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The majority of T cells encountered by HIV-1 are non-activated and do not

readily allow productive infection. HIV-1 Vpr is highly abundant in progeny

virions, and induces signalling and HIV-1 LTR transcription. We hence

hypothesized that Vpr might be a determinant of non-activated T-cell

infection. Virion-delivered Vpr activated nuclear factor of activated T cells

(NFAT) through Ca2þ influx and interference with the NFAT export kinase

GSK3b. This leads to NFAT translocation and accumulation within the nucleus

and was required for productive infection of unstimulated primary CD4þ T

cells. A mutagenesis approach revealed correlation of Vpr-mediated NFAT

activation with its ability to enhance LTR transcription and mediate cell cycle

arrest. Upon NFAT inhibition, Vpr did not augment resting T-cell infection,

and showed reduced G2/M arrest and LTR transactivation. Altogether, Vpr

renders unstimulated T cells more permissive for productive HIV-1 infection

and stimulates activation of productively infected as well as virus-exposed T

cells. Therefore, it could be involved in the establishment and reactivation of

HIV-1 from viral reservoirs and might have an impact on the levels of

immune activation, which are determinants of HIV-1 pathogenesis.
1. Introduction
The HIV-1 accessory proteins Vif, Vpu, Nef and Vpr are dispensable for HIV-1

replication in most immortalized cell lines but essential for viral replication

in vivo [1]. They all mediate viral immune evasion and exert effects enhancing

viral loads, but Vpr is still enigmatic. It is a 12.7 kDa small protein and consists

of three amphipathic helices. It can form dimers and higher multimers, and is

incorporated into progeny virions in high copy numbers [2]. Vpr has a modest

positive effect on HIV-1 replication kinetics in some T-cell lines, activated primary

CD4þ T cells and tonsil histocultures, as well as tissue macrophages [3–6].

Furthermore, enhancement of HIV-1 nuclear import and LTR transactivation,

induction of G2/M-cell cycle arrest and apoptosis have been described in differ-

ent cellular models [2]. However, until now, there is no link between the different

Vpr effects and an essential in vivo function contributing to immune escape or

high viral loads. Laguette et al. [7] suggested that Vpr promotes HIV-1 escape

from immune sensing linked to G2/M arrest. However, work in vivo or evidence

in primary cells for this hypothesis is not available. In humanized mice, Vpr

mediated enhancement of CCR5 tropic HIV-1 replication in Tregs depleted this

population, again associated with Vpr-induced G2/M arrest [8].
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We initiated this study based on two hypotheses. First,

because Vpr is the accessory protein with the highest abundance

in the viral particle, we assumed that Vpr might exert its effects

in the early phase of infection. Second, we aimed to investigate

Vpr effects in host cells frequently encountered by HIV-1 in vivo:

resting CD4þ T cells. Our data demonstrate the requirement

of Vpr for efficient and productive infection of non-activated

primary CD4þ T cells. Mechanistically, Vpr activates nuclear

factor of activated T cells (NFAT) to achieve enhancement of

non-activated T-cell infection by induction of Ca2þ influx and

nuclear import of NFAT. Furthermore, we linked activation of

NFAT by Vpr to induction of G2 arrest and LTR transactivation.
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Figure 1. Vpr is required for the efficient infection of non-activated primary
CD4þ T cells. (a) Freshly isolated CD4þ T cells were cultured in IL-2 to main-
tain viability and infected with HIV wild-type (Vpr WT), and point mutants
mutated either at the start of Vpr (Vpr Stop) right after the Vpr start codon,
also affecting the C-terminal Vif sequence, or late in Vpr (Vpr D) right after
the Vif stop codon. Infection was done in the presence of Ritonavir for the
detection of single round infection after 3 days by cell surface HSA staining
(% infected cells). Results show the mean of eight independent experiments
carried out on eight individual donors with independent viral stocks. (b) 293T
producer cells were co-transfected with HIV WT or HIV Vpr Stop mutant
vector and either an empty vector or one expressing Vpr. Cells and viral
supernatants collected 2 days later were analysed by western blot for p24
and Vpr content. (c) Primary CD4þ T cells infected with virus as described
in (a). Results show infectivity as a mean of 14 independent experiments
carried out on 14 individual donors with independent viral stocks. Compari-
son to WT infection with Friedman test with Dunn’s correction for multiple
testing. *p , 0.05, **p , 0.01, ***p , 0.001.
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2. Results
2.1. Vpr mediates productive HIV-1 infection of non-

activated primary CD4þ T cells
To clarify if Vpr is capable of enhancing productive infection

of non-activated primary CD4þ T cells, we used NL4-3-based

infectious HIV-1 expressing non-signalling murine heat-stable

antigen (HSA) at the surface as a marker of infected cells upon

replication. CD4þ T cells were cultured in IL-2þ Ritonavir for

single round infection, or additionally stimulated with PHA

which resulted in a strong induction of activation measured by

CD25 and CD69 (electronic supplementary material, figure S1).

Then, we infected cells with HIV-1 variants expressing either

intact Vpr or Vpr mutated with a stop codon right after the

start codon (Vpr Stop). To exclude effects due to mutation of

the overlapping Vif ORF, we constructed a HIV-1 HSA variant

encoding stop codons after the Vif ORF, resulting in a virus

that expresses Vif, but only a truncated Vpr protein (Vpr D, 23

N-terminal amino acids only). In unstimulated CD4þ T cells,

WT Vpr HIV productively infected significantly more cells com-

pared with the Vpr-defective variants Vpr Stop and Vpr D

(figure 1a). By contrast, upon pretreatment of CD4þ T cells with

phytohaemagglutinin (PHA) and therefore strong activation, the

absence of Vpr did not result in a reduction of HSA-expressing

cells (electronic supplementary material, figure S2). Thus, Vpr

enhances the productive infection of non-activated CD4þ T cells.

2.2. Virion-delivered Vpr is sufficient to enhance
productive HIV-1 infection of non-activated T cells

We next asked whether virus particle-associated Vpr can

enhance productive infection rates of non-activated T cells or

whether de novo synthesis of Vpr is necessary for this phenom-

enon. HIV-1 Vpr Stop was transcomplemented with Vpr and

compared to uncomplemented virus. Importantly, Vpr content

of transcomplemented HIV-1 Vpr Stop virions was compar-

able to parental WT HIV-1 (figure 1b). HIV-1 Vpr Stop

transcomplemented with Vpr enhanced productive infection

similar to WT HIV-1 (figure 1c). Of note, the effects observed

did not stem from a Vpr-mediated effect on the initial HIV-1

entry efficiency in T cells, which we measured by determi-

nation of incoming p24 and the absence of de novo

synthesized p55 Gag precursor (electronic supplementary

material, figure S3). Furthermore, Vpr does not seem to

influence the efficiency of nuclear import under these exper-

imental conditions, because the amount of 2-LTR circles did

not differ upon infection with WT or Vpr-defective HIV-1
variants (electronic supplementary material, figure S4). From

these data, we conclude that virion packaged Vpr and its

presence in the cell directly post-entry is sufficient to confer

productive infection of non-activated CD4þ T cells.

2.3. Vpr stimulates NFAT activation in Jurkat T cells
Because Vpr is known to have a positive effect on transcrip-

tional activation [2], we investigated the ability of Vpr to

http://rsob.royalsocietypublishing.org/
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stimulate NFKB [9,10] and NFAT activation [11,12]. Both are

key regulators of transcriptional activation and also stimulate

HIV transcription in the most important target cells for HIV-1

in vivo: CD4þ T cells and macrophages [13].

