the resulting
log-likelihoods are based on different basic resolutions of the
data space (a grid with a number b of partitions). Although
the choice of a particular basic resolution is irrelevant for the
end-result, for comparability, all alternative solutions must
be based on a common resolution. We choose g = 1 as
basic resolution, and subtract for each object the number
of bits by which we know the position of the object more
precisely than in the basic resolution. The trivial histogram
having b = 1 represents the case where the data is assumed
to be Gaussian: since the Gaussian cumulative distribution
function Φ((x−μ)/σ) has been applied to the data, Gaussian
data are transformed into uniform data, and our histograms
have an implicit assumption of uniformity inside each bin.
Therefore, we call it offset cost because it stands for coding
the position of a value inside a histogram bin. If some choice
of b /= 1 leads to smaller CLRG(D, b), we have evidence that
the signal is different from Gaussian. It is easy to see that in
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Figure 2: Overview of the computation of CLRG(D, b): left: scatter plot of two signals in original space. On the x-axis: Gaussian noise signal.
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after applying the Gaussian CDF. The quantiles now form an equidistant grid. On the axes: histograms and compression costs using Huffman
coding. Since the Gaussian signal does not contain any pattern beyond Gaussianity, it cannot be compressed in CDF-space.

the case b = 1 the code length is CLRG(D, b) = PRE, which is
a consequence of our definition of the offset cost. Therefore,
we call our cost function code length relative to Gaussianity,
(CLRG). If no choice that b /= 1 leads to CLRG(D, b) < PRE,
then either the data is truly Gaussian or the number of
data objects is not high enough to give evidence for non-
Gaussianity. In the latter case, we use Gaussianity as the
safe default-assumption. The third term is the cost required
for the code book: to completely describe b histogram bins
it is sufficient to use b − 1 codewords since the remaining
probability is implicitly specified. The last term, PRE is for
preprocessing, that is, taking the Φ-transform into account.

Figure 2 gives an overview and example of our method.
On the left side, the result of an ICA run is depicted which has
successfully separated a number d = 2 of signals (each having
n = 500 points). The corresponding scatter-plot shows a
Gaussian signal on the x-axis, a rectangular signal on the y-
axis (note that the corresponding signal plots on the axes are
actually transposed for better visibility). On the right side,
we see the result after applying the Gaussian CDF. Some
histograms with different resolutions are also shown. On
the x-axis, the histogram with b = 4 bins is approximately
uniformly filled (like also most other histograms with a
different selection of b). Consequently, only a very small
number of bits is saved compared to Gaussianity (e.g., only
4.1 bits for the complete signal part falling in the third
bin H3) by applying this histogram as PDF in Huffman
coding (here, the cost per bin are reported including log-
likelihood and offset-cost). The overall saving of 0.29 bit are
contrasted by a code-book length of (3/2)log2n = 13.4, so the
histogram representation does not pay off. In contrast, the
two histograms on the y-axis do pay off, since for b = 8, we
have overall savings over Gaussianity of 81.3 bit by Huffman
coding, but only (7/2)log2n = 31.4 bits of codebook.

3.2.1. An Optimization Heuristic for the Histogram Resolution.
We need to optimize b individually for each signal such
that the overall coding cost CLRG(D, b) is minimized. As an

efficient and effective heuristic, we propose to only consider
histogram resolutions where b is a power of 2. This is time
efficient since the number of alternative results is logarithmic
in n (as we will show), and the next coarser histogram can
be intelligently gained from the previous. In addition, the
strategy is effective since a sufficient number of alternative
results is examined.

