Gene	Clone	Sequence					
Scrambled	1	CCTAAGGTTAAGTCGCCCTCGCTCGAGCGAGGGCGACTTAACCTTAGG					
Thbs2	1	GCCCTATTGATGGGTGCTTATCTCGAGATAAGCACCCATCAATAGGGC					
	2	GCTGTAGGTTTCGACGAGTTTCTCGAGAAACTCGTCGAAACCTACAGC					
	3	CCATTCTATGAGCAGCTAGAACTCGAGTTCTAGCTGCTCATAGAATGG					
	4	CCAAGACAACTGCCCATACATCTCGAGATGTATGGGCAGTTGTCTTGG					
	5	CCACGTCAAGGACACTTCATT CTCGAGAATGAAGTGTCCTTGACGTGG					
	6	GATTCGTGCTGTTCTATAATGCTCGAGCATTATAGAACAGCACGAATC					
Dlk1	1	CTCAGGCAACTTCTGTGAGATCTCGAGATCTCACAGAAGTTGCCTGAG					
	2	GCTGGTGATGAGGAGATCTAAC TCGAGTTAGATCTCCTCATCACCAGC					
(clone used in functional assays)	3	GACGGGAAATTCTGCGAAATACTCGAGTATTTCGCAGAATTTCCCGTC					
	4	CCATCGTCTTTCTCAACAAGT CTCGAGACTTGTTGAGAAAGACGATGG					
	5	CATCCTGAAGGTGTCCATGAACTCGAGTTCATGGACACCTTCAGGATG					
	6	CCACATGCTTCGCAAGAAGAACTCGAGTTCTTCTTGCGAAGCATGTGG					
Bgn	1	CCACTCAGAGACTCCCTATAACTCGAGTTATAGGGAGTCTCTGAGTGG					
	2	GCCATCCAATTTGGAAATTATCTCGAGATAATTTCCAAATTGGATGGC					
	3	GCCCTGGTCTTGGTAAACAATCTCGAGATTGTTTACCAAGACCAGGGC					
	4	GCTATTGAGTTGGAGGACCTACTCGAGTAGGTCCTCCAACTCAATAGC					
	5	CTCCCTGGTAGAACTACGAATCTCGAGATTCGTAGTTCTACCAGGGAG					
Mmp9	1	CCCTCTGAATAAAGACGACATCTCGAGATGTCGTCTTTATTCAGAGGG					
	2	CCAGGATAAACTGTATGGCTTCTCGAGAAGCCATACAGTTTATCCTGG					
	3	GAGGCATACTTGTACCGCTATCTCGAGATAGCGGTACAAGTATGCCTC					
	4						
	5						
Vcam1	1	CCAGATCCTTAATACTGTTTACTCGAGTAAACAGTATTAAGGATCTGG					
	2						
	3						
	4						
D 4	5						
որ	1						
(clone used in	3	GCGAGGAGCAACAACCACTTTCTCGAGAAAGTGGTTGTTGCTCCTCGC					
functional assays)	4						
	4						
Tafhi	1						
1 gibi	2	CGAGTCTTTGTTTATCGAAATCTCGAGATTTCGATAAACCAAACCA					
	2						
	3	CCTCCAGAAGAACTGAACAAACTCGAGTTTGTTCAGTTCTTCTGGAGG					
	5	GCCATTGACATCCTCAAACAACTCGAGTTGTTTGAGGATGTCAATGGC					
Fan	1	GCCACTTCATATAGGACTTAACTCGAGTTAAGTCCTATATGAAGTGGC					
(clone used in	2	GCACATTATGAAGCAGAAATTCTCGAGAATTTCTGCTTCATAATGTGC					
Tunctional assays)	3	GCCTATTCTTATTATGGTGATCTCGAGATCACCATAATAAGAATAGGC					
	4	CCCTTTGCTAATTCAAGTGTACTCGAGTACACTTGAATTAGCAAAGGG					
Col6a3	1	GCCATCAACAAAGTCGTCTATCTCGAGATAGACGACTTTGTTGATGGC					
	2	CCAAGGAAGTTTCAATACGAACTCGAGTTCGTATTGAAACTTCCTTGG					
	3	CCCTCAGGTTATCATAGTATTCTCGAGAATACTATGATAACCTGAGGG					
	4	CCTTTCTCATATTGTGAACATCTCGAGATGTTCACAATATGAGAAAGG					
Dcn	1	CCTGTCTAAGAACCAACTAAACTCGAGTTTAGTTGGTTCTTAGACAGG					
	2	CGACTTCAATGGACTGAACAACTCGAGTTGTTCAGTCCATTGAAGTCG					
	3	GCCTGAAAGGACTGATTAATTCTCGAGAATTAATCAGTCCTTTCAGGC					
	4	GTCCGGTATTGGGAAATCTTTCTCGAGAAAGATTTCCCAATACCGGAC					
	5	CCTGAAGGACTTGCATACCTT CTCGAGAAGGTATGCAAGTCCTTCAGG					