In TNFa-treated and HIV-1-infected 293-reporter cells, we

observed NFKB activation by Vpr only at the very late time

points of infection (electronic supplementary material,

figure S5). This suggests that Vpr-mediated NFKB activation

is induced by de novo synthesized and not virion-delivered

Vpr, at least in this experimental system. Contrarily, upon

infection of Jurkat NFAT-luciferase reporter T cells with

HIV-1 we observed time-dependent enhancement of NFAT

activation (figure 2a,b). Thirty-two hours post-infection (hpi),

NFAT activity in HIV-1-infected Jurkat cells was nearly three-

fold increased when compared with mock-infected cells.

This phenotype was clearly attributable to functional Vpr

expression, since Jurkat cells infected with a Vpr D HIV-1 or

a variant expressing the Vpr L64P mutant, which is impaired

for virion incorporation, showed reduced NFAT levels

compared with WT HIV-1-infected cells (figure 2a). Of note,

Vpr-dependent NFAT activation was not due to differences

in infection levels between viruses (electronic supplementary

material, figure S3; and data not shown). Nef and Tat also

stimulate NFAT [14,15]. Hence, we expected the assimilation

of NFAT activity between WT and Vpr D HIV-1 at later time

points, when Nef and Tat are expressed (figure 2a,b).

To further assess whether Vpr is able to stimulate NFAT

activation independent of Nef and Tat, we infected Jurkat

NFAT reporter cells with HIV-1 variants devoid of functional

Vpr and/or Nef expression and added the reverse transcriptase

(RT) inhibitor Efavirenz to block reverse transcription and de
novo production of viral proteins (figure 2c). At 32 hpi, Nef

was not required to promote NFAT activation and Vpr clearly

stimulated NFAT even when Jurkat cells were pretreated with

Efavirenz. Additionally, as an independent marker for induc-

tion of T-cell activation, we measured cell surface expression

of CD69 on productively infected (GFPþ) as well as virus-

exposed Jurkat (GFP-) T cells (figure 2d). Vpr enhanced CD69

expression in productively infected (GFPþ) as well as the non-

productively infected and virus-exposed population of cells

(figure 2d), again suggesting that virion-delivered Vpr is suffi-

cient to induce this phenomenon. Strikingly, Vpr also clearly

enhanced CD69 expression in unstimulated Jurkat cells,

suggesting that Vpr is able to directly induce T-cell activation.

Our data suggest that Vpr mediates early T-cell activation in

HIV-1 infection. In order to show direct NFAT activation by Vpr,

we performed independent experiments using a second gener-

ation lentiviral vector system allowing to transduce T cells

without expression of HIV-1 proteins. Similar to HIV-1 infection,

delivery and expression of Vpr by VLPs induced NFAT

(figure 2e) and resulted in T-cell activation measured by

expression of the early T-cell activation marker CD69 (figure 2f).
Previous reports show that administration of exogenous

recombinant Vpr and Vpr peptides to purified mitochondria

and cell lines increase calcium influx [16,17]. Since increased

intracellular Ca2þ levels are part of the canonical pathway of

NFAT activation [18], we hypothesized that Vpr might use

this way to induce NFAT activation. To measure this, HeLa

cells were transfected with the calcium sensor GCaMP,

which activates GFP emission post calcium influx [19] and

infected with WT or Vpr D HIV-1. Twenty-four hours later,

flow cytometry demonstrated a higher percentage of GFP-

positive cells and hence increased Ca2þ levels in the cells
infected by WT HIV-1 versus the Vpr D variant (figure 2g).

Importantly, equal Gag levels at that time point once again

demonstrated independence of this phenotype from infection

efficiency. Altogether, we conclude that virion-delivered

Vpr is able to stimulate NFAT activation and induce T-cell

activation early during HIV-1 infection possibly by raising

the levels of intracellular calcium.
2.4. HIV-1 Vpr activates NFAT in unstimulated primary
T cells and macrophages

Changes in intracellular Ca2þ levels should result in translo-

cation of NFAT from the cytoplasm into the nucleus.

Furthermore, to confirm experimental results from cell lines,

we aimed to verify if Vpr is able to activate NFAT and

enhance activation in primary target cells of HIV-1.

We applied ImageStream analysis to visualize nuclear

NFAT content. We infected freshly isolated unstimulated

CD4þ T cells directly post-isolation from buffy coat with WT

or VprDHIV-1 NL4-3. As shown in figure 3a, 2 h post-infection

wild-type and VprD HIV-infected cells showed similar nuclear

NFAT content. However, 4 h post-infection, nuclear NFAT con-

tent was lower in Vpr D HIV-infected cells compared with WT,

illustrating Vpr is needed for sustained early T-cell activation.

This was confirmed by phenotypic markers in T cells that are

related to higher levels of NFAT: CD69 expression and HIV-1

LTR transcription [20]. We used an infection protocol of PHA

prestimulated peripheral blood mononuclear cells (PBMC)

previously established to achieve high productive infection

rates in primary cells that phenotypically express low acti-

vation markers and hence allow to monitor effects of viral

proteins on early T-cell activation [15]. Infections were done

with the WT or Vpr D HIV-1 GFP reporter viruses, so that

gating on GFPþ cells allowed to specifically measure CD69

expression in HIV-1 infected cells. Further, GFP is a readout

for LTR activation, since it is expressed together with Nef

from an LTR-driven bicistronic mRNA. In HIV-1 WT-infected

PBMC, CD69 expression levels and LTR activation were

40–60% higher when compared with PBMC infected with

HIV-1 Vpr D (figure 3b).

