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Abstract— Statistical sub-pixel detection via the adaptive 

matched filter (AMF) has been shown to improve the molecular 

imaging sensitivity and specificity of optoacoustic (photoacoustic) 

imaging. Applied to multispectral optoacoustic tomography 

(MSOT), AMF assumes that the spatially-varying tissue spectra 

follow a multivariate Gaussian distribution, that the spectrum of 

the target molecule is precisely known and that the molecular 

target lies in “low probability” within the data. However, when 

these assumptions are violated, AMF may result in considerable 

performance degradation. The objective of this work is to 

develop a robust statistical detection framework that is 

appropriately suited to the characteristics of MSOT molecular 

imaging. Using experimental imaging data, we perform a 

statistical characterization of MSOT tissue images and conclude 

to a detector that is based on the t-distribution. More 

importantly, we introduce a method for estimating the 

covariance matrix of the background-tissue statistical 

distribution, which enables robust detection performance 

independently of the molecular target size or intensity. The 

performance of the statistical detection framework is assessed 

through simulations and experimental in vivo measurements and 

compared to previously used methods. 

 
Index Terms— multispectral optoacoustic tomography, 

photoacoustic tomography, molecular imaging, statistical sub-

pixel detection, spectral unmixing, covariance contamination. 
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I. INTRODUCTION 

ULTISPECTRAL Optoacoustic Tomography (MSOT) 

offers high-resolution detection of optically absorbing 

reporter molecules at depths beyond the ones reached by 

optical microscopy  and it is now increasingly considered for 

visualizing near-infrared fluorescent proteins, fluorescent dyes 

or absorbing nanoparticles, in vivo in small animal or human 

studies [1-3]. MSOT molecular imaging relies on the 

identification of the spectral signature of a reporter molecule 

from the absorbing tissue background and it defines a 

multispectral target detection problem [4]. 

 Multispectral target detection is essentially a binary 

classification problem where each pixel has to be identified as 

target or background. Since the spatial extend of the target is 

typically only a small fraction of the whole image, binary 

classification algorithms that are based on the minimization of 

the misclassification rate are not well suited for this problem 

[5, 6]. Practical multispectral target detection algorithms are 

commonly based on the Neyman-Pearson criterion (maximize 

the probability of detection while retaining the probability of 

false alarm under a constant threshold [7]) and are derived 

using a generalized likelihood ratio test (GLRT) [5].  

Recently, it was shown that the MSOT molecular imaging 

sensitivity and specificity can be considerably enhanced 

through the utilization of GLRT statistical detection methods, 

like the adaptive matched filter (AMF) [8], for extracting 

weak spectral contributions stemming from molecular agents 

of biological significance [4], [9]. AMF allows for statistically 

modeling and suppressing the MSOT tissue background, i.e. it 

overcomes the challenge of modelling the spectral variability 

of tissue using exact spectra. Moreover, by offering a constant 

false alarm rate (CFAR), AMF enables molecular imaging of 

high specificity, potentially eliminating the need for ex vivo 

validation.  

 AMF would be optimal for MSOT applications if the 

spatially-varying background tissue spectra followed a 

multivariate Gaussian distribution with known parameters and 

the spectrum of the target molecule within tissue would be 

known precisely. However, a number of challenges, typically 

presented in MSOT molecular imaging applications, may 

compromise the detection performance of AMF. First, the 

MSOT spectral background may not follow a multivariate 

Gaussian distribution.  Second, deep seated molecular targets 

typically exhibit different spectrum than the one obtained from 

libraries or individual measurements (spectral mismatch) due 

to the spectral coloring introduced to optical absorbers in deep 

tissue [4]. Third, when the molecular agent is present in high 
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amount within tissue, the presence of the signal of interest 

(SOI) within the data compromises the accurate computation 

of the background statistics, i.e. the mean and the covariance 

matrix, which are typically computed from all available data 

with maximum likelihood. This effect, commonly referred to 

as covariance contamination in literature, may cause 

considerable performance degradation [10-12]. The two latter 

effects (i.e. the spectral mismatch and the covariance 

contamination) are closely linked since the covariance 

contamination does not affect significantly the performance of 

adaptive processing if the target signal is precisely known [11, 

13]. 

In this work we introduce a novel statistical detection 

framework for resolving molecular agents within tissue with 

multispectral optoacoustic tomography. Using experimental 

imaging data, we statistically characterize MSOT tissue 

images and conclude to a GLRT detector that is based on the 

t-distribution. More importantly, using an archive of agent-

free MSOT tissue images we introduce a novel approach for 

estimating the covariance matrix of the background-tissue 

statistical distribution. The covariance matrix estimated 

through this approach is uncontaminated, thus offering robust 

detection performance independently of the molecular target 

size or intensity. We validate the performance of the proposed 

method statistically using simulations of artificial target 

implantation on experimental MSOT data. We further 

demonstrate the detection performance in purely experimental 

MSOT data.  

The rest of this manuscript is organized as follows: In Sec. 

II, we offer background on the characteristics of MSOT 

molecular imaging and introduce statistical sub-pixel detection 

in the context of MSOT. In Sec III, we describe the collection 

of the imaging dataset and the target implantation framework 

that is used for statistically evaluating the detection 

performance under different conditions. In Sec. IV we 

introduce the proposed statistical detection framework. In Sec. 

V we quantitatively evaluate the performance of the proposed 

statistical detection framework and compare it with currently 

utilized methods. Concluding remarks are offered in Sec. VI. 

II. BACKGROUND 

A. MSOT Imaging of Molecular Targets 

The wavelength (λ) dependent and position (r) dependent 

multispectral optoacoustic images P(r, λ) can be associated to 

the concentrations of the absorbing molecules through the 

following relation:  

 

( , ) ( ) ( , ) ( ) ( ) ( , )i i
i

P C c n      r r r r r        (1) 

 

In Eq. (1), Φ(r,λ) is the space and wavelength dependent light 

fluence, εi(λ) are the wavelength dependent molar absorption 

coefficients of the optical absorbers (i.e. the absorption 

spectra) and ci(r) the unknown associated concentrations at a 

position r. C(r) is a scaling factor associated with system 

effects (i.e. the system’s spatial sensitivity field) and the 

Grüneisen parameter. Finally, n(r,λ) represents the cumulative 

effect of various types of superimposed noise, such as 

electronic noise and image reconstruction artifacts. 