We start with a histogram resolution based on the worst-
case assumption that (almost) all objects fall into the same
histogram bin of a histogram of very high resolution bm.
That means that the log-likelihood approaches 0. The offset
cost corresponds to −n log2bm but the parameter cost are
very high: ((bm − 1)/2)log2n. The other extreme case is the
model with the lowest possible resolution b = 1 having no
log-likelihood, no offset-cost, and no parameter cost. The
histogram with resolution bm can pay off only if the following
condition holds:

n log2bm ≥
bm − 1

2
log2n, (15)

which is certainly true if bm ≤ n/2. We use bm = 2�log2n�,
the first power of two less or equal n as starting resolution.
Then, in each step, the algorithm generates a new histogram
H′ = (H′

1, . . . ,H′
b/2) from the previous histogram H =

(H1, . . . ,Hb) by merging each pair of adjacent bins using
H′

j = H2 j−1 + H2 j for all j having 1 ≤ j ≤ b/2. The overall
number of adding operations for histogram bins starting
from the histogram Hstart = (H start

1 , . . . ,H start
bm

) to the final

histogram Hend = (Hend
1 ) corresponds to

∑

1≤i≤bm/2
i = bm − 1 = 2�log2n� − 1 ∈ O(n). (16)

The coding cost of the data with respect to each alternative
histogram is evaluated as described in Section 3.2 and the
histogram with resolution bopt providing the best com-
pression is reported as result for dimension i. In the case
of bopt = 1, no compression was achieved by assuming
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non-Gaussianity. After having optimized bopt for each
signal separately, CLRG(D, b), the coding costs of the data
are provided as in Section 3.2 applying bopt. To measure
the overall improvement in compression achieved by ICA
CLRG(D, b) is summed up across all dimensions i:

CLRG(D) =
∑

1≤i≤d

(

min
0≤log2b≤�log2n�

CLRG(D, b)

)

. (17)

3.3. Fuzzy Histograms. Often histograms are not a good
description of data since they define a discontinuous func-
tion whereas the original data distribution often corresponds
to a continuous function. Since we want to focus on non-
Gaussianity without any other assumption on the underlying
distribution function, a good alternative to histograms is
fuzzy histograms. In statistics, often kernel density estimators
(KDEs) are applied in cases where a continuous representa-
tion of the distribution function is needed. However, KDEs
require a number of parameters which is higher than the
number of objects, and, therefore, KDEs are not suitable for
our philosophy of compressing the dataset according to the
defined distribution function (although other information-
theoretic KDEs exist). Therefore, we apply the simpler fuzzy
histograms which extend histograms as follows.

We have a kernel function κμi ,σ(x) which is assigned to
each fuzzy histogram bin i. Like with ordinary histograms,
the location parameters μi are equidistant, that is,

μi = m · i + t, (18)

and the scale parameter σ is uniform for all bins (and
also called bandwidth). In this paper, we use the normal
distribution:

κμi ,σ(x) = nμi,σ(x) = 1√
2πσ2

exp

(

−
(
x − μi

)2

σ2

)

(19)

since it allows an elegant way to express the coding cost
relatively to Gaussianity without explicitly transforming the
dataset using the cumulative standard normal distribution
Φ(x). To every histogram bin, a weight wi, which indicates
to which extent the bin is filled, is assigned. The sum over all
wi, is unity. The fuzzy histogram then defines the probability
density function:

f (x) =
∑

1≤i≤b
wi · κμi ,σ(x), (20)

which is continuous (as it is a sum of continuous functions)
and integrates to 1 (as all wi sum up to one and each kernel
function integrates to 1).

We determine the positions μ1, . . . ,μb (or, actually the
parameters m and t to determine all μi in an equidistant way)
as well as the bandwidth σ in an iterative learning algorithm.
We initialize the parameters such that

μ1 = min
x∈D

(x), μb = max
x∈D

(x),

wi = 1
b

, (∀i, 1 ≤ i ≤ b), σ = μb − μ1

b
.

(21)

That means that we set the initial slope m = (μb − μ1)/b and
t = μ1 −m.