Although NFAT was described as transcription factor

essential for T-cell activation [21], it is also expressed in

macrophages in which the functional role is not entirely

clear yet [22]. Primary monocyte-derived human macro-

phages (MDM) were infected with equal amounts of R5

tropic HIV-1 either with an intact Vpr ORF or Vpr D. We

further infected MDM with HIV-1 containing a mutation at

Vpr position R77A or R80A, known to have only a slight

disruptive (R77A) or strong impairing (R80A) effect on

HIV-1 replication in human lymphoid tissue and macro-

phages [5]. In non-infected MDM, NFAT localized mainly

in the cytoplasm. By contrast, upon infection with HIV-1

(p24-positive cells), NFAT was predominantly present

within the nucleus (figure 3c,d ). This effect was Vpr-

dependent, because after infection with Vpr D HIV-1 only a

small proportion of infected macrophages showed NFAT

translocation into the nucleus and we observed a similar phe-

notype when we used the calcineurin/NFAT inhibitor FK506

(Tacrolimus) to inhibit NFAT activation. In addition, NFAT

translocation of the Vpr R77A variant was comparable to

WT, whereas the R80A mutant showed a Vpr D phenotype

(figure 3c,d ).
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Figure 2. HIV-1 Vpr stimulates early NFAT activation. (a) 1 � 106 Jurkat NFAT-luc cells were infected with 200 ng p24 of the indicated HIV-1 variants and PHA
(1 mg ml21) stimulated 8 h before each measurement to increase detection sensitivity of NFAT activity. Mean and standard deviation are of triplicates with two
independent virus stocks from one representative out of three experiments. (b) Ratio of NFAT activation by WT HIV-1 versus Vpr-defective HIV-1. (c) Jurkat NFAT-luc
cells were infected and measured for luciferase activity at 32 hpi as described in (a) with the indicated HIV-1 variants and treated with 100 nM Efavirenz to inhibit
reverse transcription and viral gene expression. Mean and standard deviation are calculated from triplicate infections from one representative out of three inde-
pendent experiments. (d ) Aliquots from the Jurkat cells infected in (c) were stained for surface CD69 with a PE-labelled antibody. CD69-PE (early T-cell activation)
and GFP expression as marker for productive HIV-1 infection were analysed by FACS. Indicated is the CD69-PE mean fluorescence intensity (MFI) of the GFP2 or
respectively GFPþ population of cells. We analysed two of the infection experiments described in (c) for CD69 and GFP expression with similar results. (e,f ) Jurkat
NFAT-luc cells were infected with Vpr-expressing lentivectors and subsequently luciferase activity (e) as well as CD69 surface and GFP expression ( f ) were assessed.
Data in (e,f ) are representative of three independent experiments. Numbers indicate CD69-PE MFI as explained in (d ). (g) HeLa cells were transfected with the
GCaMP5-GFP calcium sensor and infected 24 h later with 200 ng p24 of WT HIV-1 or the DVpr variant. Sixteen hours later, % of GFPþ cells was detected by FACS.
Aliquots of the same cells were used to quantify p24 content by WB. Mean and standard deviation were calculated from three individual transfections and compared
to WT infection with the one-way ANOVA with Bonferroni’s multiple comparison post-test. *p , 0.05, ***p , 0.001.
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2 and 4 h post-infection (hpi) with the viruses as indicated or stimulated with ionomycin. Histograms (i) show mean fluorescence intensity of nuclear NFAT staining, repre-
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and methods) and measured CD69 surface expression (marker for early T-cell activation) in the GFPþ, thus HIV-1-infected cell population and GFP mean fluorescence intensity
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GSK3b is an important nuclear export kinase for NFAT

[18], and previously a mechanistic relationship between Vpr

and the homologue of GSK3b in yeast Skp1 was suggested

[23]. Therefore, we treated infected and non-infected macro-

phages with the GSK3b inhibitors insulin and SB213763 and

monitored NFAT translocation (figure 3c right panels, d ). Of

note, inhibition of GSK3b upon HIV-1 infection resulted in

nuclear NFAT localization in approximately 90% of cells, irre-

spective of functional Vpr expression. Hence, inhibition of

GSK3b compensates for loss of Vpr. In conclusion, Vpr can

induce NFAT activation in primary macrophages resulting in

nuclear import of NFAT. A possible mechanism could be a

Vpr-mediated interference with the activity of the NFAT

export kinase GSK3b; however, we failed to show a direct

interaction between Vpr and GSK3b (data not shown).

These data strongly suggest that Vpr is capable of

inducing NFAT in primary unstimulated HIV-1 target cells

(i.e. CD4þ T cells and macrophages).

2.5. Analyses of different Vpr mutants for their
capability to stimulate NFAT activation, LTR
transcription and G2 arrest

To reveal putative functional correlations between different

Vpr mutants and in order to get insights into the mechanism

of Vpr-mediated NFAT activation, we initiated an in-depth

analysis of a variety of established and previously described

Vpr mutants (figure 4a) [5,24–26]. We transcomplemented

Vpr (WT and mutants) into Vpr D HIV-1 during viral

production allowing to monitor effects exclusively caused by

viral particle-delivered Vpr. WB analyses revealed impaired

expression and incorporation of Vpr L64P and 64-68A. By con-

trast, packaging of all other Vpr variants into HIV-1 particles

was largely comparable (figure 4b).

Infection of Jurkat NFAT-luc cells showed a differential

pattern of Vpr-dependent NFAT activation (figure 4c). The

non-incorporated L64P and 64-68A were inactive in stimulat-

ing NFAT activity, underscoring that activity of virion

encapsidated Vpr explains our observations. The proline

mutations in the N-terminus of Vpr, as well as the changes

introduced into the first half of the a-helix 1 had no or only

slight effects on the levels of NFAT induced by Vpr. By con-

trast, the K27M mutant, although efficiently incorporated

into viral particles (figure 4b), was attenuated. Similarly, and

in accordance with the results obtained with HIV-1-infected

macrophages [5], the well-incorporated R80A mutant could

not stimulate NFAT activation, whereas the R77A/Q mutants

showed a WT-like phenotype (figure 4c).

Vpr enhances HIV-1 LTR transactivation [27]. Because the

LTR contains NFAT-responsive elements, we investigated

this link using Vpr-transcomplemented HIV-1 viral stocks to

infect CemM7 cells, expressing GFP under control of the LTR

promoter [28]. Tat is the main transactivator of the LTR and

therefore LTR activity was already high in the Vpr D infections

(figure 4d ). Nevertheless, 24 hpi Vpr-transcomplemented

HIV-1 showed 40% increased LTR activity when compared

with HIV-1 Vpr D. In general, and even upon exclusion of

the two mutants which were not efficiently virion incorpor-

ated, mutants which were attenuated for NFAT activation

were also impaired in their capability to enhance LTR transac-

tivation. Hence, Vpr-mediated NFAT activation could be one

determinant of Vpr’s enhancing effects on the LTR.
Vpr-mediated induction of G2/M arrest is one of the best-

investigated Vpr functions. Infection of Jurkat cells with Vpr-

transcomplemented HIV-1 viral stocks also coexpressing GFP

permitted quantification of cell cycle arrest specifically in the

GFPþ, hence infected cell population. Transcomplementation

with WT Vpr resulted in a 10-fold induction of cells arrested

in G2 in comparison to non-transcomplemented HIV-1 Vpr D

(figure 4e). This is remarkable, since cells were analysed

48 hpi indicating that without de novo Vpr synthesis, virion-

associated Vpr can have lasting effects in infected cells. In

addition, most Vpr mutants defective for NFAT activation

were also defective in induction of G2/M arrest (figure 4e;

examples of primary FACS plots in figure 4f ). Again, this phe-

notype is not explained by efficiency of Vpr virion

incorporation, since Vpr C76A and R80A are efficiently incor-

porated, but lost their activity to promote G2 arrest as well as to

induce NFAT activation, which is in contrast to the adjacent

mutants R77A and R77Q.

2.6. NFAT activation by Vpr does not correlate with its
subcellular localization, ability to induce PARP1
translocation, oligomerization or induction of
apoptosis

Vpr has a variety of established in vitro functions including

PARP1 translocation, oligomerization and induction of apopto-

sis [2,29], which might be linked to Vpr-mediated G2 arrest [30],

virion incorporation [31] and/or NFAT activation [32]. We gen-

erated C-terminally YFP- and CFP-tagged fusion protein

expression vectors of the different Vpr mutants allowing to

investigate Vpr interaction with cellular factors and oligomeriza-

tion by an FACS-based FRET assay [33]. As expected, NL4-3

Vpr-YFP localized to the nuclear rim, indicating that the

YFP-tag does not interfere with intracellular sorting (figure 5a).

Similarly, most other mutants showed this subcellular distri-

bution. Exceptions were the E21/24Q, L23F and P35A

mutants, with a more pronounced localization in the nucleus

but also the cytoplasm; the K27M variant localized in large cyto-

plasmic accumulations and the L64P as well as the 64-68A

mutants were diffusely spread throughout the cell (figure 5a).

FACS-FRET of the different Vpr-YFP variants with a PARP1-

CFP plasmid did not give a robust FRET signal and argued

against a direct interaction of both proteins (data not shown).

A larger complex involving also the glucocorticoid receptor

could explain this [29]. Nevertheless, we confirmed translocation

of PARP1-CFP from the nucleus into the cytoplasm upon Vpr-

YFP cotransfection, indicating that there is indeed a functional

interaction between both proteins (figure 5b(i)). Altogether,

over the mutants tested, we observed no correlation of Vpr’s

activity on NFAT activation or G2/M arrest with PARP1 trans-

location (figure 5b(ii)), oligomerization of Vpr measured by

FACS-FRET (figure 5c) and induction of apoptosis (figure 5d).

