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 23 

ABSTRACT 24 

The proteasome system degrades more than 80% of intracellular proteins into small peptides. 25 

Accordingly, the proteasome is involved in many essential cellular functions such as protein 26 

quality control, transcription, immune responses, cell signaling, and apoptosis. Moreover, 27 

degradation products are loaded onto major histocompatibility (MHC) class I molecules to 28 

communicate the intracellular protein composition to the immune system. 29 

The standard 20S proteasome core complex contains three distinct catalytic active sites that 30 

are exchanged upon stimulation with inflammatory cytokines to form the so-called 31 

immunoproteasome. Immunoproteasomes are constitutively expressed in immune cells and 32 

have different proteolytic activities compared to standard proteasomes. They are rapidly 33 

induced in parenchymal cells upon intracellular pathogen infection and are crucial for priming 34 

effective CD8+ T cell-mediated immune responses against infected cells. Beyond shaping 35 

these adaptive immune reactions, immunoproteasomes also regulate the function of immune 36 

cells by degradation of inflammatory and immune mediators. Accordingly, they emerge as 37 

novel regulators of innate immune responses. The recently unraveled impairment of 38 

immunoproteasome function by environmental challenges and by genetic variations of 39 

immunoproteasome genes might represent a currently underestimated risk factor for the 40 

development and progression of lung diseases. In particular, immunoproteasome dysfunction 41 

will dampen resolution of infections thereby promoting exacerbations, may foster 42 

autoimmunity in chronic lung diseases, and possibly contributes to immune evasion of tumor 43 

cells. Novel pharmacological tools such as site-specific inhibitors of the immunoproteasome 44 

as well as activity-based probes, however, hold promises as novel therapeutic drugs for 45 

respiratory diseases and biomarker profiling, respectively.  46 

 47 
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1. Introducing the proteasome system 53 

In the normal course of a protein’s lifetime, synthesis and degradation rate determine the half-54 

life of both short- and long-lived proteins for cellular maintenance (119). The proteasome is a 55 

huge protease complex and the main protein degradation system within the cell: about 80 % 56 

of all cellular proteins are processed by the proteasome into peptides of 3-22 amino acids in 57 

length (94). Controlled protein breakdown by the proteasome involves tagging of protein 58 

substrates with ubiquitin chains mainly linked at the lysine at position 48 (K48) via a cascade 59 

of E1, E2, and E3 ubiquitin-activating, -conjugating, and -ligating enzymes, respectively. 60 

However, ubiquitin-independent degradation by the proteasome has also been described (15, 61 

60). Degradation products can be used to recycle amino acids or are loaded onto major 62 

histocompatibility (MHC) class I molecules to communicate the intracellular protein 63 

composition to the immune system (33, 63): even though less than 0.1 % of the peptides 64 

generated by the proteasome are presented at the cell surface as antigens, this system is 65 

efficient in eliciting a cytotoxic T cell response towards infected or malignant cells (120). Due 66 

to the broad nature of substrates, the proteasome is involved in many essential cellular 67 

functions such as protein quality control, transcription, immune responses, cell signaling, and 68 

apoptosis (33, 95). Moreover, degradation of damaged and misfolded proteins is also mainly 69 

taken over by the ubiquitin-proteasome system (36, 75). This function is of central importance 70 

to counteract the cytotoxic potential of damaged proteins that arise upon oxidative 71 

modification of amino acids and subsequent exposure of hydrophobic amino acid side chains. 72 

In the lung, proteins have been shown to be modified by reactive agents, such as present in 73 

pollutants and cigarette smoke, or which are generated at conditions of oxidative stress during 74 

immune responses (5). The impact of proteasome dysfunction for protein quality control and 75 

proteostasis in chronic lung diseases has recently been covered by several reviews (5, 75, 76, 76 
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81). The consequences of proteasome dysfunction for innate and adaptive immune responses 77 

in the lung, however, have not been considered so far and will be the focus of this review.  78 