Each point x ∈ D may be assigned to more than one bin.
It is gradually assigned and the sum of all assignments equals
1. The assignment is based on Bayes’ theorem:

p(i | x) = wi · κμi,σ(x)
∑

1≤ j≤b wj · κμj ,σ(x)
, (22)

and the weights can be determined as

wi = 1
|D|

∑

x∈D
p(i | x). (23)

Then, we assign the points according to (22). We then
determine each μi (calling it μ̂i) individually (temporarily
omitting the requirement that they are equi-distant) as

μ̂i = 1
|D| ·wi

∑

x∈D
p(i | x) · x (24)

and determine m and t as a weighted linear regression of the
μ̂i. Let μ =∑1≤i≤b wi · μ̂i be the weighted average of all μ̂i and
i =∑1≤i≤b wi · i the weighted average of all i. Then, we obtain

m =
∑

1≤i≤b wi ·
(
i− i

)
· (μ̂i − μ

)

∑
1≤i≤b wi ·

(
i− i

)2 , t = μ−mi. (25)

Finally, we determine the bandwidth parameter σ by the
average variance which is caused by D in every bin:

σ2 = 1
|D|

∑

x∈D

∑

1≤i≤b
p(i | x) · (x − μi

)2
. (26)

These steps starting from evaluation (22) are repeated until
convergence.

4. Experiments

This section contains an extensive experimental evaluation.
We start by a proof of concept demonstrating the benefits
of information-theoretic model selection for ICA over estab-
lished model selection criteria such as kurtosis in Section 4.1.
Since in these experiments phi-transformed histograms
and equidistant Gaussian Mixture Models perform very
similar, for space limitations, we only show the results of
phi-transformed histograms. In Section 4.2, we discuss the
two possibilities of estimating the code length relative to
Gaussianity.

4.1. Proof of Concept: Information-Theoretic Model Selection

for ICA

4.1.1. Selection of the Relevant Dimensions. Which ICs truly
represent meaningful signals? Measures like kurtosis, skew-
ness, and other approximations of neg-entropy are often
used for selecting the relevant ICs but need to be suitably
thresholded, which is a nontrivial task. Figures 3(a) and 3(b)



8 Advances in Artificial Neural Systems

1 6 11 16 21 26 31 36 41 46

R
ec

al
l o

f 
si

gn
al

 id
en

ti
fi

ca
ti

on

Number of noise dimensions

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

t = 0.5
t = 1

t = 1.2
t = 1.22

(a) Dimensionality: 200 samples

R
ec

al
l o

f 
si

gn
al

 id
en

ti
fi

ca
ti

on

Number of noise dimensions

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

t = 0.5
t = 1

t = 1.2

1 6 11 16 21 26 31 36 41 46

(b) Dimensionality: 500 samples

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

K
u

rt
os

is
/C

LR
G

Strength of outlier

Kurtosis Gaussian with outlier 

CLRG Gaussian with outlier 

Kurtosis saw-tooth

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

(c) Outlier Robustness

Figure 3: Comparison of CLRG to kurtosis for selection of relevant ICs from high-dimensional data (a)-(b) and for outlier-robust estimation
of IC quality (c).

display the recall of signal identification for a dataset
consisting of highly non-Gaussian saw-tooth signals and a
varying number of noise dimensions for various thresholds
of kurtosis. Kurtosis is measured as the absolute deviation
from Gaussianity. The recall of signal identification is defined
as the number of signals which have been correctly identified
by the selection criterion divided by the overall number of
signals. Figure 3(a) displays the results for various thresholds
on a dataset with 200 samples. For this signal length, a
threshold of t = 1.2 offers the best recall in signal iden-
tification for various numbers of noise dimensions. A slightly
higher threshold of 1.22 leads to a complete break down in
recall to 0, which implies that all noise signals are rated as
non-Gaussian by kurtosis. For the dataset of 500 samples,
however, t = 1.0 is a suitable threshold and for t = 1.2, we
can observe a complete breakdown in recall. Even on these
synthetic examples with a very clear distinction into highly

non-Gaussian signals and Gaussian noise, the range for
suitable thresholding is very narrow. Moreover, the threshold
depends on the signal length and of course strongly on the
type of the particular signal. A reasonable approach to select
a suitable threshold is to try out a wide range of candidate
thresholds and to select the threshold maximizing the area
under ROC. For most of our example datasets with 200
samples, a threshold of t = 1.2 maximizes the area under
ROC. For the datasets with 20 to 36 noise dimensions, this
threshold yields a perfect result with an area under ROC of
1.0. For 500 samples, however, a lower threshold is preferable
on most datasets. Supported by information theory, CLRG
automatically identifies the relevant dimensions without
requiring any parameters or thresholds. For all examples,
CLRG identifies the relevant dimensions as those dimensions
allowing data compression with a precision and a recall of
100%.
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Figure 4: CLRG in comparison to kurtosis and skewness for assessing the quality of ICA-results. For 1,000 results obtained with FastIca on
de-mixing speech signals, CLRG best correlates with the reconstruction error of the ICs.