2.7. NFAT inhibition impedes Vpr-mediated LTR
transcription, G2/M arrest, early T-cell activation
and productive HIV-1 infection of resting T cells

The comprehensive analyses of different Vpr mutants sugges-

ted the presence of overlapping functional domains involved

in the regulation of NFAT, LTR transactivation and G2/M
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Figure 4. Induction of NFAT, LTR transactivation and G2 arrest by virion-delivered Vpr. (a) Schematic positions of the analysed Vpr mutants. Numbers give the respective
amino acid position in NL4-3 Vpr. (b) 293T cells were transfected with HIV-1 NL4-3 Vpr D and cotransfected with plasmids expressing the indicated Vpr mutants. Lysates
of the producer cells and the supernatants were harvested 36 h later and analysed by western blot. Shown is one representative out of two experiments. Ten nanograms
p24 of HIV-1 Vpr D transcomplemented with Vpr and the indicated mutants (b) were used to (c) infect Jurkat NFAT-luc cells. Twenty-four hours post-infection, cells were
stimulated with 1 mg ml21 PHA and analysed for luciferase expression eight additional hours later. (d ) CemM7 reporter cells expressing GFP under control of the LTR
promoter were infected with transcomplemented HIV-1 Vpr D and GFP reporter activity was analysed by FACS 24 h later. Graphs in (c,d) depict mean values and standard
deviation from four different experiments with triplicate infections. (e) Jurkat T cells infected with transcomplemented HIV-1 Vpr D coexpressing GFP were analysed for G2
arrest of GFPþ (i.e. HIV-1-infected cells 48 hpi). The graph depicts mean values and standard deviation of the ratio from the percentage of cells in G2 over G1 phase from
three different experiments. ( f ) Representative DNA profile of GFPþ cells as in (e) either mock infected or infected with HIV-1 Vpr D transcomplemented with Vpr, the
empty control plasmid or the R80A mutant. Gates indicate regions set to delineate cells in G1 and G2 phase of cell cycle. Statistical significance of the differences compared
to WT infection in (c – e) was assessed with the one-way ANOVA with Bonferroni’s multiple comparison post-test. *p , 0.05, **p , 0.01, ***p , 0.001.
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Figure 5. Localization of Vpr mutants and their capability to induce PARP1 translocation, homo-oligomerization and apoptosis. (a) Localization of the indicated
Vpr-YFP mutants in transfected 293T cells. (b)(i) 293T cells were transfected to express the controls and the NL4-3 Vpr-YFP or the Vpr K27M-YFP mutant and
cotransfected with PARP1-CFP. Twenty-four hours later, cells were stained with DRAQ5 and imaged by confocal microscopy. (ii) In 293T transfected to express
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arrest (figure 6a). Moreover, quantitative analyses of the

mutant’s activities revealed a significant and high correlation

between NFAT activation and Vpr’s ability to enhance LTR tran-

scription and cause G2/M arrest (figure 6b,c). Thus, Vpr might
activate NFAT to promote T-cell activation, arrest infected cells

in the G2/M phase of the cell cycle, resulting in higher transcrip-

tional activity, and therefore render resting T cells permissive for

productive HIV-1 infection while enhancing LTR transcription.
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In order to explore this hypothesis, we performed infection

experiments and incubated with different concentrations of

FK506 during the infection period. We used this set-up because

our data demonstrate that virion-delivered Vpr enhances

NFAT activation early during the infection process. As hypo-

thesized, when low levels or no FK506 was added prior to

infection (figure 7a), the absence of Vpr resulted in reduced

expression of the early activation marker CD69. Upon addi-

tion of FK506, CD69 stayed on a low level, regardless of

functional Vpr expression. Similarly, FK506 treatment resulted

in a dose-dependent reduction in the levels of Vpr-mediated

enhancement of HIV-1 LTR transcription (figure 7b).

We then investigated the effect of FK506 treatment on Vpr-

mediated G2/M arrest, similar to the experiment presented in

figure 4e,f. Strikingly, with increasing concentrations of FK506,

G2/M arrest induced by Vpr-transcomplemented HIV-1 VprD

was reduced in a dose-dependent manner to levels similar

to non-transcomplemented HIV-1 Vpr D (figure 7c).

Ultimately, we left freshly isolated unstimulated primary

CD4þ T cells untreated or preincubated them with 10 ng FK506

(importantly, all in the absence of PHA and IL-2)

and subsequently infected them with different NL4-3-based

HIV-1 variants expressing Vpr mutants R80A, R77A or Vpr D.
Three days later, T cells were extensively washed and stimulated

with 1 mg ml21 PHA to induce expression of latently integrated

viral genomes and virus production (figure 7d). While we

observed productive HIV-1 infection of resting T cells with WT

HIV-1 or the Vpr R77A mutant, productive infection of resting

T cells was lost upon infection with HIV-1 Vpr D or pretreatment

with FK506 (figure 7d). Furthermore, when we infected unstimu-

lated CD4þT cells, cultured in the absence of exogenous IL-2, with

the HIV-1 HSA reporter variants (figure 7e; compare with

figure 1), we could demonstrate Vpr-dependent enhancement of

productive HIV-1 infection and this Vpr effect was reduced by

FK506 treatment. In sum, these experiments support a role for

NFAT in Vpr-mediated infection of unstimulated CD4þ T cells.
3. Discussion
We show here that NFAT activation by virion-packaged Vpr

is responsible for productive and enhanced HIV-1 infection of

resting CD4þ T cells. Our data suggest that Vpr-activated

NFAT is capable of inducing G2/M arrest, early T-cell

activation and at least in part LTR transcription. The results

further support a mechanistic model suggesting that Vpr

http://rsob.royalsocietypublishing.org/
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Figure 7. NFAT inhibition abrogates Vpr-mediated enhancement of T-cell activation, LTR transactivation, induction of G2 arrest and productive infection of resting T
cells. (a) We used our previously established PBMC infection protocol mimicking effects on PBMC expressing low activation markers (see Material and methods) and
added different concentrations of FK506 for 1.5 h prior to infection. Two days later, the PBMCs were washed and subjected to a PHA stimulus (1 mg ml21). Twelve
hours later, CD69 surface expression was quantified in the GFPþ, thus HIV-1-infected cell population. (b) In PBMCs treated as described in (a), GFP mean flu-
orescence intensity was quantified as marker for LTR transactivation. In (a,b), mean values and standard deviation of two independent experiments with PBMCs from
different donors that were infected in duplicates with independent virus stocks are shown. (c) Jurkat T cells were pretreated for 1.5 h with the indicated concen-
trations of FK506 and infected with the Vpr D HIV-1 IRES-GFP variant and the latter transcomplemented with Vpr. G2-arrest of the GFPþ HIV-1-infected cells was
analysed 48 h post-infection. Graphs depict mean values and standard deviation from two different experiments with duplicate infections with independent virus
stocks. (d ) Unstimulated CD4þ T cells were preincubated for 1.5 h with 10 ng ml21 FK506 and infected with 200 ng p24 of the indicated HIV-1 variants. Three days
later, we washed the cells and added medium containing 1 mg ml21 PHA to stimulate virus production from latently infected cells. Seventy-two hours later,
supernatants were collected and virus production was measured by p24 ELISA. Mean values were calculated from infections of CD4þ T cells from one donor
with two independent virus stocks. Shown is one representative out of five independent experiments. (e) Unstimulated CD4þ T cells cultured in the absence
of exogenous IL-2 were treated for 1.5 h with 10 ng ml21 FK506 or left untreated, washed and subsequently infected with HSA-expressing HIV-1 reporter viruses
similar to the experiments presented in figure 1. Productive HIV-1 infection was measured by HSA staining 3 days later. The graph shows mean values and standard
deviation of two infections. (a – e) The line bar above the diagrams concisely summarizes the experimental set-up indicating cells, stimuli, timing (d ¼ day) and
read out.
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increases intracellular Ca2þ, which induces nuclear NFAT

translocation. Consequently, Vpr leads to early T-cell acti-

vation and facilitates productive infection of resting T cells.