 79 

2. The proteasome’s catalytic activity 80 

The proteasome consists of a central 20S catalytic core particle, which is activated by 81 

proteasome regulators (Figure 1). Several regulators are known that bind to and thus mediate 82 

opening of the 20S proteasome for substrate entry (76). The 19S particle is the best studied 83 

regulator: it consists of at least 18 different subunits, including ubiquitin receptors and 84 

deubiquitinating enzymes, and accounts for ubiquitin- and ATP-dependent degradation of 85 

substrates (67). Together with the 20S, it forms the 26S/30S proteasome by binding to one or 86 

both sides of the 20S core, respectively. Two 11S-types of regulators are known: the IFNγ-87 

inducible heteroheptameric PA28α/β and the homoheptameric PA28γ, which can only be 88 

found in the nucleus. Furthermore, two monomeric regulators, PA200 as well as PI31, have 89 

been described. Proteasome regulators have been shown to determine substrate specificity and 90 

turnover rate (105).  91 

The 20S proteasome consists of a barrel-shaped core particle composed of four rings 92 

comprising seven subunits each (Figure 1). Seven related, but distinct α-subunits form the two 93 

outer α-rings (33). Because the N-termini of the α-subunits close the entry pore and inhibit 94 

substrate entry, the 20S core particle only allows entry of unfolded proteins. Three of the 95 

seven β-subunits that constitute each of the two inner β-rings are catalytically active and 96 

confer the proteolytic capacity of the 20S proteasome. These three β-subunits determine the 97 

species of the 20S core particle: depending on the cell-type, cytokine milieu, or activation 98 

state of the cell, different β-subunits are expressed and incorporated into mature 20S. The 99 

standard 20S proteasome is expressed in every cell-type and integrates the β1, β2, and β5 100 

subunits which cleave after acidic, basic, or hydrophobic amino acids, respectively (45). In 101 
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immune cells, however, three different β-subunits are constitutively expressed (103): low 102 

molecular mass protein (LMP) 2, multicatalytic endopeptidase complex-like 1 (MECL-1), and 103 

LMP7 (also called β1i, β2i, and β5i). In non-immune cells, these three so-called 104 

immunosubunits can be induced by interferon (IFN) γ or tumor necrosis factor (TNF) α 105 

signaling (2, 40). In addition, several other stimuli have been identified that upregulate 106 

immunosubunits including retinoic acid (118), nitric oxide (64), cytokines such as IL-4 (23), 107 

Toll-like receptor agonists and type I interferons (101) and mTOR signaling (121). Given the 108 

multitude and variety of stimuli that triggers immunoproteasome subunit expression, it is 109 

tempting to rename “immunoproteasome” to “inducible proteasome” as these specialized 110 

types of proteasomes appear to be not restricted to immune responses anymore. When 111 

immunosubunits are expressed, they are preferentially incorporated into newly assembled 20S 112 

immunoproteasomes (50, 58). Furthermore, they exhibit altered cleavage preferences 113 

compared to standard proteasomes, with a strongly reduced post-acidic cleavage activity 114 

based on the β1/LMP2 exchange, leading to generation of peptides that are preferentially 115 

loaded onto MHC I molecules compared to peptides derived from standard proteasomes (38). 116 

In addition, mixed proteasomes consisting of both standard and immunoproteasome subunits 117 

have been described which contribute to an even more diverse peptide pool (24).  118 

 119 

3. Immunoproteasomes facilitate CD8+ T-cell mediated resolution of intracellular 120 

infections 121 

Immunoproteasomes are of crucial importance for CD8+ T cell-mediated immune responses 122 

against intracellular infections (73). Specifically, they play an essential role at three crucial 123 

checkpoints: Firstly, immunoproteasomes are important for negative selection of autoreactive 124 

CD8+ T cells in the thymus upon development of the immune system: immunoproteasomes 125 

are expressed in medullary thymic epithelial cells (mTECs) where they contribute to the 126 
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generation of the cellular “self”-peptide repertoire that is presented to developing CD8+ T 127 

cells (87). Thereby, selection of only those T cells that do not bind to “self” peptide/MHC I 128 

complexes is achieved (3, 39). The remaining naïve CD8+ T cells migrate to lymph nodes and 129 

persist until they are activated by antigen-presenting cells (APCs) in order to execute their 130 

effector function and combat infections. 131 

Secondly, APCs, especially dendritic cells (DC), mainly express immunoproteasomes (103). 132 

DCs are able to engulf necrotic particles of infected cells, and migrate to draining lymph 133 

nodes upon maturation. There they present immunoproteasome-derived pathogen-peptides on 134 