4.1.2. Stable Estimation of the IC Quality. Commonly used
approximations of neg-entropy are sensitive to single out-
liers. Outliers may cause an overestimation of the quality
of the IC. CLRG is an outlier-robust measure for the inter-
estingness of a signal. Figure 3(c) displays the influence of
one single outlier on the kurtosis (displayed in terms of devi-
ation from Gaussian) and CLRG of a Gaussian noise signal
with 500 samples with respect to various outlier strengths
(displayed in units of standard deviation). For reference, also
the kurtosis of a highly non-Gaussian saw-tooth signal is
displayed with a dotted line. Already for moderate outlier
strength, the estimation of kurtosis becomes unstable. In
case of a strong single outlier, kurtosis severely overestimates
the interestingness of the signal. CLRG is not sensitive with
respect to single outliers: even for strongest outliers, the noise
signal is scored as not interesting with a CLRG of zero. For
comparison, the saw-tooth curve allows an effective data
compression with a CLRG of −553.

4.1.3. Comparing ICA Results. CLRG is a very general cri-
terion for assessing the quality of ICA results which does not
rely on any assumptions specific to certain algorithms. In

this experiment, we compare CLRG to kurtosis and skew-
ness on the benchmark dataset acspeec16 form ICALAB
(http : // www.bsp.brain.riken.go.jp/ ICALAB/ICALABSignal
Proc/benchmarks/). This dataset consists of 16 speech signals
which we mixed with a uniform random mixing matrix.
Figure 4 displays 1,000 results of FastIca [2] generated
with the nonlinearity tanh and different random starting
conditions. For each result, we computed the reconstruction
error as the sum of squared deviations of the ICs found by
FastIca to the original source signals. For each IC, we used the
best matching source signal (corrected for sign ambiguity)
and summed up the squared deviations. Figure 4(a) shows
that CLRG correlates best with the reconstruction error.
In particular, ICA results with a low reconstruction error
also allow effective data compression. For comparison, we
computed the sum of kurtosis deviations and the sum of
skewness deviations from Gaussianity. Kurtosis and even
more skewness show only a slight correlation with the
reconstruction error. As an example, Figure 5(a) shows the
first extracted IC from the result best scored by CLRG and the
corresponding IC (Figure 5(b)) from the result best scored
by kurtosis. For each of the two ICs the scatter plots with
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Figure 5: Reconstruction error of first IC from the result best scored by CLRG and matching IC from the result best scored by kurtosis.

the original signal are displayed. Obviously, the left IC better
matches the true signal than the right IC resulting in a lower
reconstruction error.

4.1.4. Selecting Relevant Components from fMRI Data. Func-
tional magnetic resonance imaging (fMRI) yields time series
of 3-d volume images allowing to study the brain activity,
usually while the subject is performing some task. In this
experiment, a subject has been visually stimulated in a block-
design by alternately displaying a checkerboard stimulus and
a central fixation point on a dark background as control
condition [21]. fMRI data with 98 images (TR/TE = 3000/
60 msec) were acquired with five stimulation and rest periods
having each a duration of 30 s. After standard preprocessing,
the dimensionality has been reduced with PCA. FastIca
has been applied to extract the task-related component.
Figure 6(a) displays an example component with strong
correlation to the experimental paradigm. This component
is localized in the visual cortex which is responsible for
processing photic stimuli, see Figure 6(b). We compared
CLRG to kurtosis and skewness with respect to their scoring
of the task-related component. In particular, we performed
PCA reductions with varying dimensionality and identified
the component with the strongest correlation to the stimulus
protocol. Figure 6(c) shows that CLRG scores the task-
related component much better than skewness and kurtosis.
Regardless of the dimensionality, the task-related component
is always among the top-ranked components by CLRG, in
most cases among the top 3 to 5. By kurtosis and skewness,
the interest of task-related component often rated close to the
average.