Functional characterization of various Vpr mutants revealed

a significant association between NFAT activation, the induc-

tion of G2/M arrest and enhanced LTR transactivation by

Vpr. This correlation reflects a causal relation, because by

inhibiting NFAT with FK506, Vpr-mediated T-cell activation,

LTR transactivation and the G2/M-arrest in T cells was greatly

reduced. Moreover, NFAT inhibition only during the early

infection process abrogated Vpr-induced enhancement of

resting T-cell activation.

Our results on Vpr-mediated NFAT activation were

obtained with different cellular model systems and primary

cells. We use HeLa cells, Jurkat T cells, differentiated mono-

cyte-derived macrophages, unstimulated and prestimulated

PBMCs, as well as non-activated and resting primary CD4þ

T cells. Hence, the effects we describe are not restricted to

certain cellular models or artificial immortalized cell lines

but are relevant and confirmed in primary HIV-1 in vivo
target cells. Furthermore, most experiments were done with

fully complete infectious HIV-1 and with HIV-1 in which

we transcomplemented Vpr into virions. Therefore, it is impor-

tant to stress that virion-delivered Vpr is sufficient to induce all

the phenotypes established. An early restriction to HIV-1 gene

expression right after integration or in resting cells is the absence

of the viral transactivator Tat. We hypothesize that Vpr has

at least partly evolved to overcome this Tat deficiency in

resting cells. An induction of even modest LTR transactivation

will be sufficient to induce low levels of Tat, subsequently

leading to efficient LTR transactivation and gene expression.

Since the HIV-1 LTR contains different promoter elements,

among others for NFAT and NFKB, such a scenario is highly

conceivable [20].

Our data revealed a correlation between Vpr-mediated

NFAT activation and induction of G2/M arrest. Although

our experiments are not yet sufficient to postulate a mechanis-

tic relationship between these two functions, the data imply

a connection between both Vpr activities. How could we

explain such a relationship? Apart from regulation of various

interleukins, NFAT modulates levels of cyclins and CDKs

(cyclin-dependent kinases) [34,35]. A complex of cyclin B1

and p34Cdc2 controls the transition from G2 to M. NFAT

might negatively regulate this complex during T-cell activation

and this could suppress cell cycle progression [34]. Moreover,

NFAT could promote transition into G2 by increasing the

levels of cyclin A. This is part of a trimeric complex with

CDK1 and CDK2 and regulates the changeover from S to G2

[36]. Furthermore, it was recently clearly demonstrated that

virion-delivered Vpr is detected within the nucleus as soon

as 45 min post-entry [37], explaining how Vpr could exert

these effects in the nucleus early post-infection.

The aforementioned mechanisms together with the well-

established role of NFAT in T-cell activation might promote a

cellular environment facilitating the early steps of viral replica-

tion and enhancing productive HIV-1 infection. This

phenotype is probably not observable in most immortalized

T-cell line models of HIV-1 replication or even in ex vivo pri-

mary lymphocyte cultures, which need to be prestimulated

to achieve HIV-1 replication. This would explain why previous

studies failed to elucidate this Vpr phenotype. By contrast, one

of the very few ex vivo systems permitting HIV-1 replication

without exogenous stimuli is the human lymphoid tonsil
tissue (HLT) culture system. In this experimental set-up, Vpr

has a pronounced positive effect on viral replication and

enhances IL-2 secretion [4,5], consistent with our data showing

Vpr promotes early T-cell activation. Moreover, the mutation

R80A disrupted Vprs’ ability to augment viral replication in

HLT, whereas the R77A/Q mutant replicated with WT-like

kinetics [5], in line with our mutagenesis approach demonstrat-

ing loss of NFAT activation and NFAT-dependent

enhancement of resting T-cell infection by the R80A change,

but not by R77A/Q mutants. Of note, two independent studies

also reported preserved interaction of Vpr R80A with SLX4

[7,38], a central component in a complex proposed to promote

G2 arrest by Vpr. In addition, a recent study by the Planelles

group found that interaction of Vpr with Mus81, another com-

ponent of the SLX4 complex, is also dispensable for G2 arrest

[39]. Hence, Vpr-mediated NFAT activation and the concomi-

tant regulation of the cell cycle established by this study is

most likely independent of Vpr’s interaction with SLX4.

Vpr can moderately increase HIV-1 replication in another

resting cell type: macrophages [5,40]. Although the role of

NFAT is poorly understood in this cell type, NFAT can regu-

late the expression and secretion of various cytokines in

macrophages including IL-6, IL-10, IL-12 and TNF-a [41].

IL-12 and TNF-a are proinflammatory cytokines potentially

stimulating activation and hence HIV-1 replication in macro-

phages and T cells. IL-6 secretion promotes the recruitment of

CD4þ T cells, which could contribute to HIV-1 transmission

from macrophages to T cells. Of note, it was recently shown

that Vpr increases TNF-a production from T cells [42],

which independently supports our data and, more strikingly,

the induction of NFAT by Vpr could be the mechanistic cause

of increased TNF-a production.

Nuclear PARP1 represses NFAT activity [32]. We hence

speculated Vpr-mediated PARP1 translocation from the nucleus

into the cytoplasm as underlying mechanism of increased

NFAT activation [29]. However, our mutagenesis approach

argues against a functional relationship between both pheno-

types. Our experiments revealed increased Ca2þ levels in cells

infected with WT HIV-1 versus the DVpr variant. By contrast,

previous results concerning Vpr and Ca2þ influx were obtained

with exogenously administered recombinant Vpr and peptides

thereof [16,17]. In conclusion, Vpr seems to activate NFAT via

the canonical signalling pathway starting with increased cal-

cium levels and activation of the NFAT dephosphorylating

phosphatase calcineurin [18]. Vpr function could be substituted

by inhibition of GSK3b mediated export of NFAT. However,

extensive binding experiments including co-immunoprecipita-

tion and FRET argue against a direct interaction of Vpr with

NFAT or GSK3b (data not shown).

Comprehensive analysis of various Vpr mutants further

revealed the independence of the NFAT phenotype from

Vpr’s subcellular localization, potency to form homo-

oligomers and induction of apoptosis. In addition, oligomer

formation was not required for efficient virion encapsidation

and Vpr’s capacity to induce apoptosis did not correlate with

any of the other functions, except strong alterations in its

subcellular localization.

Besides Vpr, HIV-1 Tat and Nef also increase NFAT acti-

vation [14,15], and it was previously suggested that Vpr

potentiates Nef-induced NFAT activation [12]. While Vpr

could indeed potentiate Nef-mediated NFAT activation, our

data clearly demonstrate that Vpr alone is sufficient to

induce NFAT in HIV-1-infected cells prior to viral gene
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expression. Furthermore, while previously Vpr expression

plasmids were used and T-cell lines stimulated with PMA

[12], our results are mainly based on HIV-1 infection exper-

iments. Hence, we measure Vpr effects under physiological

conditions and in primary HIV-1 target cells (i.e. macro-

phages and CD4þ T cells). Nevertheless, it is clear that Tat

and Nef also positively influence late effects of NFAT acti-

vation (i.e. enhancement of T-cell activation and IL-2

secretion [43,44]).