Slc38a4	1	GACGCCATGAACAGCCAATTTCTCGAGAAATTGGCTGTTCATGGCGTC			
	2	CGTGCCTACCATCAAATACATCTCGAGATGTATTTGATGGTAGGCACG			
	3	CGGAAATCTGACGTTCAACAACTCGAGTTGTTGAACGTCAGATTTCCG			
	4	GCCTGAAGTAATCAGAGCATTCTCGAGAATGCTCTGATTACTTCAGGC			
Slco2a1	1	CCACCACTTTGGGAAGTATAACTCGAGTTATACTTCCCAAAGTGGTGG			
	2	GCCTATGCCAACTTACTCATTCTCGAGAATGAGTAAGTTGGCATAGGC			
	3	GCTCGGTCTTCAACAACATTACTCGAGTAATGTTGTTGAAGACCGAG			
	4	ACAGGTAATCTACAAGGTCTTCTCGAGAAGACCTTGTAGATTACCTG			
Arhgdib	1	CACACATTTCATCACCAATATCTCGAGATATTGGTGATGAAATGTGTG			
	2	CGAGAGTCTAACCAAGTACAACTCGAGTTGTACTTGGTTAGACTCTCG			
	3	GACTGGCATGAGAGTGGATAACTCGAGTTATCCACTCTCATGCCAGTC			
	4	AGTGGATAAAGCCACATTCATCTCGAGATGAATGTGGCTTTATCCACT			
Igfbp6	1	GCTGTATGTGAAGCAATGAATCTCGAGATTCATTGCTTCACATACAGC			
	2	CGGCCCAATCCTGTTCAAGATCTCGAGATCTTGAACAGGATTGGGCCG			
	3	CGCAGACACTTGGATTCAGTACTCGAGTACTGAATCCAAGTGTCTGCG			
	4	AGATGGTCAAGGAAGCACTCACTCGAGTGAGTGCTTCCTTGACCATCT			
Ptx3	1	CGAGCTCATGTATGTGAATTTCTCGAGAAATTCACATACAT			
	2	CTTTGACGAATCATTAGCATT CTCGAGAATGCTAATGATTCGTCAAAG			
	3	CCAATGTTCCATTTGGGAGAACTCGAGTTCTCCCAAATGGAACATTGG			
	4	GCATCCTGTGAGACCAATGAACTCGAGTTCATTGGTCTCACAGGATGC			
Plaur	1	GCCTCTTAGTTGAGATAATATCTCGAGATATTATCTCAACTAAGAGGC			
	2	GGTGCTGGGAAACCGGAGTTATCTCGAGATAACTCCGGTTTCCCAGCAC			
	3	GAAACCGGAGTTATACCGTAACTCGAGTTACGGTATAACTCCGGTTTC			
	4	ACCAACAGGACCATGAGTTACCTCGAGGTAACTCATGGTCCTGTTGG			
	5	TGCATGCAGTGTGAGAGTAACCTCGAGGTTACTCTCACACTGCATGCA			
Loxl1	1	CTATGACCTCCGAGTGCTATTCTCGAGAATAGCACTCGGAGGTCATAG			
	2	ACTGCCAGTGGATCGACATAACTCGAGTTATGTCGATCCACTGGCAGT			
	3	TCGCTACGTTTCTACAACAAACTCGAGTTTGTTGTAGAAACGTAGCGA			
	4	CTTCGTAAACCAGTATGAGAAC TCGAGTTCTCATACTGGTTTACGAAG			
Tm4sf1	1	CTTGTGTCTCATTCAAGTAATCTCGAGATTACTTGAATGAGACACAAG			
	2	GCTTCCTGTATTTCACTGTAACTCGAGTTACAGTGAAATACAGGAAGC			
	3	CATTGTGGCATCACTGGGTTTCTCGAGAAACCCAGTGATGCCACAATG			
	4	GCTTTGCTCTACTTTCCTAATCTCGAGATTAGGAAAGTAGAGCAAAGC			