Quantitative MSOT imaging aims at estimating the 

concentrations of all absorbers within tissue. For achieving 

this goal, the unknown optical fluence Φ(r,λ) must be 

estimated and accounted for. Using a light propagation model, 

the light fluence can be related to tissue absorption 

[ ( , ) ( ) ( )]i ii
c   r r  and scattering coefficients [μsˊ(r,λ)], 

i.e. Φ(r,λ) = Φ(r,λ;ci(r), μsˊ(r,λ)). Using this model, non-linear 

inversion schemes have been proposed for quantitatively 

recovering ci(r) and μsˊ(r,λ) [14].  Such non-linear inversion 

schemes have been investigated in simulations and phantoms 

[15]. Nevertheless, their in vivo application is still limited, 

possibly due to the increased complexity of in vivo tissues. 

Therefore, the MSOT quantification problem is considered an 

unmet challenge [16]. 

In vivo molecular imaging often seeks to accurately detect 

the position and area occupied by a target molecule within 

tissue. In this case, the spectral analysis problem formulates as 

a detection problem. By reformulating (1) to separate the 

contribution of the tissue background and the target molecule 

we obtain:   
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In Eq. (2) cb
i
(r) and εb

i
(λ) are the concentrations and 

absorption spectra, respectively, of tissue-intrinsic molecules, 

while ct(r) and εt(λ) are the concentration and absorption 

spectrum of the extrinsic molecular target. The goal of 

molecular target detection is to decide between two competing 

hypotheses for each pixel in the image, namely ct(r)=0 (non-

existing target), or ct(r)>0 (existing target), for extracting the 

position and area occupied by the molecular agent within 

tissue. For achieving this, models that capture the background 

and the target spectral variability (B(r,λ) and T(r,λ)) are 

required. Molecular target detection implies that the amount of 

the target to be detected is substantially lower than the 

contribution of background molecules. Therefore, throughout 

this work it is assumed that the unknown light fluence field is 

not affected by the molecular target but only by the 

background tissue molecules (Born-type approximation): 

Φ(r,λ)= Φ(r,λ; cb
i
(r), μsˊ(λ)). 

B(r,λ) and T(r,λ) are difficult to be modeled due to the 

effects of the light fluence Φ(r,λ), which is hereby assumed an 

unknown function of space and wavelength, and the noise 

term n(r,λ). Early spectral optoacoustic methods assumed a 

constant optical fluence and solved a system of linear 

equations for spectrally unmixing all photo-absorbing 

molecules [17]. Typically, in this linear unmixing approach, 

the spectra of oxygenated (Hb-O2) and deoxygenated (Hb) 

hemoglobin are used for modeling the background tissue 

absorption B(r,λ).  

B. Statistical sub-pixel detection of molecular targets 

More recently statistical sub-pixel detection methods were 

shown to outperform previous approaches in molecular 

imaging cases where the target is sparsely present within the 

data [4], [9]. Statistical sub-pixel detection methods model the 
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background spectral variability B(r,λ) using a multivariate 

statistical distribution, while the detector is typically derived 

through a generalized likelihood ratio test (GLRT) [18]. A 

well-known algorithm in this category is the AMF [8]: 
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          (3) 

 

In Eq. (3), xi is an L-dimensional vector corresponding to 

the MSOT intensity of the pixel under test (L being the 

number of wavelengths), s is an L-dimensional vector 

representing the absorption spectrum of the target molecule 

(i.e. ( )t  ). μ and G are the mean and the covariance matrix 

(L x L) of the multivariate Gaussian distribution that models 

the spectral background. Under the assumption that the 

molecular target lies in “low probability” within the data, the 

parameters μ and G of the background statistical distribution 

can be computed from the all available pixels with maximum 

likelihood, i.e. 
1

1 N

iiN 
 μ x  and 

1

1
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where N is the number of pixels in the MSOT image.  

The performance of statistical detection algorithms depends 

on the accurate computation of its parameters, i.e. the mean μ 

and the covariance matrix G [19]. If the true covariance matrix 

G was known, an inaccurate estimate of the mean value only 

affects the scaling of the detection image. Conversely, 

inaccurate computation of the covariance matrix can have a 

major adverse impact on the target detectability [10, 12, 13]. 

Inaccurate computation of G may result from the prominent 

presence of the target spectrum within the pixels that are used 

for its computation (covariance contamination). A method 

previously considered for mitigating this effect is diagonal 

loading [20], i.e. the superposition of a diagonal matrix with 

constant entries to the sample covariance matrix multiplied by 

a scalar b called loading factor, i.e. Gdl = G+bI. If b is 

appropriately selected, diagonal loading has been shown to 

mitigate the effects of covariance contamination in 

hyperspectral imaging [12]. However, the optimal value of b, 

depends on the level of contamination, which is generally 

unknown and may vary substantially depending on the 

molecular imaging application at hand. For this reason, 

diagonal loading does not present a robust solution for the 

MSOT molecular target detection problem. 

III. IMAGING DATA AND TARGET IMPLANTATION 

A. Synthetic MSOT data 

The quantitative evaluation of detection algorithms in the 

context of MSOT molecular imaging is performed using 

artificial target implantation on experimental MSOT data, a 

concept that was previously described in [4]. 

1) Experimental MSOT dataset of tissue background.  

Experimental MSOT images of in vivo background tissue 

were obtained using an In Vision 256-TF MSOT system 

(iThera Medical GmbH, Munich Germany). A previous 

version of this system is analytically described elsewhere [21]. 

The MSOT scanner acquires 2D images at a transverse slice in 

the focal plane of the ultrasound array. By translating the 

animal in the imaging chamber, multiple 2D images can be 

acquired, covering the whole body. Imaging was performed at 

21 different excitation wavelengths from 700 nm to 900 nm 

with a step size of 10 nm. Image reconstruction was performed 

using a model-based inversion algorithm [22] with Tikhonov 

regularization. After image reconstruction the tissue area was 

manually segmented in each image. 

The imaging dataset includes three nude mice, imaged in 

vivo at 41-45 different 2D slices covering the entire area of the 

brain and the area of the liver, kidneys and the lower abdomen 

area. Each mouse was imaged at two different physiological 

conditions (breathing 100% O2 and 20% O2, i.e. medical air). 

Two different oxygenation conditions were employed to 

consider changes in the spectra of hemoglobin in tissue that 

affect the background spectral variability. The imaging dataset 

is composed of 292 multispectral images in total. 

2) Target implantation 1: small targets 

Target implantation is achieved through the artificial 

superposition of targets with the spectra of Indocyanine Green 

(ICG) or IntegriSense750 (PerkinElmer Inc. Massachusetts, 

U.S.) at randomly selected positions upon the MSOT 

background-tissue image. The introduced disk-shaped targets 

(radius 4 pixels; 37 pixels in total) are implanted at 20 

simulated peak absorption coefficients decreasing 

exponentially from 3 to 0.02 cm
-1

. The intensity of the 

implanted target at each pixel is defined by the simulated 

absorption coefficient and the optical fluence at this pixel 

[Φ
sim

(r,λ)] which is simulated using a 2D finite element 

solution of the diffusion approximation and uniform tissue 

optical properties stemming from literature [4]. The simulated 

optical fluence is wavelength dependent introducing changes 

in the spectral signature of the implanted molecular targets, 

which is computed per pixel as in s
imp

(r,λ) = s
orig

(r,λ)Φ
sim

(r,λ). 

