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Abstract

The draft sequences of whole genomes are being published at an ever-increasing pace, thus
providing access to the human genomic sequence and, more recently, the mouse sequence.
Genomes of the invertebrates are also becoming available. Now that the genomic DNA of
mammalian species is available, an old problem can be tackled with renewed vigour: mammalian
promoter prediction. Gene promoters have proved elusive for more than a decade, despite
their pivotal role in gene regulation. Recently, however, several new developments have made
it possible to make meaningful large-scale predictions. This paper reviews the methods used
for the prediction of mammalian, mostly human, promoters.

INTRODUCTION

The analysis of transcription control, ie
the coordination of gene transcription in
time and space, is probably of similar
importance as proteome analysis. Life in a
cell will be understood only when both
the fate and actions of proteins as well as
how and why they come into existence
can be detailed — which is what
transcription control is about in the first
place. Yet there is still a vast bias in
published work towards proteomics rather
than transcription control (which will be
referred to as regulanomics from here on).
For example, a simple PubMed search for
‘protein’ yields more than ten times the
amount of matches as searching for
‘transcription’.

Until recently, one of the main reasons
for this was the difficulty of finding
mammalian promoters in genomic
sequences. First of all, a promoter is still
not a clearly defined unit. The region
upstream of, and containing, the
transcription start site (T'SS) that is
required for the basic events of
transcriptional initiation may be referred
to as the proximal promoter.' The crucial
obstacle in finding mammalian promoters
is that they usually do not share extensive
sequence similarity even when they are

functionally correlated, which prevents
detection by sequence similarity-based
search methods such as BLAST or
FastA.'

Mammalian promoters can be seen as
miniature structures of coding regions
with few functional elements (exons)
interspersed in a larger sequence of no
known function (introns). The promoter
‘exons’ would be resembled by
transcriptional control elements (usually
transcription factor (TF) binding sites)
while the so-far uncharacterised spacers in
between those elements would correspond
to promoter ‘introns’. TF binding sites are
only about a dozen nucleotides in length
and even these small stretches are quite
variable (Figure 1).

Thus, it becomes clear that overall
sequence similarity in promoters is not a
general phenomenon, although it does
exist in the form of phylogenetic
footprints.2 Promoters contain the
transcription start site and therefore always
overlap with the first exon of a gene. This
would allow promoters to be located by
looking upstream of the first exon in
genomic sequences. However,
mammalian promoters are not readily
available by this kind of mRINA analysis
via cDNAs. Most cDNAs are truncated at
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Figure I: The centre shows a schematic promoter structure and below this is a schematic
exon/intron structure with a rectangle highlighting the corresponding portions in both
structures. On top of the promoter structure a IUPAC (ambiguity code) representation of a
NF«kB binding site is shown below a bar graph, indicating the different conservation of the

individual positions of the binding site

the 5'-end as they are traditionally
amplified starting at their 3'-end, which
may result in the promoter being several
kbp out of reach (even 5 or 10 base pairs,
bp, missing at the 5'-end may cause this if
there is a large first intron involved).
Therefore, promoter location was almost
impossible in the past, making
bioinformatics methods very attractive.
Approaches remained largely
unsuccessful almost to the end of the
twentieth century despite considerable
efforts by many groups. Most methods
would work only in small regions of
DNA and even there with an
unacceptable high amount of false positive
matches as reviewed in 1997 by Fickett
and Hatzigeorgiou.” For example, most of
the methods came up with one match
every 1,000 bp even under favourable
conditions (much higher promoter
density in the test sets than in the
genome). Why did all that early work fair
so miserably when it came to specificity
(the average was less than 10 per cent in
these tests)? One important reason may

have been some discrepancies in the
nature of experimental results available for
training. While much has been learnt
about various elements that proved to be
crucial for promoter function, such as a
whole collection of transcription factor
binding sites (TF binding sites), in
particular the CAAT and the TATA box,
publications dealing with functional
promoter structures were scarce. The
amount of proven promoters for training
was also more than limited. The
Eukaryotic Promoter Database (EPD) by
Philipp Bucher was the only reliable
source for a long time, and contained only
about 1,200 promoters, including a strong
bias towards ‘favourite’ genes, ie genes
studied by more people than other genes.”
Disappointingly, so-called promoter
elements could be found all over virtually
every sequence but none was really
consistent, meaning that approaches to
discriminate promoters from other
sequences in general, based on such
elements, were almost useless. The only
exception was the first promoter
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prediction program published, Dan
Prestridge’s Promoter Scan, which used
frequency profiles for [IUPAC sequences
representing transcription factor binding
sites and reached a specificity or better
selectivity of up to 70 per cent.’
Unfortunately, the sensitivity was very
low. Although the program produced few
false positives it missed the vast majority
of true plromotelrs.3

