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ABSTRACT 
Optoacoustic technique has been shown to resolve anatomical, functional and molecular features at depths that 
go beyond the reach of epi-illumination optical microscopy offering new opportunities for endoscopic imaging. 
Herein, we interrogate the merits of optoacoustic endoscopy implemented by translating a sound detector in 
linear or curved geometries.  The linear and curved detection geometries are achieved by employing an 
intravascular ultrasound transducer (IVUS) within a plastic guide shaped to a line or a curve. This concept could 
be used together with optical endoscopes to yield hybrid optical and optoacoustic imaging.  
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1. INTRODUCTION 

White-light endoscopy is a common optical imaging medical procedure employed to visualize tissues and 
disease inside the human body but comes with two important limitations. First, it attains access only to 
superficial tissues since it is not possible to visualize under the tissue surface. Second, endoscopic detection is 
based on superficial architectural features and tissue discoloration, which is not always very specific. To increase 
contrast and disease detection specificity, different optical methods have been considered as an addition to 
white-light imaging. For example, narrow-band imaging [1], endoscopic optical coherence tomography [2] and 
confocal laser endoscopy [3] have been clinically applied, but are not yet selected for mainstream use. In all 
cases however, due to the use of an all-optical method, scattering brings important limitations to the resolution 
and depth that can be achieved. 

Endoscopic ultrasound achieves penetration of several millimeters to centimeters in tissue and thus can provide 
information about subsurface morphology such as displacia [4]. However, by relying on the bulk mechanical 
properties of tissue, endosonography only provides weak soft tissue contrast, low sensitivity and no 
physiologically specific functional information.  

To improve on these limitations, optoacoustic imaging has been proposed for endoscopy [5], as it can retain the 
penetration depth and resolution of ultrasound but provides rich optical contrast. Optoacoustic contrast is 
significantly enhanced via the application of multispectral optoacoustic tomography (MSOT) [6]. The technique 
illuminates tissues at multiple wavelengths and can offer specific detection of tissue chromophores and 
administered optical agents by detecting their absorption spectrum over the background absorption [6].  

Optoacoustic endoscopy has been so far implemented using dedicated endoscopes operating on rotational and 
linear translational scanning of ultrasound sensors yielding cross-sectional B-scan images [7-9]. Implementations 
of this concept have been presented using single-element unfocused [8] and focused [7] detectors.  

Herein, we present curved scanning optoacoustic endoscopy[10]. The curved geometry offers larger effective 
acceptance aperture than the linear translation approach and thus helps to improve image quality by capturing a 
larger fraction of the ultrasound field emitted from tissue. We implemented both the curved and the traditional 
linear scanning approaches and compared them by imaging phantoms and tumor mice in-vivo. 
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reduces the image quality with respect to lateral resolution over the curved geometry. In the linear approach, the
lateral resolution is proportional to the detector size ( )

L
R h σ=  [12], whereas in the curved geometry lateral

resolution scales by 0( ) ( / )CR r r r σ=  [12]. σ  represents the diameter of the detector, r the position and r0 the
radius of the detection arc.  

Image quality in both geometries could be further enhanced using a detector with a larger sensing angle. The 
IVUS detector utilized herein has a quite narrow field of view due to its shape and high central frequency. A
transducer with a large aspect ratio (large in elevation and narrow in scanning direction) would satisfy such
conditions, or alternatively the combination of a big detection element with a negatively focused lens. The 
implementation herein employed fixed illumination. This is advantageous from a tomographic reconstruction 
point of view, but has the limitation that a high power laser is necessary to illuminate the whole area of interest.
In combination with high repetition rate lasers necessary to impart fast imaging performance, this might be
problematic from a laser safety limit point of view. Future implementations will therefore scan the small 
illumination unit together with the detection unit and use lower energy lasers. The change of the acoustic field
due to changing illumination conditions can be dealt with using model-based reconstruction algorithms [13].
Moreover, by adding additional rotation movement, the presented 2D imaging approach can be extended to 3D.
Overall, the presented concept could be used together with optical endoscopes to yield hybrid optical and
optoacoustic imaging performance better than the one be achieved by optical imaging alone. To enable passing 
the curved endoscope through the working channel of an optical endoscope one could employ a pre-shaped
guidewire with a good shape memory or a guide-wire with an actively deflectable tip.

The research leading to these results has received funding from the European Union project FAMOS (FP7 ICT, contract no. 317744). 
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