We assumed a Born-type approximation where we neglect the 

effect of the molecular target itself on the simulation of 

Φ
sim

(r,λ). A more analytical description of the target 

implantation on MSOT images is provided in Ref. [4] and 

Supp. Fig. 1. We note that, due to a number of simplifying 

assumptions the simulated absorption coefficient of the 

implanted targets may not be accurate in absolute value. 

However, this does not impair the quantitative evaluation 

since it is only the relative detection performance that is of 

interest. 

A target is considered detectable if there exists a detection 

threshold Ts that allows for more than 70% of true positives 

(the true positive set is defined as TP={i∊Dt : D(xi)>Ts}) and 

less than 0.045% false positives (the false positive set is 

defined as FP={i∊Db : D(xi)>Ts}): 

 

: 0.7 0.00045 ,s t bT TP D FP D              (4) 

 

where i is the pixel index, Db and Dt are the sets of pixels 

corresponding to the background and target, respectively, and 

|·| denotes the cardinality of the set. D(xi) is the detection 

value attributed to the pixel i.. We note that the percentage of 

0.045% for false positives was selected because the 

background area is much larger than the target area. The value 

0.00045|Db| is equivalent to 0.5|Dt|. 

In the case of small implanted targets, the detection 

performance is assessed in terms of minimum detectable agent 
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amount (MDAA; until cm
-1

) that is required for successful 

detection, according to inequality (4). Lower MDAA values 

indicate higher molecular imaging sensitivity. 

2) Target implantation 2: large targets 

For quantifying the effects of covariance contamination due 

to the presence of the molecular target, the target implantation 

framework was adapted for further considering targets of 

varying sizes. A large rectangular target occupying a total area 

of 4096 pixels is initially implanted in tissue background at a 

randomly selected position. This initial target is iteratively 

divided into 2, 4, 8 and 16 equally sized rectangular regions 

corresponding to 2048, 512 and 256 pixels, respectively. In 

each division stage the target is sequentially implanted at all 

positions covering the whole initial area of 4096 pixels. In 

each case the target absorber is implanted at 7 exponentially 

decreasing simulated absorption coefficient from 3 to 0.03 cm
-

1
. The spectrum of the target at each pixel is computed as in 

s
imp

(r,λ) = s
orig

(r,λ)Φ
sim

(r,λ). Φ
sim

(r,λ) is computed as described 

in (III-A-2) considering only background tissue absorbers.  

For large targets the visibility metric defined in (4) does not 

offer appropriate intuition on the detection result. Instead, the 

percentage of the detected pixels, i.e. the percentage of pixels 

within the target area that are attributed detection values larger 

than a threshold Tb, is computed. This threshold is defined as 

the average of the 500 larger false-positive detection values 

(i.e. 
500

1
(1/ 500) ( ),s

b bi
T D i


  where s

bD  is a vector containing 

the detection values attributed to the background sorted in 

descend order). The average of 500 pixels was selected for 

avoiding the dominant influence of small outliers in the 

quantitative analysis. While the region of interest (ROI) 

corresponding to the target changes according to the target 

size and position, the same ROI was always used for the 

computation of false positives. The same false positive ROI 

was used in order to facilitate a straightforward comparison 

where any performance differences between large and smaller 

targets are directly attributed to the effect of covariance 

contamination (see Suppl. Fig. 2). In each target division stage 

the total percentage of detected pixels within the whole initial 

area of 4096 pixels is computed. 

B. Experimental imaging dataset 

For confirming observations stemming from synthetic data, a 

purely experimental MSOT dataset of mice containing 

fluorescent molecular targets was compiled:  

1) In vivo localized insertion dataset:  A capillary tube (diam. 

0.86 mm) containing a fluorescent dye was rectally inserted 

into an anesthetized CD1 mouse and the animal was imaged in 

the lower abdominal area. The capillary tube was iteratively 

filled with the fluorochrome Alexa Fluor 750 (AF750) at an 

optical density ranging from 6.6 to approx. 0.2 OD for 

achieving different target intensities. The same experiment 

was performed using the fluorochrome Alexa Fluor 790 

(AF790). The dataset is described in Ref. [9]. Imaging was 

performed at 21 wavelengths from 700 to 900 nm with a step 

size of 10 nm. The fluorescent target appeared at an imaging 

depth of ~ 1 cm in the transverse MSOT image. 

2) Brain tumor dataset: A nude mouse bearing a brain tumor 

expressing a near-infrared fluorescent protein (U87-iRFP) was 

imaged at 12 different wavelengths (690, 695, 700, 705, 710, 

715, 720, 730, 750, 770, 800, and 830 nm) in the area of the 

brain. Fluorescence cryoslicing imaging was employed for 

validating the location of iRFP post-mortem. The study is 

described in Ref. [3]. 

3) Bain injection dataset: Different amounts of fluorescently 

labelled macrophages were injected in the left and the right 

brain hemisphere of a euthanized nude mouse. Cells were 

labeled with the near-infrared fluorescent cyanine dye 1,1'-

Dioctadecyl-3,3,3',3'-Tetramethylindotricarbocyanine Iodide 

(DiR). The exact position of the implanted cells was identified 

post-mortem through cryoslicing fluorescent imaging. Imaging 

was performed at 21 wavelengths from 700 to 900 nm with a 

step size of 10 nm. The dataset is analytically described in 

Ref. [23]. 

4) Systemic injection of ICG: 40 nmoles of Indocyanine Green 

(ICG) diluted in 200 μL saline were injected in the tail-vein of 

a nude mouse and in the following the animal was imaged in 

the area of the liver. ICG has been previously documented to 

accumulate in the liver [24]. Imaging was performed at 21 

wavelengths from 700 to 900 nm with a step size of 10 nm. 

5) Systemic injection of AF750. 1.2 nmoles of Alexa Fluor 750 

(AF750) diluted in 200 μL saline were injected in the tail-vein 

of a nude mouse and the animal was imaged in the area of the 

bladder, where AF750 accumulates [24]. Imaging was 

performed at 21 wavelengths from 700 to 900 nm.  

 All animal procedures were approved by the District 

Government of Upper Bavaria. 

IV. ROBUST STATISTICAL DETECTION FRAMEWORK 

In this section we describe the statistical detection framework 

developed. In (IV-A), we consider the issue of MSOT 

background-tissue statistical modeling and in (IV-B) we 

introduce a robust covariance estimation approach for 

mitigating the effects of covariance contamination. The two 

concepts are combined in (IV-C) for deriving the proposed 

statistical detection framework. 