During the 1990s it was noted that
promoters contain specific subsets of
TFE-sites”™ and at least in some cases a
combination of several binding sites was
required for biological function.”"” The
good news was that this explained why
TF-sites could be found everywhere
without functionally interfering with
normal transcription control. On the
other side it also became clear that these
arrangements were specific for very small
numbers of promoters and could not be
generalised in any way. Therefore, it
became possible to describe functional
groups of promoters in great detail by
bioinformatics, but no general search tool
could be developed on this basis.' ™
With the imminent completion of the
human genome draft sequence this
inability to predict promoters became a
real obstacle to genome-wide analysis of
gene regulation by bioinformatics. After
all, only about 2 per cent of the genomic
sequence was found to be coding'* and a
similar amount of sequence can be
expected to represent promoters.

Fortunately, starting aptly in the year
2000, a series of new approaches broke
through the roadblock imposed by
unacceptable high rates of false positives,
providing us with easy access to a large
amount of genomic promoters.

Table 1 gives a list of web sites of

promoter prediction programs and Table
2 gives a list of web sites for whole gene
annotation.

A NEW GENERATION OF
METHODS FOR
PROMOTER PREDICTION
There are still many difterent approaches
to attack the problem of promoter
recognition and this review will focus on
attempts to locate promoters in whole
genomes. There was also considerable
progress in defining subset-specific or at
least associated patterns (eg TF-sites).
However, this is a more specialised
application and will therefore be
mentioned only briefly. A recent review
has dealt in more detail with recent
advances in pattern finding."”> Another
review giving the history of in silico
pattern was published by Gary Stormo.
The new generation of promoter
predictors appears to be several times
better than all previous approaches (see
the comparisons' ' 2"). This is very
encouraging but raises another problem.
With the rate of predictions falling well
below 1 match in 10,000 bp or even
50,000 bp, determination of specificity
becomes an almost impossible task. In
order to calculate specificity both the
number of true positives (TP) as well as
the number of true negatives (TN) need

6

to be known for a sufticiently large test
set. For example the formulae used by
Larsen ef al*' to calculate sensitivity and
specificity are as follows:

Sensitivity = TP /(TP + FN)
Specificity = TN/(TN + FP)

(where TP = true positives, TN = true
negatives, FN = false negatives, FP =

Table I: Web sites of promoter prediction programs

Promoterinspector online use
(registration page)

DRAGON Promoter Finder online use
Eponine online use

FirstEF online use

CONPRO online use

http://www.genomatix.de/cgi-bin/promoterinspector/
promoterinspector.pl
http://sdmc.krdl.org.sg/promoter/promoter|_3/DPFV3.htm
http://servlet.sanger.ac.uk:8080/eponine/
http://rulai.cshl.org/tools/FirstEF/
http:/stl.bioinformatics.med.umich.edu/conpro/
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Table 2: Web sites for whole genome annotation

free_login.html

UCSC genome browser
VISTA genome browser

http://genome.ucsc.edu/

ElDorado http://www.genomatix.de/

ENSEMBL http://lwww.ensembl.org/

http://pipeline.Ibl.gov/vistabrowser/

Registration site, includes promoter
annotation for human and mouse genomes
Includes genomes human, mouse, zebrafish,
fugu and mosquito

Includes human and mouse genomes
Includes human and mouse genomes

false positives). This is by no means the
only way to calculate characteristics, but
all methods require the knowledge of the
values for TP, TN, FN and FP.