MHC I together with co-stimulatory molecules to evoke a specific CD8+ T cell responses (so-135 

called cross-presentation). With the help of APCs, intracellular viral or bacterial infections are 136 

thus communicated to naïve CD8+ T cells in the lymph nodes to induce a pathogen-specific 137 

adaptive immune response. After activation, the CD8+ T cells move to the site of infection 138 

and patrol the infected organ in search for their specific antigen bound to MHC I to kill the 139 

infected cell (96). 140 

Thirdly, to limit pathogen replication by selective killing of infected cells, cells need to signal 141 

their infection status to patrolling activated CD8+ T cells. In order to be recognized by CD8+ 142 

T cells, infected cells upregulate immunoproteasome expression to present exactly the same 143 

immunoproteasome-generated pathogen antigen as during CD8+ T cell activation by the APC 144 

(55, 101) (Figure 2). Importantly, immunoproteasomes are downregulated after the infection 145 

is resolved in order to limit possible autoreactivity of CD8+ T cells to non-infected cells (38, 146 

39). 147 

Immunoproteasomes thus enhance antigen presentation by increasing the quantity (32, 78) 148 

and/or quality of peptides for MHC I antigen presentation (38, 106). Indeed, 149 

immunoproteasomes have been reported to shape the MHC I peptide repertoire which was 150 

illustrated by the use of proteasome inhibitors and immunoproteasome knock-out mice, either 151 
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of single or of all three immunosubunits (8, 57, 113). Accordingly, immunoproteasomes 152 

dictate expansion of CD8+ T cells clones after infection as shown in several mouse models of 153 

viral or bacterial infections. In these models, and strongly depending on the immunodominant 154 

epitopes of the pathogen, effects of immunoproteasome (subunit) deficiency ranged from no 155 

detectable differences in virulence (18, 84), altered antigenic peptide presentation and CD8+ T 156 

cell response (6, 37, 46, 48, 89, 97, 98, 102, 110, 123) to even increased morbidity and 157 

mortality (85, 109). These studies emphasize the importance of immunoproteasomes during 158 

infection to enhance MHC I antigen presentation and to increase generation of pathogen-159 

derived peptides. One well-studied example represents the influenza A virus which is an 160 

important trigger of exacerbations in chronic respiratory diseases such as chronic obstructive 161 

pulmonary disease (COPD) (100): two immunodominant MHC I epitopes have been shown to 162 

be differentially processed by standard and immunoproteasomes in C57BL/6 mice (123). 163 

Whether these results can be translated to influenza A human MHC I epitopes, however, has 164 

not been investigated so far.  165 

 166 

4. Immunoproteasomes protect from autoimmunity 167 

Intriguingly, the cell type- and tissue-specific distribution of immunoproteasomes is important 168 

for protecting the organism from autoimmunity after infection. Immune cells such as APCs 169 

constitutively express immunoproteasomes, whereas parenchymal cells only express them in 170 

response to inflammatory cytokines such as IFNγ or TNFα (Figure 2). During CD8+ T cell 171 

priming in the lymphatic tissues, both immunoproteasome-derived pathogen-, but also “self”-172 

antigens are presented on MHC I by the APC. If a “self”-reactive CD8+ T cell, despite thymic 173 

selection, would be activated during infection by an APC, the same immunoproteasome-174 

dependent “self”-antigen might be presented by an infected parenchymal cell. The epitope 175 

would cease to be presented by parenchymal cells after the infection is resolved, because 176 
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immunoproteasomes are gradually replaced by standard proteasomes (42). Certain 177 

immunoproteasome-derived “self”-antigens are thus presented to the immune system only 178 

during infection, thereby protecting from autoreactive immune responses after resolution of 179 

infection (30, 38, 101). 180 

Indeed, it has been shown that immunoproteasomes are inappropriately expressed in human 181 

autoimmune disorders (29, 35, 65, 77) and experimental models of autoimmunity (7, 14). 182 

Accordingly, the use of novel immunoproteasome-specific inhibitors has been proposed for 183 

treatment of autoimmune disorders (13, 16, 61, 63, 111). These inhibitors have been proven to 184 

successfully counteract autoimmune responses in several experimental models of autoimmune 185 

diseases (7, 11, 47, 79, 82, 122). Inhibition of immunoproteasomes in autoimmunity could 186 

have two beneficial and synergistic effects: a) presentation of immunoproteasome-dependent 187 