A. Statistical characterization of MSOT data and EC-GLRT 

detection 

Identifying a statistical distribution that accurately describes 

the background spectral variability B(r,λ) is an important 

factor in the design of a target detection algorithm [19]. We 

hereby compare the multivariate Gaussian assumption, 

followed by AMF, to the multivariate t-distribution which 

offers better ability to model multidimensional data with 

longer tails [25]. Both the Gaussian and the t-distribution 

belong to the family of the elliptically contoured distributions 

that were introduced by Manolakis et. al. in hyperspectral 

imaging for the purpose of synthetic data generation [25]. For 

statistically characterizing the multidimensional MSOT data 

we use univariate statistics of their Mahalanobis distance 

distribution as proposed in [25, 26].  

The Mahalanobis distance of L-dimensional data that follow 

the multivariate Gaussian distribution (mG see Appendix A) is 

distributed as a χ
2
 distribution with L degrees of freedom. By 

contrast, the Mahalanobis distance of data following the  
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Figure 1. Statistical characterization of MSOT data through the 

exceedance probability of their Mahalanobis distance distribution. (a) 

Probability of exceedance of the Mahalanobis distance of 10 different 

MSOT images (green solid lines). The theoretical exceedance 

probability of the χ2 distribution (blue dashed line) and the F 

distribution with different degrees of freedom (dash-dotted lines) are 

also presented for comparison. (b, c) Comparison of the exceedance 

probability of the Mahalanobis distance of two different MSOT 

images (b, c solid green lines) with the FL,v distribution (dash- dotted 

lines), where v is selected by minimizing the exceedance metric. 

 

multivariate t distribution with v degrees of freedom ( mt, see 

Appendix B) is distributed as an F distribution with 

parameters L and v. By studying the Mahalanobis distance 

distribution of experimental MSOT data, an appropriate 

multivariate statistical distribution can be potentially identified 

for modeling the MSOT tissue background. 

The probability of exceedance, which corresponds to the 

probability that the data will exceed a certain value (Appendix 

C), has been proposed for statistically characterizing the 

Mahalanobis distance of multidimensional data [26]. The 

exceedance metric (Eq. (5)), compares the distribution of the 

Mahalanobis distance m (Appendix B) to a known probability 

density function (PDF) f, allowing for the identification of 

appropriate distributions as well as unknown parameters of 

such distribution. The exceedance metric is defined through 

the inverse exceedance probability (Appendix C) as in:  

 

1 1

1

( , ) ( ) ( )
K

exc i f i
i

M f E P E P 



  mm ,            (5) 

 

In Eq. (5), Pi are K logarithmically spaced values of the 

exceedance probability spanning the range from 1 to 10
-4

, and 

E
-1 

is the inverse exceedance probability (Appendix C). Em is 

the exceedance probability of the Mahalanobis distance 

distribution of the data, computed numerically, and Ef is the 

theoretical exceedance probability of the PDF f, which is 

computed from the analytical expression of f. 

Fig. 1(a) presents the probability of exceedance of the 

Mahalanobis distance for 10 different MSOT background 

images corresponding to different anatomical areas of a mouse 

ranging from the brain to the abdominal region (green solid 

lines). The theoretical exceedance probabilities of the 

associated χ
2
 distribution (blue dashed line) and the F 

distribution for different values of the parameter v (dash-

dotted lines) are also presented for comparison. From the 

exceedance probability plot it is obvious that the Mahalanobis 

distance of MSOT data does not follow a χ
2
 distribution, while 

the F distribution provides a far better fit. This indicates that 

the t-distribution may be more appropriate for modeling  

 
Figure 2. Comparison of MSOT background-tissue covariance 

matrices. (a, b) Covariance matrices stemming from two different 

mice (G1
GL and G2

GL, respectively) using data from the whole body 

and two different breathing conditions. (c) Graph presenting the 

distance between G1
GL and the covariance matrices Gk

s 

corresponding to all anatomical slices of mouse 3. Cov. Dist. 

1 1

GL GL/ /k k

s sF F F
 G G G G . (d, e) Covariance matrices 

produced from single anatomical slices of mouse 3 corresponding to 

the median (d) and maximum (e) distance as compared to G1
GL.  

 

the MSOT tissue background. Fig. 1(b), (c) present the 

distribution of the Mahalanobis distance for two different 

MSOT images (solid green lines). The dash-dotted black lines 

correspond to the exceedance probability of the FL,v, where the 

parameter v is computed as the value that minimizes the 

exceedance metric of (5). We observed that different MSOT 

images may correspond to different degrees of freedom v. Fig. 

1(b), (c) further suggest that the F distribution with optimally 

selected parameter v appears capable of modeling well both 

the main body as well as the tails of the Mahalanobis distance 

distribution. 

Theiler et. al. have derived a generalized likelihood ratio 

test (GLRT) detector for multivariate data following the t-

distribution with v degrees of freedom (v>2), termed EC-

GLRT detector [27]: 
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v
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s G x μ
x

x μ G x μ s G s

    (6) 

 

In Eq. (6), G is the covariance matrix which can be calculated 

with maximum likelihood and v are the degrees of freedom of 

the t-distribution. For v=∞ the EC-GLRT detector becomes 

equivalent to AMF. EC-GLRT requires an estimate of the 

parameter v, which is hereby estimated for each dataset under 

test through the minimization of the exceedance metric of (5):  

 

,
ˆ min ( , ' ),exc L v

v

v Arg M F m                 (7) 

B. Robust covariance matrix estimation through quasi-local 

covariance shrinkage.  

A major challenge in achieving simultaneously sensitive and 

robust detection performance is the estimation of a covariance 

matrix that is always uncontaminated from the SOI and also 

close to the true covariance matrix. To achieve this we 

introduce a covariance estimation scheme where the sample 

covariance matrix is appropriately merged with an 

uncontaminated, global covariance matrix derived from a an 

archive of agent-free MSOT images of tissue background. Our 

covariance estimation approach follows three distinct steps. In 

a first step, an uncontaminated covariance matrix is estimated 
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by combining the sample covariance matrix of the MSOT 

image under test and a global covariance matrix that is 

computed using uncontaminated training data. In a second 

step, the level of contamination of the image under test is 

estimated by comparing its sample covariance matrix with a 

dictionary of uncontaminated ones. Finally, in a third step, the 

uncontaminated covariance matrix and the sample covariance 

matrix are appropriately merged based on the estimated level 

of covariance contamination. Step one is described in (IV-B-1) 

and steps two and three are described in (IV-B-2). 

1) Estimation of uncontaminated covariance matrix using 

training data 

In MSOT imaging an un-contaminated global covariance 

matrix can be computed using training data stemming from 

animals where no molecular agents have been introduced. Fig. 