For the new generation of methods
several million base pairs with perfect
annotation would be required.
Unfortunately, our current knowledge of
the human or mouse genome is not
enough to allow discrimination between
false positives and additional unknown
TPs, which also makes the number of TNs
inaccessible. Therefore, a less demanding
property would be selectivity, defined as the
ratio of the amount of true positives (total
matches that could be correlated with
known genes) to additional matches to
give at least an idea about the relative
performance of the programs. However, as
programs work differently with respect to
strand orientation and predicted property
(region versus transcription start site, TSS)
comparison becomes difticult. Since the
authors also used different methods and
data sets to access and compare their
methods, it is virtually impossible to derive
a meaningful and fair comparison of’
performance from the published data at
this point.

The best way to compare programs
would be to take the genome or a part of
it, such as one or more whole
chromosomes, and estimate the selectivity
and the sensitivity as described above. Of
course, this will give no idea of additional
matches not conflicting with existing
annotation, which might be false positives
or real new promoters. Unfortunately,
this is also impossible for all the programs
based on published results, thus only some
published data that explain what kind of
problems are associated with the various
approaches are referred to.

There are several ways one could
categorise the methods. This review takes
a genome-oriented approach and
differentiates two major classes of
approaches: one class of programs that
attempts promoter prediction or
localisation in whole anonymous genomic
sequences and another class that takes
advantage of genome annotation or other
means to limit the actual search space for
promoter finding. Technical criteria such
as the basic models used are not applied
since only overall results are really
important. However, only programs that
allow a genome-wide analysis are referred
to.

The first category does not require any
kind of a priori information about the
sequence to be analysed except that it
should be a mammalian genome (most
programs have been trained on human
sequences). The advantage is that such
programs can be applied to genomic
sequences as they appear, with no need to
wait for gene annotation. This also avoids
propagation of errors in the annotation
process.

PROGRAMS WORKING ON
WHOLE ANONYMOUS
GENOMES

The first method of this category, which
happens to be also the first representative
of the new generation, was
PromoterInspector.'” This method is
based on a content analysis of promoter
features represented by [UPAC-strings
rather than specific transcription elements,
and predicts regions containing a
promoter. No strand orientation or TSS
position is determined, which poses a
problem in comparing this with programs
that predict promoters directly. The
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method was initially reported at a
specificity of 43 per cent,'” and is now
claimed to have a specificity of 85 per cent
based on an artificial genomic sequence
composed from annotated EMBL
entries.** Full analysis of the human
genome was carried out, which is available
through the ElDorado system. However,
owing to access restriction of the free
subscription, the whole set of promoters
cannot be accessed at once. The data for
chromosome 22 were published and
indicate a sensitivity of 45 per cent?

The second method in this category
was Dragon Promoter Finder, which is
based on similar ideas as
PromoterInspector but predicts strand-
specific TSS."® The advance in predictive
capabilities is in part attributed to the use
of five different promoter models by the
authors. Dragon Promoter Finder allows
several levels of sensitivity, leaving it up to
the user to choose the amount of false
positive matches to be tolerated. Dragon
Promoter Finder was also tested on whole
human chromosome 22 and apparently
also works with a high selectivity. The
direct comparison of the program with
Promoterlnspector is complicated by the
difference in strand prediction, which the
authors compensated for by counting
every match of PromoterInspector
automatically as false positive (when the
promoter was correctly predicted,
otherwise one match equals two false
positives) to account for the missing
strand orientation.

The third program, Eponine, belongs
half and half to both categories, since it
can analyse anonymous sequences such as
whole human chromosome 22 in
principle, but was applied to a pseudo
chromosome, which included only
regions around known genes."” As their
comparison shows, not only does
Eponine appear very selective but
PromoterInspector also fares much better
than on the whole chromosome. This
indicates a general bias in favour of
programs that was already observed when
the short test sets of Fickett and

Hatzigeorgiou® were replaced by longer
genomic regions.