“self”-antigens by parenchymal cells might be hindered and b) inflammatory cytokine 188 

secretion by immune cells might be dampened (79). 189 

Furthermore, single nucleotide polymorphisms (SNP) of proteasome subunits have been 190 

associated with autoimmune diseases, however, with partially conflicting results (an overview 191 

can be found in Supplementary Table S1 in (76)).  192 

 193 

5. Immunoproteasomes shape immune cell function and innate immune responses 194 

Beyond shaping adaptive immune reactions, proteasomes and in particular 195 

immunoproteasomes regulate the function of immune cells by degradation of inflammatory 196 

and immune mediators. Special interest and conflicting data exist on the role of 197 

immunoproteasomes in NFκB signaling, which might reflect cell type-specific effects or the 198 

outcome of different experimental settings (44, 49, 72). Our own and partially unpublished 199 

data indicate that NFκB signaling is not affected by deletion of the immunoproteasome 200 

subunits LMP2 or LMP7: NFκB promotor-driven reporter gene as well as NFκB target gene 201 
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expression were unchanged in alveolar macrophages of LMP2-deficient mice after LPS and 202 

IFNγ-induced macrophage polarization (23). Several mutations in the human PSMB8 and 203 

PSMB9 genes encoding the LMP7 and LMP2 immunoproteasome subunits, respectively, have 204 

been discovered in autoinflammatory disorders (1, 4, 17, 62, 70, 74). In addition, mutations in 205 

other 20S proteasome subunits have been identified leading to e.g. reduced expression, 206 

misfolding or impaired 20S incorporation of mutated subunits and therefore changes in 207 

cellular proteostasis (17). These diseases have been combined in the so-called proteasome-208 

associated autoinflammatory disorders (PRAAS).  209 

Cells of the adaptive immune system have been shown to be regulated by the 210 

immunoproteasome subunit LMP7: The differentiation potential of naïve CD4+ T helper cells 211 

to Th1/Th17 was impaired while regulatory T cell differentiation was enhanced in the absence 212 

or catalytic inhibition of LMP7 due to altered cellular signaling (51). The immunological 213 

phenotype of immunoproteasome knock-out mice also points towards altered proteostasis 214 

leading to changes in immune cell function: LMP2-deficient mice display less B cells as well 215 

as reduced numbers of peripheral CD4+ and CD8+ T cells (44). MECL-1 knock-out (k.o.) 216 

mice show an altered T cell repertoire (10) and combined deletion of both MECL-1 and 217 

LMP7 leads to hyperproliferation of T cells (22). Inhibitors of LMP7 have also been shown to 218 

influence inflammatory cytokine production which might add to their beneficial effects in 219 

preclinical models of autoimmunity (79).  220 

Less attention has been paid to the role of immunoproteasomes in innate immunity. Van 221 

Helden and colleagues did not observe changes in natural killer (NK) cell education in 222 

MECL-1/LMP7 double k.o. mice, but immunoproteasome-deficiency in splenocytes led to 223 

their rejection only in virus-infected, but not naïve recipient wildtype mice in an NK-224 

dependent manner (43). Our own study demonstrated altered polarization capacities of 225 

alveolar macrophages upon immunoproteasome subunit deficiency. These cells express high 226 
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levels of immunoproteasomes (54). While the pro-inflammatory IFNγ/LPS-induced M1 227 

phenotype was not changed in LMP7-deficient primary macrophages, IL-4 treatment of 228 

wildtype or LMP7-deficient cells resulted in augmented M2 polarization marker gene 229 

expression, increased M2-signalling (via STAT6 and AKT), and an increase in IL4Rα 230 

expression already at baseline (23). Catalytic inhibition of LMP7 with the 231 

immunoproteasome-specific inhibitor ONX-0914 led to similar results. These data were 232 

partially confirmed in a recent study by Kimura and colleagues: compared to wildtype 233 

animals, LMP7-deficient mice exhibited increased levels of M2 marker gene expression in 234 

white adipose tissue after high-fat-diet while there was no change in M1 marker gene 235 

expression (56). 236 

Paeschke and colleagues observed reduced levels of the soluble cardio-protective pattern 237 

recognition receptor Pentraxin 3 upon LMP7 inhibition or genetic deletion, which was 238 

associated with exacerbated coxsackievirus B3 inflammatory injury of heart tissue (88). A 239 

recent study investigated the role of ONX-0914 in fungal infection and observed increased 240 

susceptibility to systemic candidiasis associated with a possible defect in neutrophil function 241 