2(a), (b) present two global covariance matrices (G
1
GL and 

G
2

GL, respectively) computed from two different mouse 

datasets (mouse 1 and 2, respectively). Each global covariance 

matrix was computed as the sample covariance matrix over all 

pixels of MSOT images spanning the whole body of each 

mouse and from two different in vivo breathing conditions in 

each case (see Sec. III-A-1). We observe close consistency in 

the structure of the two covariance matrices. A third mouse 

dataset was used for investigating differences in the structure 

of the covariance matrix per anatomical slice and 

physiological condition. Fig. 2(c) presents the Frobenious 

norm distance between the normalized global covariance 

matrix G
1
GL/||G

1
GL|| and the normalized sample covariance 

matrices Gs
k
/||Gs

k
|| corresponding to different anatomical slices 

and physiological conditions of mouse 3. Normalization is 

performed to consider changes in the structure rather than the 

intensity of the covariance matrix. The covariance matrices of 

mouse 3 corresponding to the median and the maximum norm 

distance are presented in Fig. 2(d), (e), respectively. Despite 

the dramatic differences in anatomy and tissue physiology we 

observe that the covariance matrix of background-tissue 

retains a rather consistent structure, indicating the possibility 

of using training data for covariance estimation.  

While GGL is uncontaminated, its deviation from the sample 

covariance matrix of the MSOT image under test may lead to 

ill background modeling. An alternative quasi-local 

covariance matrix can be computed through the combination 

of the global and the sample covariance matrix of the MSOT 

image under test through the following formula: 

 

QL GL GL s GL GL( ( )) ,T TdiagG U U G U U                (8) 

 

In (8) UGL is the matrix containing the eigenvectors of GGL 

and Gs is the sample covariance matrix of the multispectral 

image under test. diag indicates the operator that retains the 

diagonal elements of the matrix while setting the rest to zero.  

GQL is uncontaminated by the SOI, as its eigenvectors are 

not influenced by the target spectrum [13], while it further 

preserves characteristics of the sample covariance of the data 

under test. We note that similar covariance estimators have 

been previously proposed in literature for cases of ill 

covariance computation due to limited samples [28]. 

 

2) Covariance shrinkage  

GQL may still deviate from Gs, possibly leading to a reduced 

detection performance when the data are uncontaminated. 

Ideally the estimated covariance matrix would vary between 

Gs and GQL depending on the level of SOI contamination. To 

achieve this we employ the covariance shrinkage scheme:  

 

est s QL(1 )a a  G G G  ,               (9) 

 

where the shrinkage parameter α can vary between 0 (optimal 

in the case of uncontaminated data) and 1 (optimal in the case 

of highly contaminated data) adapting to the level of 

covariance contamination.  

The level of contamination could be theoretically estimated 

through the distance between the sample covariance matrix 

and the true background covariance matrix, || Gs - Gtrue ||F. 

Assuming that the unknown, true covariance matrix lies within 

a dictionary DG of uncontaminated covariance matrices 

stemming from training MSOT images, the following metric 

can offer an insight on the level of contamination of the 

sample covariance matrix: 

 

true

s true

s true
G

c
D

F F F

m Min



G

G G
-

G G
               (10) 

 

By means of cross-validation in simulated data, we 

empirically concluded to the following rule for estimating the 

shrinkage level using the contamination metric mc:  

 

min{1, }ca m                    (11) 

 

The empirical rule of Eq. (11) and the selection of the 

parameter κ=4 is explained in (V-B-2). The value of parameter 

κ was retained constant in all evaluations. 

C. Robust statistical detection framework 

The hereby proposed statistical detection framework 

combines the EC-GLRT detector of IV-A with the covariance 

matrix estimation scheme of IV-B.   

In a first step the sample covariance matrix Gs of the MSOT 

image under test is estimated using all available pixels and the 

level of contamination is assessed through metric mc of Eq. 

(10). The covariance matrix dictionary DG is computed from 

the archive of agent-free MSOT images corresponding to the 

experimental data of Sec. III-A-1. We note that in the cross-

validation presented in Sec. V, all covariance matrices 

corresponding to the mouse under test were excluded from the 

dictionary DG, which typically includes ~200 different 

covariance matrices. Using the metric mc, the loading level α 

is computed according to Eq. (11). The covariance matrix Gest 

is estimated through Eq. (9) using the GQL covariance matrix 

of Eq. (8). The GGL covariance matrix is estimated from all 

available agent-free MSOT data of Sec. III-A. Similarly to the 

case of DG, in the cross-validation presented in Sec. V, all 

MSOT data corresponding to the mouse under test were 

excluded from the computation of GGL.  

In a last step, the final detection result is computed. In this 

step, the MSOT image is initially analysed using the AMF 
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formula of Eq. (3) using Gest and the detection result DAMF(xi) 

is compared to a predefined threshold TAMF that is associated 

with a small false alarm probability (TAMF was selected such 

that  : ( ) 0.00002i AMFi A D T A  x , where A is the 

complete set of pixels of the training dataset). If DAMF(xi) < 

TAMF ∀ xi, the AMF has not detected a strong target in the 

image. In this case, the parameter v is computed according to 

Eq. (7) and in the following DEC-GLRT(xi) is computed 

according to Eq. (6) using Gest and returned as the output of 

the detection scheme. If DAMF(xi)> TAMF, the AMF has 

recognized a strong target. In this case, DAMF(xi) is returned as 

the output of the detection scheme. This latter test is 

performed for facilitating a better target visualization, as, in 

the case of strong targets EC-GLRT does not offer optimal 

visualization due to its intensity normalization property. 

Algorithm 1 summarizes the hereby proposed detection 

scheme. 

 

Algorithm 1: Robust statistical detection framework 
1. Compute the sample mean μ and covariance matrix Gs of 

the MSOT image x under test: 

1

1 N

ii
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2. Compute GGL as the sample covariance matrix over all 

training data. Compute GQL from GGL and Gs according to 

(8). Compute the covariance matrix dictionary DG from 

each available training MSOT image independently. 

3. Estimate the covariance matrix as in: 

est s QL(1 )a a  G G G  

where α is computed from (11) with respect to the metric 

mc of (10). 

4. If DAMF(xi) < TAMF ∀ i, 
,
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V. RESULTS 

A. Performance of EC-GLRT 

Figs. 3(a), (b) present a quantitative performance 

comparison, in terms of MDAA, of AMF vs. EC-GLRT as 

evaluated using the target implantation framework of Sec. III-

A-2. Two different spectral targets are considered, namely 

ICG (Fig. 3(a)) and IntegriSense750 (Fig. 3(b)). The statistical 

evaluation was performed using target implantation on all 

background MSOT images of the imaging dataset (Sec. III-A-

1), and 6 different target positions per image. The six grey 

error-bars correspond to statistics stemming from the three 

individual mice imaged at two different physiological 

conditions each. The black error-bars correspond to statistics 

stemming from all data. The bar height corresponds to the 

mean MDAA and the error-bar to the standard deviation. 