What is the potential in vivo relevance of our work? Our

data indicate that HIV-1 packages its own cellular activator

into progeny virions. This finding is of importance to under-

stand the initial steps of viral replication but also HIV-1

pathogenesis. For productive infection, proviral integration

is not sufficient because the HIV-1 LTR promoter will be

silenced in resting cells [45]. Low levels of Tat independent

LTR promoter transactivation are essential to achieve first

rounds of Tat expression and subsequent dramatic increase

of Tat-mediated LTR transcription. Ex vivo, the initial Tat

independent LTR transactivation is usually achieved by pres-

timulation of primary T cells with PHA or other mitogenic

substances, leading to high levels of T-cell activation and

cellular proliferation [15]. We demonstrate that Vpr sensitizes

T cells for productive HIV-1 infection by activation of NFAT.

In subsequent steps, Vpr in conjunction with Nef and Tat will

contribute to cellular hyperactivation and therefore high

levels of virus production. In this context, others have

demonstrated that NFAT is an important factor of productive

HIV-1 replication in primary T cells [20,46].

Intriguingly, Vpr is present in the plasma of HIV-1 infected

patients and might penetrate non-infected cells by a protein

transduction domain in its C-terminus [47]. Thus, Vpr might

not only induce NFAT in infected cells but also lead to cellular

activation in adjacent bystander T cells, priming them for pro-

ductive infection. Considering the latter, Vpr could also be a

viral factor contributing to chronic unspecific immune acti-

vation in HIV-1-infected subjects [48,49]. Because generalized

immune hyperactivation is strongly associated with high

viral loads, loss of CD4þ T cells and therefore AIDS progression

[48], Vpr-mediated NFAT activation might be a determinant

of HIV-1 pathogenesis. Accordingly, less pathogenic HIV-2

and most SIVs, which cause asymptomatic infections in their

natural hosts, do not contain Vpr but express Vpx [50].

In addition, some long-term non-progressors were shown to

carry Vpr-deleted virus [51]. Future studies investigating

whether Vpx or related Vpr proteins from other lentiviruses

are able to induce NFAT activation are highly relevant.

In summary, Vpr enhances productive infection of non-

activated T cells through NFAT induction. By this mechanism,

Vpr might also contribute to HIV-1 induced generalized hyper-

activation of the immune system. This phenotype is associated

with the emergence of high virus titres in the course of HIV

infection. In this way, the data of this study add to the under-

standing of HIV-1-induced immune hyperactivation and the

associated AIDS progression.
4. Material and methods
4.1. Plasmids and proviral constructs
R5 and X4 tropic pBR NL4-3-based constructs with deleted

(pBR NL4-3 DVpr) or mutated Vpr genes [5] as well as the
Nef-defective variants [52] were described previously.

Splice overlap extension PCR was used to introduce the

Vpr L64P mutation in the WT proviral backbone. Vpr pBR

NL4-3 variants expressing an IRES-eGFP cassette to specifi-

cally identify the HIV-1-infected cell population were

generated by subcloning of the Vpr ORF fragment via StuI

and AgeI restriction sites into pBR NL4-3-IRES-eGFP [15].

Similarly, a Vpr- and Nef-defective IRES-eGFP variant was

generated. HSA-expressing HIV Vpr Stop and D Vpr mutants

were created by site directed mutagenesis on a part of

the parental backbone, followed by substitution of the

mutated fragment (with verified sequence) in the parental

backbone NL4-3-IRES-HSA vector (kindly provided by Dr

M. J. Tremblay, Faculté de Médecine, Université Laval,

Québec, Canada), a vector expressing the truncated HSA

marker from the Nef reading frame, together with Nef

(HSA-IRES-NEF) [53]. To generate plasmids expressing Vpr

and the various mutants as well as GFP via an internal ribo-

somal entry site (pCG vector) [54], splice overlap extension

PCR was used to introduce the according changes into the

Vpr ORF. Alternatively, Vpr was amplified from existing

cDNAs. 50 XbaI and 30 MluI sites were introduced and used

to ligate the fragments into the pCG-vector backbone. A simi-

lar strategy was used to generate CFP- and YFP-based Vpr

fusion proteins in the pECFP and pEYFP vector backbone

[33]. Here, 50 NheI and 30 AgeI restriction sites were used result-

ing in fusion proteins with the chromophore linked to the

C-terminus of Vpr. Similarly, a PARP1-CFP fusion protein

vector was constructed by amplification of PARP1 from a

HeLa cell-derived cDNA. All PCR-derived inserts were

sequenced to confirm nucleotide identity. Primer sequences

used for PCR amplification and mutagenesis are available on

request. Vpr expressing second generation lentiviral constructs

pWPI-Vpr and controls [55] were kindly contributed by Eric A.

Cohen (Montreal, Canada). Packaging plasmid psPAX2 and

VSVG envelope pMD2G were received from Addgene.

4.2. Cell culture and virus stocks
293T and HeLa cells were maintained in DMEM or IMDM

medium (Gibco BRL Life Technologies, Merelbeke, Belgium)

and Jurkat E6.1, Jurkat NFAT-luc [14] and CemM7 [56] cells

were cultured in RPMI (Life Technologies), all media con-

taining the standard supplements. PBMC, CD4þ T cells and

monocyte-derived macrophages (MDM) were generated from

buffy coat (normal blood donors, Red Cross, Ghent, Belgium

or Munich, Germany, blood donors gave written informed

consent). CD4þ T cells were isolated by negative selection

using paramagnetic beads (MACS; Miltenyi Biotec, Bergish

Gladbach, Germany) or the Rossette Sep CD4þ T-cell isolation

kit (StemCell Technologies, Grenoble, France). After isolation,

the PBMC or CD4þ T cells were cultured in RPMI medium sup-

plemented with 2 mM L-glutamin, 10% heat-inactivated fetal

calf serum, 10–20 ng ml21 IL-2 (Peprotech, Rocky Hill, USA),

100 U ml21 penicillin, 100 g ml21 streptomycin and depending

on the experiment without or with phytohaemagglutinin

(1 mg ml21; Thermo Fisher Scientific, Waltham, USA), 3 days

before infection with HIV-1. MDM were isolated and cultured

as described [57].

HIV-1 viral stocks were produced by transfection of 293T

cells with the proviral vectors. Transfection was performed

with the calcium phosphate method or JetPei (Polyplus Ill-

kirch, France) transfection kit according to manufacturer’s
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instructions. To generate HIV-1 stocks with transcomple-

mented Vpr, the Vpr-defected NL4-3 backbones were

cotransfected with the Vpr expression plasmid at a ratio of

4 : 1–20 : 1. To allow infection of CD4-negative 293T and

HeLa cells a vesicular-stomatitis-virus G (VSV-G) protein

expression plasmid was also cotransfected at a ratio of 20 : 1.

We further pseudotyped HIV-1 with VSV-G to enhance infec-

tion efficiency of macrophages and PBMC and bypass possible

effects of Vpr on viral entry. Viral supernatant was harvested

48 h after transfection and centrifugated at 900g for 10 min,

to clarify the supernatant from remaining cells and debris.

Vpr-expressing VLPs were generated as described before [55].