(80). 242 

Until now, it is unresolved how these changes in immune cell function are mediated. 243 

Immunoproteasome deficiency has been shown to influence the transcriptome of immune 244 

cells, which might be the result of altered substrate turnover in immunoproteasome-deficient 245 

cells (57, 112, 113). One explanation might be that immunoproteasomes increase the general 246 

pool of proteasomal catalytic capacity (50). Immunoproteasomes may also have altered 247 

substrate specificities due to differential association with proteasome regulators as described 248 

for PA28α/β (31). The recently discovered defined interplay of immunoproteasomes with 249 

fundamental cell signaling pathways such as mTOR may also specifically regulate immune 250 

cell responses (121, 124). 251 
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 252 

6. Impact of proteasome dysfunction on immune responses in respiratory diseases 253 

As the lung is directly exposed to the environment, environmental stressors such as pollutants, 254 

pathogens, and oxidants are continuously challenging proteostasis in lungs cells. By now it is 255 

well established that proteasome function is impaired by environmental insults: it has been 256 

demonstrated that pesticides, diesel exhaust, and cigarette smoke decrease proteasome activity 257 

(59, 92, 93, 116), but also drugs such as ethanol have been shown to impair proteasome 258 

function (21, 28, 86). Environmental challenges may affect proteasome function on different 259 

levels as summarized recently (76). First, transcriptional regulation of proteasomes has been 260 

shown to be part of a protective response to oxidative stress (66). In particular, induction of 261 

immunoproteasomes has been suggested to contribute to the degradation of oxidatively 262 

modified proteins in vitro and in vivo (27, 68, 90). Seifert et al. demonstrated that 263 

immunoproteasome-deficient cells needed more time to resolve IFNγ-induced oxidatively 264 

modified, i.e. carbonylated, proteins (99). However, these results remain controversial (83). 265 

Data from our group refute a protective role of immunoproteasomes in response to cigarette 266 

smoke as alveolar macrophages from COPD patients as well as from smoke-exposed mice 267 

exhibited reduced immunoproteasome levels similar to lung parenchymal cell lines that had 268 

been treated with cigarette smoke extract (52, 53).  269 

Second, dynamic changes in the composition of proteasomal complexes in the cell might 270 

serve as a quick means of the cell to cope with environmental stimuli (76). The 26S 271 

proteasome was shown to fall apart in response to oxidative stress (71, 108, 115), whereas 272 

PA28α/β assembled with 20S proteasomes originating from disassembled 26S proteasomes to 273 

protect from oxidative stress (34, 69, 91). 274 

Third, proteasome activity might be directly impaired by oxidative insults. We and others 275 

have recently shown that cigarette smoke impairs both standard and immunoproteasome 276 
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activity in vitro and in vivo which correlated with elevated levels of oxidative stress (52, 93, 277 

104). In particular, both standard and immunoproteasome activity was clearly impaired in 278 

whole lung homogenates of COPD patients in the absence of transcriptional regulation (52). 279 

In light of the aforementioned role of immunoproteasomes in innate and adaptive immune 280 

responses, environmental impairment of immunoproteasome function but also genetic 281 

variations in immunoproteasome subunits might represent a currently underestimated risk 282 

factor for the development of lung diseases (Figure 3).  283 

Reduced immunoproteasome activity in response to, e.g., cigarette smoke might be harmful 284 

during pulmonary infection and in acute exacerbations: intracellular human pathogens are 285 

efficiently cleared via MHC I-dependent CD8+ T cell responses that kill the infected cell and 286 

prevent further amplification of the pathogen and thus tissue damage. The important 287 

contribution of immunoproteasomes in mounting an effective adaptive anti-viral immune 288 

response has been shown, e.g., for influenza A virus (57, 89, 123). It is well feasible that 289 

immunoproteasome dysfunction in patients with COPD might result in impaired antiviral 290 

immune responses towards influenza A virus infection thereby contributing to disease 291 