According to the quantitative evaluation, EC-GLRT allows for 

detecting the implanted targets at 20%-30% lower simulated 

absorbance, therefore offering a statistical performance 

enhancement that is consistent for all mice and for both 

implanted targets. Examples of three representative detection 

cases where the detection result is overlaid onto the  

 
Figure 3. (a, b) Quantitative comparison of AMF and EC-GLRT in 

terms of MDAA (see Sec. III-A-2) for the cases of ICG (a) and 

Integrisense750 implanted targets (b). The bar height corresponds to 

the mean MDAA and the errorbar to the standard deviation over all 

images employed for evaluation. The six grey errorbars correspond to 

three different mice imaged at two different physiological conditions 

each (Sec. III-A-1). The black errorbars correspond to statistics 

stemming from all data. EC-GLRT with appropriate selection of 

parameter v offered consistently a statistically enhanced performance. 

(c-h) Examples of detection result using AMF (c, e, g) and EC-GLRT 

(d, f, h) for the same target intensity. The detection result is overlaid 

onto the anatomical optoacoustic image with green pseudocolor. The 

yellow arrows point the target positions and the red arrows point the 

false positives. 

 

anatomical image with green pseudo-color are presented in 

Fig. 3(c)-(h). The first column (Fig. 3(c), (e), (g)) corresponds 

to AMF, while the second column (Fig. 3(d), (f), (h)) 

corresponds to EC-GLRT. For the same target intensity, EC-

GLRT resolved the targets (yellow arrows) with less false 

positives (red arrows) as compared to AMF.  

Fig. 4 presents examples of AMF vs EC-GLRT comparison 

in the case of purely experimental data. Fig. 4(a) corresponds 

to a case where fluorescently labelled cells have been 

introduced in the left and right brain hemispheres of a mouse 

post mortem (Sec. III-B-3). Fig. 4(b) corresponds to a mouse 

brain containing a tumor that is expressing a near infrared 

fluorescent protein (Sec. III-B-2). Fig. 4(c) corresponds to the 

dataset described in Sec. III-B-1, where a capillary tube, 

containing AF750 at an optical density of 0.53 OD has been 

introduced within tissue. In each case yellow arrows indicate 

the position of the fluorescent target. In all three cases the 

detection performance of AMF (first column) is compromised 

by false positive detection artifacts. Conversely, EC-GLRT 

(second column) achieves detection of the molecular target 

with considerably reduced false positives. In each case the 

detection result is overlaid onto the anatomical image with 

green pseudocolor (left) and is also presented independently 

(right) for facilitating a straightforward comparison.  
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Figure 4 Comparison of AMF and EC-GLRT in purely experimental 

data. (a) Mouse brain with two lesions of DiR labelled cells. (b) 

Mouse brain with a tumor expressing iRFP fluorescent protein. (c) 

Mouse abdomen with a fluorescent target corresponding to a 

capillary tube containing AF750. In each case, the detection result is 

presented standalone on the right side and overlaid onto the 

anatomical image with green pseudocolor on the left side. Yellow 

arrows indicate the position of the targets, while red arrows indicate 

false positives. The standalone detection images corresponding to 

AMF are presented in square root for facilitating a better visual 

comparison. 

B. Effects of covariance contamination and quasi-local 

covariance shrinkage 

 1) Effects of covariance contamination 

Fig. 5 presents the effects of covariance contamination on 

the detection performance of AMF. A statistical evaluation of 

the detection performance of AMF, in terms of percentage of 

detected pixels, was performed through the implantation of 

targets of varying sizes, as described in Sec. III-A-3. Statistics 

on the percentage of detected pixels (y axis) for different 

target sizes (colors) and different target intensities (x axis) are 

presented in Fig. 5(a). Small targets of 256 pixels (green 

errorbars) appear fully detectable above a certain simulated 

agent absorbance. Conversely, in the case of larger targets of 

2048 pixels the detection performance is compromised when 

these targets appear in high intensities, as an effect of 

covariance contamination. The effects of covariance 

contamination are more evident in the case of the largest 

implanted targets (4064 pixels), where the targets are no 

longer fully detectable at any simulated target intensity. Fig. 

5(b)-(d) present the detection result of AMF in the case of a 

large implanted target for three different simulated intensities. 

For comparison purposes, Fig. 5(e)-(g) present the ideal 

detection result of AMF where the uncontaminated 

background covariance matrix is used instead. Evidently, due 

to the covariance contamination caused by the large target 

size, parts of the target are not detectable by AMF at any 

simulated target intensity. The percentage of detected pixels 

according to the quantitative evaluation is presented in the 

lower left part of the individual images. 

 
Figure 5. Effects of covariance contamination on the detection 

performance of AMF. (a) Statistical evaluation of AMF detection 

performance in terms of the % of detected pixels (y-axis) for different 

target sizes (colors) and different target intensities (x-axis), using the 

target implantation of Sec. III-A-3. Statistics are derived from target 

implantation on 6 different MSOT images and 6 different target 

positions per MSOT image.  (b-d) Examples of the AMF detection 

performance in the case of a large target implanted at three different 

intensities. (e-g) Detection result of uncontaminated AMF for the 

same targets. (h) Statistical evaluation of the detection performance 

of standard (black) and uncontaminated AMF (blue) in the case of 

large targets (4096 pixels) as a function of relative signal strength. 

Statistics are derived from target implantation on all MSOT images 

of the experimental dataset (Sec. III-A-1).  

 

A more straightforward approach for assessing the 

performance degradation due to covariance contamination is 

by investigating the detection performance as a function of the 

relative signal strength (RSS), i.e. ||T(r,λ)||2/||Β(r,λ)||2, where 

T(r,λ) represents the implanted target and B(r,λ) represents the  

background. Fig. 5(h) presents the detection performance of 

AMF in the case of large targets (4064 pixels) as a function of 

RSS (black errorbars). The performance of uncontaminated 

AMF (blue errorbars) is also presented for comparison. 

Statistics correspond to targets implanted on all MSOT images 

of the experimental dataset (Sec. III-A-1).  