Table S1. List of shRNA sequences against candidate genes. Different colors represent the sense target sequence (red), loop (green) and anti-sense target sequence (blue). Sequences were based on Broad institute online tool (<u>http://www.broadinstitute.org/rnai/public/</u>)

Gene	ID	Forward primer	Reverse primer
Dlk1	13386	GGCCATCGTCTTTCTCAACAAGTGC	CCTCGCCGCTGTTATACTGCAAC
Lv6a	17065	TCTTCTTGTGGCCCTACTGTGTG	GGGCAGGTAATTGATGGGCAAG
Slc8a1	20541	GCAAAGAAGAGGAGGAGGAGGGCGCATTG	ACCACAAGGGCCAGGTTCGTCT
Npc1	18145	CACGCCTCCGAAAGCTACCTGTTTC	CCCGATGTCTACTTTGTTCACCACCG
Enpn1	18605	TATGGACCTGCTGCTCGGTTGAGAC	GGTAAGGCCGGAAATGCTGGTTTGG
Enpp1 Enpp2	18606	AGGGTTTGTCCGCCCTCCGTTAATC	GCCACAGGACCGCAGTTTCTCAATG
Enpp2 Enpp3	209558		CTCCCCCCTTCACAACCCTCTATCA
Lupp5	17067		
Lyoc Lybo	17060		
Dpt	56420		
Col5o3	52967		
Colfo2	12025		
Coloas	12035		
	12030		
	12837		
	1281/		
1 gibi	21810	GAAATCCTGGTTAGCGGAGGCATCG	
Matn2	1/181	GCAGTATTCCACACAGGTCCGAA	TGGGTCACGGCTTTCTTCATTTCC
Fnl	14268	GCTGTGAAAGGGAACCAGCAGAGTC	CGGTGTTGTAAGGTGGAATGGAGCG
Thbs2	21826	GTGCTACTAATGCCACCTACCACTGC	CGTCACAAGCATCTCCGATTCCATCC
Svep1	64817	CAAATGCTTGCTCATGCCCAGACGG	CACACAGCGCCCACCATTCAAACAG
Bgn	12111	CTTCAGTGCCATGTGTCCTTTCGG	GTCTAGCAGTGTGGTGTCAGGTGAG
Den	13179	CCAGTGTCATCTTCGAGTGGTGCAGT	GTCTAGCAAGGTTGTGTCGGGTGGAA
Mmp9	17395	GCAAACCCTGTGTGTGTTCCCGTTCATC	GTAACCATCCGAGCGGCCTTTAGTG
Ogn	18295	CGACCTGGAATCTGTGCCTCCTAA	CGCTCCCGAATGTAACGAGTGTCA
Ecm1	13601	CCTTGATCTTGGCCTGCTTGGCTCT	TGGCGTCATCTCTCGCTGGTCTGAA
Ctsb	13030	ACTTGCTGTGGTATCCAGTGTGGG	GGAGGGATGGTGTATGGTAAGCAGC
Fap	14089	TTGACACCACCTACCCTCACCAC	CACTGCAAGCATACTCGTTCACTGG
Adam9	11502	AGGATATGGAGGAAGCGTGGACAGC	GGAAGAAGAAGACCAGAAGCCCGTC
Itgb1	16412	GTAGCAGGCGTGGTTGCTGGAATTG	TTCACCCGTGTCCCACTTGGCATTC