exacerbations as previously proposed by us (52). 292 

In a murine model of asthma, LMP7-deficient mice showed reduced uptake of ovalbumin 293 

and attenuated ovalbumin-induced asthma while responses to house dust mite were 294 

comparable (114). 295 

A missense SNP in the PSMB8 gene encoding the immunosubunit LMP7 was associated with 296 

an increased risk for the development of pigeon breeder’s hypersensitivity pneumonitis, a 297 

form of extrinsic allergic alveolitis (20). However, whether missense SNPs in proteasomal 298 

genes result in alterations of protein levels, impaired 20S proteasome assembly, or altered 299 

association of 20S to its regulators, has not been analyzed so far. 300 
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Immunoproteasome dysfunction in innate immune cells might also increase susceptibility to 301 

diseases associated with type 2 immune responses: increased M2 polarization of alveolar 302 

macrophages could facilitate development of pulmonary fibrosis (23). Indeed, alveolar 303 

macrophages of IPF patients exhibited reduced levels of immunoproteasomes (52).  304 

In non-small cell lung cancer (NSCLC), immunoproteasome expression was recently found 305 

to be a prognostic factor in lung cancer patients. Low levels of immunoproteasome-expression 306 

were associated with reduced survival and increased recurrence of metastases (107). It is well 307 

known that malignant cells actively suppress immunoproteasome function to evade CD8+ T 308 

cell surveillance similar to the strategy that is used by several viruses (73). One tactic of 309 

cancer cells is expression of a non-functional transcript variant of the LMP7 protein which is 310 

not incorporated into mature 20S proteasomes. These cells are thus immunoproteasome-311 

deficient (41). This immunoproteasome repression has been exploited for therapeutic 312 

strategies with autologous dendritic cells of tumor patients that were pulsed with tumor 313 

antigens and siRNA directed against immunoproteasomes to match the peptidome of the 314 

antigen presenting cell with the tumor MHC I peptidome (25, 26).  315 

 316 

7. Therapeutic interventions targeting the immunoproteasome in the lung 317 

The cell-type specific expression of immunoproteasomes in immune cells can be utilized to 318 

specifically target these cells with immunoproteasome-specific inhibitors. Compared to the 319 

FDA-approved proteasome inhibitors such as Bortezomib and Carfilzomib, which do not 320 

discriminate between standard and immunoproteasome, these newly developed inhibitors are 321 

specific for immunoproteasome subunits (61). As mentioned above, they have successfully 322 

been used in several preclinical models of autoimmune diseases to counteract autoimmune 323 

responses in first proof-of-concept studies. The anti-inflammatory effect of 324 

immunoproteasome-specific inhibition might also prove useful in overshooting 325 
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(auto-)inflammatory pulmonary diseases such as acute respiratory distress syndrome (ARDS) 326 

or sarcoidosis. Chronic treatment, however, should be avoided due to the suspected side 327 

effects of increased susceptibility to virus infections (9) and the potential risk of M2 328 

macrophage-driven fibrotic remodeling (23). For the treatment of lung cancers, 329 

immunoproteasome-specific inhibition could represent an attractive target for combinational 330 

therapy, however, the levels of active immunoproteasomes should be determined first to 331 

maximize the benefit for the patient and to limit side-effects (12, 117),  332 

  333 

8. Conclusion 334 

With the recent success of site-specific inhibitors of the immunoproteasome in preclinical 335 

models of autoimmune diseases exiting new possibilities have arisen that will allow 336 

therapeutic targeting of inappropriate immunoproteasome activity in disease. Moreover, these 337 

inhibitors will foster a deeper understanding of the biological role of immunoproteasomes 338 

such as the identification of immunoproteasome-specific substrates in immune cells to unravel 339 

potential adverse effects on immunoproteasome-specific inhibitors. Furthermore, the 340 

possibility to monitor subunit-specific inhibition of the proteasome with activity-based probes 341 