2. Performance of quasi-local covariance shrinkage  

Fig. 6 presents the performance of the proposed quasi-local 

covariance shrinkage scheme (QL shr. AMF; see Supp. Table 

I, Appendix). Fig. 6(a) presents the values of cm (Eq. (10)) 

obtained in the case of large ICG implanted targets of 4096 

pixels as a function of the RSS. The three different color-bars 

correspond to wavelength sampling of 21, 10 and 7 equally 

spaced wavelengths spanning the range of 700-900 nm. The 

metric mc appears capable of identifying high levels of 

covariance contamination (RSS≥20%), but there is 

considerable overlap in its values in low contamination levels 

(RSS<20%). The empirical rule of Eq. (11) and the value of 

parameter κ were selected in such a way so that α=1 when the 

value of mc indicates a substantial level of contamination 

(RSS≥20%). Due to the overlap of mc values in the case of low 

or no contamination, α is typically larger than zero even in 

uncontaminated cases. The values obtained by mc under  
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Figure 6. Evaluation of the QL shrinkage approach. . (a) Values 

obtained by cm
 (Eq. (10)) under different levels of RSS (x-axis) 

and under different wavelength sampling approaches (color-bars). 

The values obtained by α [Eq. (11)] for three different cm
values 

are presented with horizontal lines. (b) Performance comparison of 

AMF, GL AMF, and QL shr. AMF in terms of % of detected pixels 

in the case of large targets (4098 pixels). Statistics correspond to ICG 

targets implanted on all background MSOT images. (c) Performance 

comparison of AMF, GL AMF, and QL shr. AMF in terms of MDAA 

for the case of small ICG implanted targets.  The six grey errorbars 

correspond to three different mice imaged at two different 

physiological conditions each. The black errorbars correspond to 

statistics stemming from all data. (d) Comparison of the detection 

performance of QL shrinkage (red) and diagonal loading using two 

different constant loading levels, i.e. b=0.1 (blue) and b=0.01 (black). 

Statistics in (a)-(d) correspond to target implantation on all 

experimental data of Sec. III-A-1. 

 

different levels of contamination are relatively unaffected by 

different wavelength sampling strategies. 

Fig. 6(b) presents a quantitative performance comparison of 

GL AMF (Supp. Table I, Appendix) and QL shr. AMF in the 

case of large ICG implanted targets of 4096 pixels (high 

contamination), in terms of % of detected pixels (y-axis) and 

as a function of RSS (x-axis). The performance degradation of 

AMF, caused by covariance contamination (black error-bars in 

Fig. 6(b)), is mitigated by the use of an uncontaminated 

covariance matrix. In the case of large implanted targets, both 

GL AMF (blue) and QL shr. AMF (red) offer a comparable 

performance, successfully mitigating the effects of covariance 

contamination.  

Fig. 6(c) presents a quantitative performance comparison in 

the case of small ICG targets (uncontaminated case), in terms 

of MDAA (Sec. III-A-2). In the case of small targets GL AMF 

offers worse detection performance as compared to AMF, 

increasing the MDAA from 1.5 to 3  times. This performance 

degradation is expected since in the uncontaminated case, the 

sample covariance matrix offers better modeling abilities than 

the global one. QL shr. AMF offers an improved performance 

with respect to GL AMF, which is only 1.1-1.6 times worse 

than the one of AMF. 

Finally Fig. 6(d) presents a performance comparison of the 

proposed quasi-local covariance shrinkage approach (QL shr. 

AMF) and the previously considered diagonal loading scheme 

(DL AMF; Supp. Table I, Appendix) [12]. A high level of 

diagonal loading (b=0.1) offers good performance in the case 

of high target intensities but a considerably reduced 

performance in the case of low target intensities (blue 

errorbars). Conversely a lower level of diagonal loading 

(b=0.01) offers reduced detection performance in the case of 

high target intensities (black errorbars). Evidently, QL shr. 

AMF (red errorbars) offers a substantially enhanced 

performance as compared to DL AMF.  

C. Evaluation of statistical detection framework over existing 

approaches 

Fig. 7 compares the performance of the proposed robust 

statistical detection framework (RSDF) to the one of AMF and 

to least-squares (LS) spectral fitting [17] which have been 

previously used in MSOT molecular imaging. In the case of 

LS fitting the spectra of oxygenated and deoxygenated 

hemoglobin were used for modeling the tissue background. 

Fig. 7(a) presents a quantitative comparison in the case of 

small targets, using the target implantation framework of Sec. 

III-A-2. According to the simulations, LS fitting offers, on 

average, 5 times reduced detection performance as compared 

to AMF and RSDF. AMF and RSDF offer comparable 

performance. Statistics correspond to all experimental data of 

Sec. III-A-1. Fig. 7(b) presents the detection results of LS 

fitting, AMF and RSDF for a representative simulation where 

the small ICG target has been implanted onto the experimental 

MSOT image at two different simulated intensities. The target 

position is indicated by the yellow arrows while red arrows 

indicate false positives. 

Fig. 7(c) presents a comparison of LS fitting, AMF and 

RSDF in the case of large targets (4096 pixels), in terms of % 

of detected pixels. LS fitting offers good detection 

performance in the case of high target intensities (µα>0.65 cm
-

1
) but a considerably reduced performance in the case of low 

target intensities. AMF offers reduced detection ability in all 

simulated target intensities due to the effects of covariance 

contamination. Conversely, RSDF offers a considerably 

enhanced performance as compared to AMF and LS fitting. 

Fig. 7(d) presents the detection results of LS fitting, AMF and 

RSDF for a representative simulation where the ICG target has 

been implanted at two different intensities. 

Fig. 8 presents detection examples stemming from purely 

experimental data. The first column corresponds to LS fitting, 

the second to AMF and the third to RSDF. In the latter case, 

the values of α and v are further presented alongside the 

images. Fig. 8(a) corresponds to brain images with DiR 

labelled macrophages (Sec. III-B-3). The position of the cells 

(yellow arrows) is accurately detected by AMF and RSDF but 

not by LS fitting which yields substantially stronger false 

positive detection artifacts. Fig. 8(b-c) corresponds to the 

dataset described in Sec. III-B-1 where a capillary tube  
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Figure 7. Quantitative comparison of LS fitting, AMF and RSDF in 

simulated data. (a) Performance comparison in terms of MDAA for 

the case of small ICG targets (Sec. III-A-2). The six grey errorbars 

correspond to three different mice imaged at two different 

physiological conditions each (Sec. III-A-1). The black errorbars 

correspond to statistics stemming from all data. (b) Detection 

examples of LS fitting, AMF and RSDF in two cases where a small 

ICG target has been implanted in a low (left) and a high (right) 

intensity. Yellow arrows indicate the position of the target, while red 

arrows indicate false positives. The parameters α and v of RSDF are 

further presented in each case. (c) Performance comparison in terms 

of % of detected pixels for the case of large (4096 pixel) targets (Sec. 

III-A-3). Statistics are derived from target implantation on 6 different 

MSOT images and 6 different target positions per image. (d) 

Detection examples of LS fitting, AMF and RSDF in two cases 

where a large ICG target has been implanted at a low (left) and a high 

(right) intensity. The percentage of detected pixels is presented in 

each case in the upper right part of the image. 