Itga5	16402	CTACTTGGGATACTCTGTGGCTGTGG	CGTTGTAGAGGGAGTGGATGTCTGAG
Itga6	16403	GCTTCCATAGATGTCACCGCTGCTG	GCATCAGAATCCCGGCAAGAACAGC
Shc	20416	GGAGGTCTTACAGTCAATGCGAGCC	CAGGCACAGCTTCACACACCAAAC
Abl1	11350	TTAGTGCGGGGAGAGTGAGAGTAGCC	GTAGTGGAGTGTGGTGATGAGGCCA
Pik3r1	18708	CTGAGTACCGAGAGATCGACAAACGCA	CCAGCCACTCGTTCAGCTTCTTCTG
Vcam1	22329	GTGACAATGACCTGTTCCAGCGAGG	AAGGTGAGGGTGGCATTTCCTGAGAG
Ncam	17967	CAGGCCAGACAGAGCATCGTGAATG	GCTTCTCGTCATCTTCCTCCTCGTTC
Lepr	16847	CTGTGTAGTGTGAGGAGGTACGTGG	AAGCGCCGAGGGAATTGACAG
Lgals3	16854	TATCCTGCTGCTGGCCCTTATGGTG	CCTGTTTGCGTTGGGTTTCACTGTGCC
Lgals8	56048	CTCCATCGGGTTCAGATTCAGCTCG	GCTTCGGGCATTGGTGTTCACTTCC
Lgals9	16859	TTGCTTCCTGGTGCAGAGGTCAGAG	TGGTAGGGTACGCGGTGTTGGTACT
Nov	18133	CTCTGCATCGTTCGGCCTTGTGAA	GCTTTCAGGGATTTCTTGGTGCGG
Eda	13607	AGCCTTTGGAACCGGGAGAAGATCCAC	CTTATTGCGGCGAACACGCCTACTTTCC
Snn	46194	CCTGATGAAGAGGCCACAACCACATC	GTACTAAAGAGCCCTGGCGAGACTTCC
Cdh11	12552	GGAGAGTACATGCCAAAGACCCAGAT	TGAGCCAGGCAGTTTCTTCCCTAT
Cdh22	104010	TGGCCTCTCAGGTTCCACTACAGTC	TCATGTCCGTGTTCTCGCCCACATC
Ezd1	14362	GACATCCCCTACAACCACACCATC	CCCCTACATCCACCACCACCAACAACTTC
I rn6	1607/		CCCAACCCTCTCCATACCAACCATCATC
	10774		
Tspap5	56224		
Tspan5	56406		
T spano	50490		
1 m4811	1/112		GIUUIUAGIGUIGGUAAAGGIGIA
	10949		
PUXS	19288		
Plaur	18/95		
Arngdib	11857	AGATGTCCCTGTGGTAGCAGACC	TCGAGATCGCCAGTAAGGTCCA
Igfbp6	16012	ACCACAGAGACCGGCAGAAGAATCC	GTCACAGTTTGGCACATAGAGCCCAC
Slco2a1	24059	CTTTGTCCTCACCCTCCCACACTTC	TGCTGCTGGTCTCCTTCTGGGTATC
Slc38a4	69354	TGGGCAGTGGGATCTTAGGCTTGTC	GACCCTCCTTCCTTGGCTGTCTTCA
Adcy6	11512	CAGCATGAGAACCGTCAGCAGGAAC	GCCCTCAATGTCCGCAAACAGGATG
Gapdh	14433	CCCACTGAAGGGCATCTTGGGCTAC	GGGTGGGTGGTCCAGGGTTTCTTAC

 Table S2. List of qRT-PCR primers for candidate gene detection.