(19) raises the prospect of monitoring immunoproteasome activity as a biomarker for 342 

susceptibility to infections or cancer prognosis. 343 

344 
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FIGURE LEGENDS 764 

Figure 1: Variety of proteasome complexes. The 20S proteasome catalytic core is 765 

composed of four heptameric rings with an α1-7β1-7β1-7α1-7 symmetry and can exist in several 766 

forms: the 20S standard proteasome incorporates the catalytic subunits β1, β2, and β5 and is 767 

constitutively expressed in every cell. Upon interferon (IFN) γ, tumor necrosis factor (TNF) α 768 

signaling or by numerous other triggers, cells upregulate expression of the three 769 

immunosubunits low molecular mass protein (LMP) 2, multicatalytic endopeptidase complex-770 

like (MECL) 1, and LMP7 which are incorporated into newly assembled 20S 771 

immunoproteasomes. Mixed-type proteasomes are also possible containing both standard and 772 

immunosubunits. 20S proteasomes are activated by proteasome regulators. Five different 773 

regulators are known that bind to 20S proteasomes and facilitate substrate entry: the multi-774 

subunit 19S regulator mediates ubiquitin-dependent degradation of substrates and is 775 

dependent on ATP; two heptameric regulators are PA28α/β (IFNγ-inducible, proposed role in 776 

antigen presentation) and PA28γ (found only in the nucleus, implicated in cell cycle 777 

regulation); the function of the two monomeric regulators PA200 and PI31 is not well 778 

understood. Regulators can bind to one or two sides of 20S proteasomes and may also form 779 

hybrid proteasomes consisting of the 20S core and two different activators attached to each 780 

side. Depending on the type of 20S proteasome (standard or immuno) preferential association 781 

with regulators has been proposed which is indicated by a different line thickness. 782 

Abbreviations: mTOR = mammalian target of rapamycin; NO = nitric oxide; PA = 783 

proteasome activator; PI = proteasome inhibitor; RA = retinoic acid; TLR = toll-like-receptor 784 

agonist. 785 

 786 

Figure 2: Immunoproteasomes facilitate clearance of respiratory infections. In the 787 

healthy lung, immunoproteasome (IP) expression is restricted to immune cells such as 788 
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dendritic cells (DCs) and macrophages (Mϕ). Their basal levels in parenchymal cells (alveolar 789 

epithelial cell type (AT) I and II) are very low. Upon infection and signaling of inflammatory 790 

cytokines, parenchymal cells upregulate immunoproteasomes to efficiently present pathogen 791 

antigens via major histocompatibility (MHC) class I molecules to matching pathogen-specific 792 

CD8+ T cells resulting in killing of infected parenchymal cells. Thus, pathogen amplification 793 

is restricted and the infection can be cleared rapidly. After resolution of infection, 794 

parenchymal cells gradually replace immunoproteasomes by standard proteasomes. Potential 795 

autoreactive CD8+ T cells, which might also have been primed against “self”-antigens, are 796 

thus prevented to become activated as the immunoproteasome-dependent MHC I peptide 797 

repertoire is switched back to the standard repertoire. Therefore, immunoproteasomes help to 798 

protect from autoimmunity.  799 

 800 

Figure 3: Model of how immunoproteasome dysfunction may predispose to chronic lung 801 

diseases. Impaired immunoproteasome function might occur due to genetic variations or to 802 

environmental insults such as cigarette smoke or pollution. Such dysfunction will have 803 

minimal effects in parenchymal cells under non-infectious conditions but may affect immune 804 

surveillance of malignant cells. If immunoproteasomes cannot be induced to sufficient levels 805 

upon infection or are impaired in their activity, different outcomes are conceivable. Dendritic 806 

cells (DCs) with immunoproteasome dysfunction might not prime CD8+ T cells with the same 807 

efficiency or they might prime an altered set of CD8+ T cells. These might also include 808 

autoreactive T cells specific for “self”-antigens produced by standard proteasomes that are 809 

also presented by parenchymal cells when infection is eventually resolved thereby promoting 810 

autoimmunity. Reduced immunoproteasome activity in parenchymal cells such as alveolar 811 

epithelial cell type (AT) I and II might lead to delayed resolution of infection, as the infection 812 

status cannot be efficiently communicated to the immune system in the form of CD8+ T cells. 813 
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Prolonged infection thus could lead to more severe tissue damage and contribute to 814 

emphysema formation. Alveolar macrophages with immunoproteasome dysfunction have 815 

increased pro-fibrotic M2 polarization capacity and might predispose to tissue remodeling as 816 

observed in asthma and pulmonary fibrosis. 817 








	Article File
	Figure 1
	Figure 2
	Figure 3