 

containing AF750 (AF790, respectively) at an optical density 

of approx. 0.25 OD has been introduced in deep tissue. The 

location of the fluorochrome (yellow arrows) is detectable 

only by RSDF (c), or by both AMF and RSDF (b), but not by 

LS fitting which yields false positives at higher intensities. 

Fig. 8(d) presents an MSOT image of the same experiment, 

but in this case the capillary tube has been filled with a high 

concentration of AF790, corresponding to 6.6 OD. In this case 

LS fitting and RSDF accurately detect the position of the 

target, while the performance of AMF is considerably 

compromised due to the effect of covariance contamination. 

Fig. 8(e) corresponds to the dataset described in Sec. III-B-5, 

where the accumulation of AF750 in the bladder is monitored. 

Again, the detection performance of AMF is compromised due 

to the large target size, while LS fitting and RSDF accurately 

detect the fluorochrome bio-distribution in the bladder (dashed 

line). Finally Fig. 8(f) corresponds to the dataset describe in 

Sec. III-B-4 where MSOT monitors the accumulation of ICG 

in the liver. Both RSDF and LS fitting resolve an extensive 

distribution of ICG in the area of the liver, whereas AMF fails 

due to the effects of covariance contamination. The detection 

results of Fig. 8 demonstrate that RSDF combines high 

molecular imaging sensitivity (Fig. 8(a)-(c)) with a robust 

performance that is not affected by the target size or intensity 

(Fig. 8(d)-(f)).  

VI. DISCUSSION AND CONCLUSIONS 

Spectral analysis methods play a fundamental role in the 

ability to extract valuable molecular information from 

multispectral optoacoustic images. The ultimate goal of 

spectral unmixing in MSOT imaging is the quantification of 

the concentrations of all absorbing molecules within tissue. 

Despite substantial prior work, the quantification of the 

absorbers’ concentrations in experimental in vivo images is 

considered still an open challenge [16]. 

This work considers the problem of multispectral detection 

of extrinsic molecular agents in MSOT imaging. As opposed 

to spectral unmixing, the spectral detection problem seeks to 

identify the position and area occupied by molecular targets 

within the tissue [29] and it has a direct application on MSOT 

molecular imaging. While the multispectral detection problem 

can be formulated as a binary classification problem, it has 

some characteristic properties that largely affect the 

development of appropriate algorithms. First, while sufficient 

data are typically available for accurately training the 

background class, the sparsity of the targets typically hinders 

the successful training of the target class. Second, the 

minimization of the misclassification rate is not a good 

performance metric when the goal is to detect targets that are 

considerably smaller than the background [5, 6]. For these 

reasons, practical multispectral detectors typically follow a 

GLRT approach which seeks to maximize the probability of 

detection while retaining the probability of false alarm under a 

predefined threshold (Neyman Pearson criterion) [7]. 

Moreover, most practical GLRT detectors do not train a target 

class but assume a linear model of a known target spectrum 

superimposed on a background that is modeled statistically 

[5]. 

GLRT statistical sub-pixel detection has been shown to 

offer an enhancement in the molecular imaging sensitivity of 

MSOT [4]. However, common statistical sub-pixel detection 

algorithms are not optimally suited to the particular 

characteristics of MSOT molecular imaging. In this work we 

introduced a robust statistical detection scheme designed 

according to the characteristics of MSOT molecular imaging. 

We studied both the aspects of background statistical 

modeling and covariance matrix estimation that are key 

parameters for the design of statistical sub-pixel detectors 

[19]. This work did not study the effects of spectral mismatch 

in the detection performance, which will be assessed in future 

work.  
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Figure 8. Comparison of the detection result of LS fitting (left 

column), AMF (middle column) and RSDF (right column) in the case 

of purely experimental data. In the latter case the parameters α and v 

are presented within the image. (a) DiR labelled macrophages 

introduced in the left and right brain hemisphere (arrows). (b-d) 

MSOT images with an insertion of AF750 at an optical density of 

approx. 0.25OD (b), AF790 at a similar optical density (c) and 

AF790 at 6.6 OD (d) introduced within tissue (arrows), as described 

in Sec. III-B-1. (e) MSOT images of the abdominal area after 

systemic injection of 1.2 nmoles of AF750. AF750 accumulates in 

the area of the bladder (dashed line). (f)  MSOT images of the liver 

after systemic injection 40 nmoles of ICG. In all cases the detection 

result in overlaid onto the anatomical image with green pseudocolor. 

 

Through a statistical characterization of experimental 

background-tissue MSOT data we found that the t-distribution 

appears more accurate in modeling both the main body and the 

tails of the MSOT data. This observation led to the utilization 

of a data-adaptive EC-GLRT detector, which in turn offered 

an enhancement in the detection performance observed both in 

simulated and experimental data (Fig. 3, 4).  

The most significant pitfall of statistical sub-pixel detection 

in the context of MSOT is the effect of covariance 

contamination in the cases of extensive presence of the 

molecular target. Using target implantation simulations of 

varying target sizes we quantitatively assessed this effect and 

found that the performance of AMF degrades substantially in 

the case of large molecular targets (Fig. 5). This effect was 

also demonstrated in experimental MSOT data (Fig. 8(e), (f)).  

For mitigating the effect of covariance contamination we 

introduced a covariance estimation approach that exploits an 

archive of training background-tissue MSOT images. Through 

the comparison of covariance matrices stemming from 

different anatomical regions and physiological conditions we 

observed a consistency in the structure, which indicated the 

possibility of using training data for covariance estimation. 

However, the simplistic exchange of the sample covariance 

matrix with a global covariance matrix computed from 

training data, caused a substantial negative effect on the 

detection performance in the case of low contamination (Fig. 

6), reducing the detection performance up to 3 times. For 

overcoming this effect we designed a covariance estimation 

approach, where a quasi-local uncontaminated covariance 

matrix is appropriately merged with the sample covariance 

matrix based on the estimated level of the covariance 

contamination. The proposed covariance estimation scheme 

offers robust performance that is not affected by covariance 

contamination, while also retaining good performance in the 

uncontaminated case. The proposed covariance estimation 

scheme considerably outperformed diagonal loading, a method 

previously proposed for mitigating the effects of covariance 

contamination in hyperspectral remote sensing [12]. 

The performance of the proposed robust statistical detection 

framework was evaluated statistically using extensive target 

implantation simulations and considering targets of different 

sizes and intensities. The method was found to considerably 

outperform adaptive matched filter in the case of large targets 

and the LS fitting approach in the case of weakly absorbing 

targets. Importantly, RSDF offers an automatic and universal 

performance independently of the target size or intensity. A 

number of purely experimental imaging studies further 

confirmed the direct applicability of the method in 

experimental molecular imaging data.  
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