4.2. Discussion of CLRG Estimation Techniques. Phi-trans-
formed histograms and equidistant Gaussian mixture mod-
els represent different possibilities to estimate the code length
relative to Gaussianity (CLRG). As elaborated in Section 3,
to estimate the code length in bits, we need a probability
density function (PDF) and the two variants differ in the
way the PDF is defined. The major benefit of equidistant
Gaussian mixture models over Phi-transformed histograms
is that the PDF is defined by a continuous function which
tends to represent some signals better than phi-transformed
histograms. A better representation of the non-Gaussian
characteristics of a signal results in more effective data
compression expressed by a lower CLRG.

Figure 7 provides a comparison of phi-transformed his-
tograms and equidistant Gaussian mixture models (eGMMs)
regarding the CLRG estimated for the 16 signals of the
aspeech16 dataset. For most signals, the CLRG estimated by
both variants is very similar, for example, signals number 1
to 3, 10, and 16. Eight signals can be most effectively com-
pressed using phi-transformed histograms, most evidently
signals number 11 to 13. The other eight signals can be
most effectively compressed using eGMM. In average on
the aspeech16 dataset, the average CLRG 6,028 bits for phi-
transformed histograms, 6,148 bits for eGMM.

We found similar results on other benchmark datasets
also available at the ICALAB website: the 19 signals of the
eeg19 dataset tend to be better represented by eGMM with
an average CLRG of 17,691 (11 signals best represented by
eGMM) followed by phi-transformed histograms with an
average CLRG of 17,807 (8 signals best represented by phi-
transformed).
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Figure 6: fMRI experiment: (a) Task-related IC extracted by FastIca from a fMRI experiment where the subject performed a visual task while
in the scanner. (b) Color-coded spatial activation pattern of this IC in an axial brain slice. (c) The rank of this IC according to CLRG and
the comparison methods for varying dimensionality reduction. This interesting IC is always identified among the top-ranked components
by CLRG.

Also, the abio7 data tends to be better represented by
eGMM with an average CLRG of 6,480 (5 out of 7 signals best
represented by GMM). Phi-transformed histograms perform
with an average CLRG of 7,023 (2 best represented signals).

To summarize, we found only minor differences in per-
formance among the two techniques estimating CLRG.
Whenever a continuous representation of the PDF is requir-
ed, the eGMM techniques should be preferred. A continuous
representation allows, for example, incremental assessment
of streaming signals. In this case, the CLRG can be rees-
timated periodically when enough novel data points have
arrived from the stream.

5. Conclusion

In this paper, we introduced CLRG (code length relative to
gaussianity) as an information-theoretic measure to evaluate
the quality of single independent components as well as
complete ICA results. Our experiments demonstrated that
CLRG is an attractive complement to existing measures for
non-Gaussianity, for example, kurtosis and skewness for
the following reasons: relating the relevance of an IC to its
usefulness for data compression, CLRG identifies the most
relevant ICs in a dataset without requiring any parameters
or thresholds. Moreover, CLRG is less sensitive to outliers
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Figure 7: Comparison of CLRG estimation techniques regarding the compression of speech signals.

than comparison measures. On fMRI data, CLRG clearly
outperforms the comparison techniques in identifying the
relevant task-specific components.

The basic idea that a good model provides efficient data
compression is very general. Therefore, not only different ICs
and ICA results obtained by different algorithms can be unbi-
asedly compared. Given a dataset, we can also compare the
quality completely different models, for example, obtained
by ICA, PCA, and projection pursuit. Moreover, it might lead
to the best data compression to apply different models to
different subsets of the dimensions as well as different subsets
of the data objects. In our ongoing and future work, we will
extend CLRG to support various models and will explore
algorithms for finding subsets of objects and dimensions
which can be effectively compressed together.
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