In all experiments, viral preps were rigorously normalized

using reverse transcriptase activity or p24 content, and mul-

tiple batches of production were used. Concentration of the

p24 antigen was measured in HIV-1 containing supernatant

using the INNOTEST HIV antigen mAb ELISA kit (Innoge-

netics, Zwijnaarde, Belgium) or the p24 ELISA provided by

the NCI (Frederick, USA) as described [58]. Alternatively,

RT- activity values were determined using an in-house opti-

mized and validated SG-PERT assay, and converted to p24

values [59].

4.3. Antibodies and other reagents
Antibodies used were against HSA (CD24): M1/69 fluorescein

or phycoerythrin (BD Pharmingen, Erembodegem, Belgium)

or allophycocyanin (Biolegend, San Diego, CA), CD69 (APC,

Invitrogen Life Technologies, Darmstadt, Germany), HIV-1

Vpr (AIDS Research and Reference Reagent Program, Division

of AIDS, NIAID, NIH, Germantown, MD, USA); HIV-1 Vpr

(1–46) antiserum from Dr Jeffrey Kopp (catalogue #3951) or

mouse anti-HIV-1 Vpr serum [25] (kindly provided by Ulrich

Schubert, Erlangen), HIV-1 p24 (AIDS Research and Reference

Reagent Program; Monoclonal Antibody to HIV-1 p24 (AG3.0)

from Dr Jonathan Allan) [60] or HIV-1 p24 clone KC57-RD1

(PE or FITC conjugated, Beckman Coulter, Krefeld, Germany),

mouse anti-tubulin (Sigma-Aldrich, Munich, Germany),

rabbit anti-NFAT (CellSignaling Merck-Millipore, Schwalbach,

Germany). Secondary antibodies were IRdye 800CW Goat

anti-Rabbit IgG and IRdye 680LT Goat anti-mouse IgG

(Li-Cor, Lincoln, USA), Alexa-555 donkey anti-rabbit and

Alexa-488 goat anti-mouse (Invitrogen) and goat anti-mouse

as well as goat anti-rabbit HRP (Dianova, Hamburg,

Germany). Insulin and SB213763 were from Sigma-Aldrich

(Munich, Germany) and FK506 from Invitrogen.

4.4. Western blot analysis
For western blot analysis, collected samples were stored in

2208C as dry pellet then lysed in 65% deionized water,

25% XT-sample buffer (Bio-Rad, Nazareth Eke, Belgium),

5% XT-reducing agent (Bio-Rad), 5% DTT. Lysed samples

were spun through a Qiashredder column (Qiagen, Hilden,

Germany) and boiled for 10 min at 958C before loading on

a Precarion pre-cast 12% Bis-Tris agarose gel (Bio-Rad). Gel

was transferred to an Immobilion-FL membrane (Merck-

Millipore) previously activated in methanol and blocked in

Odyssey-blocking buffer (Li-Cor, Lincoln, USA) for 30 min.

Primary antibody incubation (Vpr 1 : 2000, p24 1 : 2000, tubulin

1 : 2000) was done overnight at 48C in blocking buffer þ0.1%

Tween. After three wash steps, secondary antibodies (1 : 5,000)

were incubated for 60 min at RT in blocking buffer þ0.1%
Tween. Gel was visualized on the Odyssey infrared imaging

system and band pixel intensity was quantified using the

ODYSSEY software (Li-Cor, Lincoln, USA).

To assess expression and viral encapsidation of Vpr, 293T

cells were transiently transfected with either pBR HIV-1 NL4-

3 Vpr D complemented in trans with pCG-plasmids expressing

either NL4-3 WT Vpr or mutants thereof, using CaCl2 transfec-

tion. Cells and virions were harvested 24 h post transfection,

and cells were lysed in RIPA-buffer (1% NP-40, 0.5% Na-

DOC, 0.1% SDS, 0.15 M NaCl; 50 mM Tris–HCl pH 7.4;

5 mM EDTA) for 5 min at 48C. Subsequently, cell lysates

were cleared by centrifugation at 12 000g and 48C for 5 min.

RIPA soluble proteins were separated in 12% SDS/PAA gels,

according to Laemmli [61], transferred onto PVDF membranes

(GE Healthcare, Munich, Germany) and probed with anti-

tubulin, anti-Vpr or anti-p24 antibodies, followed by enhanced

chemiluminescence detection. For internal controls, blots were

stripped and re-incubated with the appropriate antibody.

Additionally, cells and cell debris from virus containing super-

natant were removed by centrifugation at 1000g for 5 min and

8000g for 10 min. Virions were in most experiments purified by

centrifugation via 20% sucrose at 20 000g for 90 min, re-

suspended in 1 ml of PBS, pelleted again for 20 000g for

90 min to remove serum albumins and finally analysed by

Western blotting, using anti-Vpr (NIH) and anti-p24 (Abcam,

Cambridge, UK) antibodies.

4.5. HIV-1 infection, virus collection and concentration
To obtain HIV-1-infected CD4þ T cells and CD4þ T-cell-

produced HIV-1 supernatant, 40 ng of p24 antigen was

added to 2.5 � 105 cells and the culture was spinoculated at

500g for 90 min at 37 8C. After centrifugation, the supernatant

was removed and the cells were further cultured in RPMI sup-

plemented with 20 ng ml21 IL-2. Three days after infection,

phytohaemagglutinin, (1 mg ml21; Thermo Fisher Scientific,

Waltham, USA) was added for 3 days to the culture

medium. Cells and supernatants were collected 7 days after

infection, during peak of infection. The percentage of infected

cells was determined by FACS analysis (MACSQuant

Analyzer, Miltenyi Biotec, Bergish Gladbach, Germany) of

HSA expression.

Collected viral supernatant was concentrated by ultracen-

trifugation. Briefly, viral supernatant was transferred to a

polyallomer microcentrifuge tube and centrifugated in a Beck-

man L7-55 (rotors SW25.1 and SW50.1) at 70 000g for 30 min at

48C to clarify the supernatant from remaining cells and other

debris. Subsequently, supernatant was transferred to a new

microcentrifuge tube and centrifugated at 210 000g for 90 min

at 48C. Supernatant was removed and concentrated virus was

allowed to detach for 4–6 h.

Infection of unstimulated and stimulated CD4þ T cells for

the measurement of WT and mutant HIV-1 virus infectivity

was carried out 3 days after isolation by adding 60 ng p24 anti-

gen to 2.5 � 105 cells in the presence of the HIV protease

inhibitor Ritonavir (AIDS Research Reference Reagent

Program), throughout 1 mM in unstimulated and 10 mM in

stimulated CD4þ T cell cultures to avoid multiple rounds of

infection. The culture was spinoculated at 500g for 90 min at

328C. After centrifugation, the supernatant was removed and

CD4þ T cells were further cultured in RPMI supplemented

with 20 ng ml21 IL-2 and Ritonavir. Infectivity was measured

by HSA reporter gene detection after 3 days of infection
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by FACS analysis (MACSQuant Analyzer). For infection of

CD4þ T cells and PBMC with HIV-1 NL4-3-IRES-eGFP var-

iants, 1 � 106 cells were incubated for 6 h with 200 ng p24 of

cleared virus stock in a total volume of 500 ml. Then cells

were washed and 3 ml fresh media was added. Analysis of

cell surface CD69 and GFP expression was done by standard

FACS staining procedures in FACSCanto II (Becton Dickinson,

Erembodegem, Belgium). Cells were fixed with 2% (m/v) PFA

for 20 min prior to analysis. In all experiments, survival of

infected cells was comparable as monitored by flow cytometry.