Stroma\weeks	4	12	16	20	24	32
AFT024	36.3	53.4	80.5	77.1	74.2	68.8
2018	11.3	6.7	9.1	8.6	11.8	13.8
DLK1 ^{KD}	29.9	44.3	68.2	43.6	49.4	43.5
DPT ^{KD}	12.9	15.7	27.7	10.2	9.9	10.9
FAPKD	31.8	47.9	65.4	52.8	42.7	37.6

Table S3. Percentage of donor contribution of transplanted HSC colonies co-cultured with wildtypeAFT024, 2018 or knockdown 2018 stroma.

Figure S1 (Related to Figure 2C). Cell-death rates of founder HSC (n=5 independent experiments, 264 trees), early (n=3 independent experiments, 257 trees) and late MPPs (n=3 independent experiments, 184 trees) cultured on 2018 stroma.

Figure S2 (Related to Figure 2E). Quantification of representative HSC and early MPP tree genealogies cultured on AFT024 stroma (up to generation 2).

Figure S3 (Related to Figure 3). Dot plot depicting cell lifetime of dying founder HSCs cultured on stroma-free conditions supplemented with fresh Dexter media used for HSC-stroma co-cultures (n=4 independent experiments, 104 trees), 4-day AFT024 conditioned media (n=3 independent experiments, 54 trees) or 4-day 2018 conditioned media (n=3 independent experiments, 27 trees). Black lines represent the median. Data were compared using the rank-based non-parametric Kruskal-Wallis test with Dunn's post-hoc test.

Figure S4 (Related to Figure 4B-E). Quantification of stroma manipulation efficiency upon lentiviral delivery of cDNAs or different shRNA clones against delta-like homolog 1 (*Dlk1*), dermatopontin (*Dpt*) and fibroblast activation protein (*Fap*). (A) Schematic depiction of the viral construct used for shRNA knock down or cDNA overexpression. Fluorescent reporter (tdTOMATO, mseCFP, mCherry or iRFP) expression was used to select transduced cells by flow cytometry. (B) DLK1 protein expression in shDlk1 transduced AFT024 (blue), in *Dlk1* overexpressing 2018 stroma (green) or wildtype, non-transduced AFT024 (red) and 2018 stroma (orange). Gate design was based on isotype controls. Results are representative from 3 independent experiments. (C) Relative *Dpt* expression in AFT024 lines transduced with two different shDpt clones. Since no anti-Dpt antibody worked reliably in our hands, results were analyzed by quantitative RT-PCR. (D) Similar analysis for shFap clones.

Figure S5 (Related to Figure 4D). Contribution to B cell (A) or myeloid lineage (B) of HSCs cultured different stroma cell lines, including wildtype AFT024, 2018 or knockdown 2018 stroma (Dlk1^{KD}, Dpt^{KD}, Fap^{KD}) at several timepoints post-transplant. B or myeloid-cell contribution was plotted as percentage from total cells of that lineage.

Figure S6 (Related to Figure 5D-F). (A) Experimental approach for in vivo transplantation of sorted HSCs cultured on genetically engineered 2018 stroma ectopically expressing DPT or wildtype supportive (AFT024) and non-supportive stroma lines (2018) for seven days prior to injection into sublethally irradiated immunocompromised primary and secondary W41 recipients. Donor contribution in peripheral blood was analyzed at several timepoints up to 20 weeks post transplantation and plotted as the average of all recipients per condition (B) or for each individual recipient separately (C). (D) Donor contribution in secondary recipients 16 weeks after secondary transplantation.

Figure S7 (Related to Figure 3F). Cumulative time curves representing absolute experimental time required for HSC cell death on AFT024 or 2018 stroma.