PROGRAMS WORKING ON
A RESTRICTED SEARCH
SPACE
There are two more programs taking
advantage of existing annotation to
restrict the search space to upstream
regions of a few kilobases. The
FirstExonFinder utilises various
discriminatory functions including
recognition of the first splice site (intron
1) to predict transcription start sites and
has been applied to the 15 kb sequences
upstream of known genes on
chromosomes 21 and 22, using the
approximate position of the gene start and
the strand orientation of the genes to
restrict the search space” The method
apparently works quite well for the
known genes on chromosomes 21 and 22.
However, it is unclear how the authors
came up with the whole genome analysis
claiming the existence of about 68,000
genes, since for most of these genes no
information about gene start and
orientation is available (but is required for
the reported specificity to be reached).
This was not clear from the original
publication but has been clarified in a
correction published on the author’s web
site >
Another method in this category is
ConPro, which analyses one gene at a
time (at least in the web version) but is
not restricted to go after all genes in
principle®® The methods relies on a
consensus formation of five promoter
prediction programs previously reviewed
by Fickett and Hatzigeorgiou,” all of
which individually produce large amounts
of false positives (~1 in 1,000 bp). By
restricting the search space and forming
the consensus of the methods, the authors
claim to have been able to predict about
14,000 promoters in the genome, 6,400
of which correspond to well-characterised
genes. As the authors include only a
maximum of 1.5 kb upstream sequences,
the relatively low number of true
positives is no great surprise as first introns

26 © HENRY STEWART PUBLICATIONS 1467-5463. BRIEFINGS IN BIOINFORMATICS. VOL 4. NO |. 22-30. MARCH 2003

9102 ‘¥T AINC U0 WiNUSZSBUNYISI0H 4S9 e /610 jeuIno[pJo Jxo°qig//:dny Wouy papeoumod


http://bib.oxfordjournals.org/

Mammalian promoter recognition

CpG island finding

Phylogenetic
comparisons

happen to be several kilobytes on average,
which puts many promoters of even
slightly truncated genes out of reach for
this method.

Hannenhalli and Levy*® published an
approach based on analysis of regions
around CpG islands regions for a few
selected TF-sites, inferring that the
combination of the various parameters
indicates promoters. They concluded that
generally only CpG island-associated
promoters could be detected, as they
found the other parameters to have little
influence on the overall decision. This is
in contrast to most of the other methods
discussed here, which were able to predict
non-CpG island-correlated promoters,
albeit less efficiently. Their method bears
some similarity to a previous published
CpG island finder and cannot be
compared to the general methods of the
previous category.27

MISCELLANEOUS
PROGRAMS

There is a third category of programs that
do not directly attempt to predict
promoters but some properties, which
might be also useful for promoter
prediction and/or analysis. Therefore,
those methods are summarised here.

The program rVISTA takes advantage
of phylogenetic conservation of functional
binding sites in regulatory regions
between human and mouse sequences
(any other pair of genomic sequences
would work as well as long as there is a
clear phylogenetic link of the
corresponding genes™). The authors
show that in their test case, a cytokine
cluster, they can successfully weed out
most of the unspecific matches and retain
functional binding sites. This approach
can be applied to any phylogenetic pair of
regulatory regions, not just promoters,
which is why this approach can be
regarded as a logical next step, once
promoters were actually located by
another method. Another method that
can be used through the web is the
TraFaC program by Jegga et al*’ The
authors follow the idea that similar

regions (promoters as well as enhancers)
may contain a similar composition of TF
binding sites, not necessarily in a
conserved order. Results are depicted as
regulograms to be interpreted by the user.

Levitsky et al published a system that
attempts to calculate various properties of
genomic DNA, among them the potential
to form nucleosomal complexes, which
they claim to be elevated in tissue-
specifically expressed promoters. Given
the enormous amount of chromatin
remodelling involved in transcriptional
activation, this finding should be taken
with care. A potential for nucleosomal
structures per se may well too weak to
predict promoters. However, again after
promoters have been located this might
be a good tool to assess properties of such
promoters.