4.6. Analyses of intracellular Ca2þ levels using the
Calcium sensor GCaMP

HeLa cells were transfected with the Calcium sensor GCaMP

[19], and 24 h post transfection cells were infected either with

VSV-G pseudotyped WT HIV or HIV-1 DVpr. Twenty-four

hours post-infection, intracellular GFP expression was ana-

lysed by flow cytometry. In addition, cells were lysed in

0.5% Triton lysis buffer (150 mM NaCl, 50 mM Tris–HCl,

0.5% Triton X-100 and a protease inhibitor cocktail; Roche).

Cell lysates were cleared by centrifugation at 10 000 r.p.m.

and 48C for 5 min. Soluble proteins were separated in 12%

SDS/PAA gels and transferred onto PVDF membranes (GE

Healthcare) and probed with specific antibodies, followed

by enhanced chemiluminescence detection. For internal

controls, blots were stripped and re-incubated with the

appropriate antibody.

4.7. Measurement of 2-LTR circles, G2/M arrest,
apoptosis, Vpr oligomerization and luciferase
activity

2-LTR circles were measured according to a previously estab-

lished protocol modified to a digital droplet PCR platform

(Bio-Rad) [62]. To assess G2/M arrest, 48 h post-infection

Jurkat E6.1 were pelleted at 150g and washed with PBS. Cells

were fixed for 20 min with 2% (m/v) PFA, washed again and

permeabilized by dropwise addition of ice cold 80% (v/v) etha-

nol and incubation for at least 1 h. Then cells were centrifuged

at 150g for 5 min and resuspended in 200 ml of propidiumio-

dide (PI) solution (50 mg ml21 PI and 0.33 mg ml21 RNase A

in PBS). After 30 min of incubation at 378C, cells were analysed

in a FACSCanto II (Becton Dickinson).

To assess Vpr-induced apoptosis, HeLa cells were trans-

fected with the pCG-Vpr expression plasmids using

Lipofectamine 2000 (Invitrogen) as recommended by the man-

ufacturer. Thirty-six hours post transfection cells were

trypsinated and stained with 5 ml AnnexinV-APC (Biolegend)

in 100 ml staining buffer for 15 min at RT. Cells were then

directly analysed by FACS with FACSCanto II instrument

(Becton Dickinson).

Vpr oligomerization was investigated by FACS-based FRET

analysis [33]. In brief, 150 000 293T cells were seeded in 12-well

plate and transfected with 1.25 mg DNA of each the Vpr-eYFP

and corresponding Vpr-eCFP fusion protein expression plas-

mid by the CaCl2 technique. Media was changed 6 h later and

cells were harvested for FACS analysis (FACSCanto II, Becton

Dickinson) 24 h later. The gating strategy to exclude false-

positive FRET signals and assess FRET in the double-positive

cell population is described elsewhere [33].
Luciferase activity of Jurkat NFAT-luc cells [14] and 293

NFKB cells was measured with the Promega luciferase repor-

ter assay 8 h post-stimulation with 1 mg ml21 PHA (NFAT) or

10 ng ml21 TNFa (NFKB), respectively. For NFAT measure-

ments, aliquots containing 50 000 Jurkat NFAT-luc cells

were transferred in V-shaped 96-well plates and pelleted by

centrifugation (5 min, 150g). Subsequently, cells were lysed

with 25 ml lysis buffer for 20 min at 48C. Then 20 ml cell

lysate was transferred in white-walled plates and immedi-

ately measured after addition of 40 ml luciferase substrate in

an Infinite M200 (Tecan, Männedorf, Switzerland) or Biotek

Cytation 3 multiplate reader. Alternatively, an in-house luci-

ferase assay was used with 100 000 cells, lysed in 60 ml. Forty

microlitres of lysate were transferred to 40 ml assay buffer

(100 mM KPO4 pH 7.8, 15 mM MgSO4, 4 mM ATP in H2O)

and 40 ml substrate (15 mg Luciferin ml21 assay buffer). Inte-

gration time was 100 ms per well. For assessment of NFKB

activation, ten thousand 293 NFKB cells were seeded per

96-well plate, infected with equal nanogram p24 amounts

and measured as described above.

4.8. Confocal microscopy and immunofluorescence
Translocation of PARP1 by Vpr was investigated by

cotransfection of the Vpr-YFP fusion protein vectors and

the PARP1-CFP construct in 293T cells seeded on coverslips.

Twenty-four hours later, cells on slips were washed, fixed

with 2% (m/v) PFA for 15 min and embedded with

Mowiol 4-88 (Carl Roth) mounting solution on objective

slides. DRAQ5 was added at a concentration of 1 : 1000 to

the Mowiol to stain the nuclear DNA. Slides were allowed

to dry overnight in the dark and then analysed on a CLSM

Zeiss LSM510 with metadetector or a Nikon TiEclipse

with the UltraViewVox Spinning Disc system (Yokogawa

CSU-X1 and PerkinElmer, Waltham, MA, USA).

For analysis of NFAT translocation in human macrophages,

1 � 105 cells were grown on coverslips and infected with 50 ng

p24 of the HIV-1 viral stocks. Twenty-four hours post-

infection, cells were washed with PBS and fixed with 2%

(m/v) PFA for 20 min at 48C. Macrophages were permeabi-

lized with 1% Saponin for 15 min at RT and subsequently

blocked for 20 min with 5% BSA (m/v) in PBS. Primary anti-

body staining was a 1 : 50 dilution of NFAT-specific antibody

(CellSignalling) in 1% BSA/PBS and the anti-p24 antibody

(also 1 : 50, clone KC57 Beckman Coulter) for 3 h at RT. Second-

ary antibody staining was done after PBS washing with

anti-mouse Alexa-488 and anti-rabbit Alexa-555 (1 : 500

dilution in 1% BSA (m/v) in PBS) for 1 h at RT. Nuclear

DNA was finally stained by 15 min RT incubation with

DAPI solution (1 mg ml21). Then cells were mounted with

Mowiol on objective slides and imaged with a Nikon TiEclipse

microscope as described above.

4.9. Imagestream analysis
CD4þ T cells were directly isolated from buffy coat by the

Rossette Sep CD4þ T cell isolation kit (StemCell Technologies,

Grenoble, France). Then, 1 � 106 T cells were either stimu-

lated with 1 mM Ionomycin/2 mM CaCl2 or spinoculated

for 30 min at 48C in 48-well plates with 500 ng p24 of

HIV-1 WT or D Vpr pseudotyped with VSV-G to obtain

high infection rates. Then cells were shifted to 378C and

incubated for 2 h or 4 h. For imaging flow cytometry
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(ImageStream), cells were harvested, washed with PBS fixed

with 2% PFA for 10 min at RT and permeabilized with 90%

(v/v) methanol for 20 min on ice. Primary antibody staining

was a 1 : 50 dilution of NFAT-specific antibody (CellSignalling)

and secondary anti-rabbit Alexa405 for 1 h at 48C with washing

steps in between. Nuclei were stained with a 1 : 2000 dilution of

DRAQ5. Cells were then transferred in FACS tubes and

measured with an Amnis ImageStream X Mark II imaging

flow cytometer (Merck-Millipore). A software-calculated

mask based on DRAQ5 fluorescence was created to identify

the nucleus in imaged T cells. The NFAT (Alexa405) fluor-

escence intensity within the nucleus of all measurements was

then quantified and plotted as histograms.

4.10. Software and statistical analysis
For confocal microscopy, image analysis was performed using

VOLOCITY v. 6.2 (PerkinElmer) and IMAGEJ. Figures were gener-

ated with CORELDRAWX4 graphics suite, Microsoft POWERPOINT

and GRAPHPAD PRISM v. 5.0 software. Statistical calculations

were also done with GraphPad PRISM v. 5.0. The respective

statistical test used is indicated in each figure legend.
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