CONCLUSIONS
Although several new methods have been
published in a relatively short period of
time, it is difficult to assess their respective
value for the user, as this depends very
much on the individual problems to be
solved. To obtain an initial annotation of
whole genomes Promoterlnspector and
Dragon Promoter Finder should be the
first choice. However, it is important that
such promoters are put into the genomic
context afterwards. Promoters of known
species such as human or mouse should
always be considered in the genomic
annotation context. Currently, ElDorado
is the most complete system offering such
combined information, but the popular
genome browsers can be expected to
follow this lead within the next two years.
The programs in the second category
require a priori knowledge about genes but
offer a few benetfits in return. They can
afford to be more sensitive owing to the
more restricted search space and some
yield additional information about the
promoter, so they might be a good choice
to find promoters of known genes, which
are missed by the general approaches.
Although this review focuses on
promoter recognition by in silico methods,
the growing amount of experimentally
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determined TSS deserves mentioning. In
particular, oligo-capping has been used to
analyse thousands of cDNAs”" in order to
map the true 5'-end of the mRNA which
would be located right inside the
promoter as promoters extend also 3" of
the TSS."' Two problems with that
approach remain. The first is that because
of technical restrictions, not all mapped
5'-ends are the real TSS of the genes since
the whole procedure has an overall
efficiency of about 70—80 per cent. This
means that the experimental approach
yields about as many false positives as the
in silico methods. Therefore, an
experimentally mapped TSS is not always
indicating a promoter. However if such a
mapped TSS is located within a
reasonable range (less than 2 kb) with a
predicted and/or a mapped gene start
from gene finding, or cDNA mapping,
chances are much better that this will
represent a real promoter. This already
highlights the second problem. As oligo-
capping identifies only short, presumably
5, regions of mMRNAs correctly, mapping
of the results onto the genome is not a
trivial task. Precise mapping definitely
requires more sophisticated tools than
BLAST and only carefully mapped data
will be useful.

The final question that remains is
whether in silico promoter recognition was
just a short interlude that would be
superseded by genome annotation based
on experimental results. This may well be
the case for the human genome as
enormous efforts have been made to
complete the annotation. However, this is
still continuing two years after the first
draft was published and is not expected to
be finished for another two years. In the
mean time, in silico promoter recognition
will remain as a valuable additional source
of information. As the genomes of more
and more mammalian and other species
become sequenced, the amount of time
for annotation can be expected to be
reduced. However, complete in silico
promoter annotation of a mammalian
genome can be done ahead of any other
annotation in a matter of days on

relatively inexpensive computer systems.
These approaches will also help to define
non-coding RNA genes, suggest
alternative transcription start sites and aid
in the definition of new genes that bear
no resemblance to any known genes.
Therefore, it is expected that such in silico
approaches will remain important tools
for the analysis of new genomic
sequences. Of course, gene prediction
(ie largely coding region prediction) and
promoter prediction can complement
each other as they usually do not rely on
the same features, as noted above

Another important topic that gains
more importance is comparative
genomics. As discussed above, such
comparative approaches are also
applicable to promoters>® However,
since, in particular, first non-coding exons
and intron sequences are often much less
conserved than coding exons, in silico
promoter recognition will be important
to ensure that promoter sequences are
being compared, since promoters also
show very limited sequence conservation
in general.'

In summary, the field of in silico
promoter recognition has seen some
dramatic improvements during recent
years. Further improvements, especially in
the sensitivity of methods, can be
expected in the near future, placing those
tools among the most powerful
instruments for in silico analysis of genome
sequences. Combinations with gene
prediction methods have already been
successfully alpplied.”’25 Therefore, a
more general improvement of genome
annotation by promoter recognition can
be expected.

Even a perfect method for promoter
recognition would not put the groups
working on promoter recognition out of
a job. There are several major tasks still
awaiting solutions in the field of
in silico analysis of gene regulation. For
example, there is nothing like an
enhancer finder that could be applied to
genomic sequences and the whole field of
epigenetic gene regulation is completely
off limits for bioinformatics analysis at
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present (eg methylation, histone
acetylation/deacetylation, chromatin
remodelling in general, for reviews see
Harju ef al”® and Horn and Peterson™).
Fortunately, there is considerable progress
in the experimental analysis of these
phenomena, which might soon provide
the basis for bioinformatics approaches as
well.

Further improvements in DNA
structure prediction, especially some
simple chromatin structural elements such
as nucleosomal or solenoid structures, can
be expected to boost bioinformatics. At
the moment, the three-dimensional
structures involved in gene regulation are
completely ignored in bioinformatics
approaches, as they do not yet yield to
theoretical analysis in a useful way.
However, this field is also making
progress, which might open new
opportunities for bioinformatics*

The analysis of transcriptional
regulation on a genomic level will remain
the crucial factor in understanding life on
a molecular basis and will help put the
wealth of knowledge gained from
proteomics into the right context. In silico
promoter recognition will remain an
important contributor to this goal.
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