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Abstract
The draft sequences of whole genomes are being published at an ever-increasing pace, thus

providing access to the human genomic sequence and, more recently, the mouse sequence.

Genomes of the invertebrates are also becoming available. Now that the genomic DNA of

mammalian species is available, an old problem can be tackled with renewed vigour: mammalian

promoter prediction. Gene promoters have proved elusive for more than a decade, despite

their pivotal role in gene regulation. Recently, however, several new developments have made

it possible to make meaningful large-scale predictions. This paper reviews the methods used

for the prediction of mammalian, mostly human, promoters.

INTRODUCTION
The analysis of transcription control, ie

the coordination of gene transcription in

time and space, is probably of similar

importance as proteome analysis. Life in a

cell will be understood only when both

the fate and actions of proteins as well as

how and why they come into existence

can be detailed – which is what

transcription control is about in the first

place. Yet there is still a vast bias in

published work towards proteomics rather

than transcription control (which will be

referred to as regulanomics from here on).

For example, a simple PubMed search for

‘protein’ yields more than ten times the

amount of matches as searching for

‘transcription’.

Until recently, one of the main reasons

for this was the difficulty of finding

mammalian promoters in genomic

sequences. First of all, a promoter is still

not a clearly defined unit. The region

upstream of, and containing, the

transcription start site (TSS) that is

required for the basic events of

transcriptional initiation may be referred

to as the proximal promoter.1 The crucial

obstacle in finding mammalian promoters

is that they usually do not share extensive

sequence similarity even when they are

functionally correlated, which prevents

detection by sequence similarity-based

search methods such as BLAST or

FastA.1

Mammalian promoters can be seen as

miniature structures of coding regions

with few functional elements (exons)

interspersed in a larger sequence of no

known function (introns). The promoter

‘exons’ would be resembled by

transcriptional control elements (usually

transcription factor (TF) binding sites)

while the so-far uncharacterised spacers in

between those elements would correspond

to promoter ‘introns’. TF binding sites are

only about a dozen nucleotides in length

and even these small stretches are quite

variable (Figure 1).

Thus, it becomes clear that overall

sequence similarity in promoters is not a

general phenomenon, although it does

exist in the form of phylogenetic

footprints.2 Promoters contain the

transcription start site and therefore always

overlap with the first exon of a gene. This

would allow promoters to be located by

looking upstream of the first exon in

genomic sequences. However,

mammalian promoters are not readily

available by this kind of mRNA analysis

via cDNAs. Most cDNAs are truncated at
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the 59-end as they are traditionally

amplified starting at their 39-end, which

may result in the promoter being several

kbp out of reach (even 5 or 10 base pairs,

bp, missing at the 59-end may cause this if

there is a large first intron involved).

Therefore, promoter location was almost

impossible in the past, making

bioinformatics methods very attractive.

Approaches remained largely

unsuccessful almost to the end of the

twentieth century despite considerable

efforts by many groups. Most methods

would work only in small regions of

DNA and even there with an

unacceptable high amount of false positive

matches as reviewed in 1997 by Fickett

and Hatzigeorgiou.3 For example, most of

the methods came up with one match

every 1,000 bp even under favourable

conditions (much higher promoter

density in the test sets than in the

genome). Why did all that early work fair

so miserably when it came to specificity

(the average was less than 10 per cent in

these tests)? One important reason may

have been some discrepancies in the

nature of experimental results available for

training. While much has been learnt

about various elements that proved to be

crucial for promoter function, such as a

whole collection of transcription factor

binding sites (TF binding sites), in

particular the CAAT and the TATA box,

publications dealing with functional

promoter structures were scarce. The

amount of proven promoters for training

was also more than limited. The

Eukaryotic Promoter Database (EPD) by

Philipp Bucher was the only reliable

source for a long time, and contained only

about 1,200 promoters, including a strong

bias towards ‘favourite’ genes, ie genes

studied by more people than other genes.4

Disappointingly, so-called promoter

elements could be found all over virtually

every sequence but none was really

consistent, meaning that approaches to

discriminate promoters from other

sequences in general, based on such

elements, were almost useless. The only

exception was the first promoter

Incomplete cDNAs

Unspecific methods

Figure 1: The centre shows a schematic promoter structure and below this is a schematic
exon/intron structure with a rectangle highlighting the corresponding portions in both
structures. On top of the promoter structure a IUPAC (ambiguity code) representation of a
NFkB binding site is shown below a bar graph, indicating the different conservation of the
individual positions of the binding site
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prediction program published, Dan

Prestridge’s Promoter Scan, which used

frequency profiles for IUPAC sequences

representing transcription factor binding

sites and reached a specificity or better

selectivity of up to 70 per cent.5

Unfortunately, the sensitivity was very

low. Although the program produced few

false positives it missed the vast majority

of true promoters.3

During the 1990s it was noted that

promoters contain specific subsets of

TF-sites6–8 and at least in some cases a

combination of several binding sites was

required for biological function.6–10 The

good news was that this explained why

TF-sites could be found everywhere

without functionally interfering with

normal transcription control. On the

other side it also became clear that these

arrangements were specific for very small

numbers of promoters and could not be

generalised in any way. Therefore, it

became possible to describe functional

groups of promoters in great detail by

bioinformatics, but no general search tool

could be developed on this basis.11–13

With the imminent completion of the

human genome draft sequence this

inability to predict promoters became a

real obstacle to genome-wide analysis of

gene regulation by bioinformatics. After

all, only about 2 per cent of the genomic

sequence was found to be coding14 and a

similar amount of sequence can be

expected to represent promoters.

Fortunately, starting aptly in the year

2000, a series of new approaches broke

through the roadblock imposed by

unacceptable high rates of false positives,

providing us with easy access to a large

amount of genomic promoters.

Table 1 gives a list of web sites of

promoter prediction programs and Table

2 gives a list of web sites for whole gene

annotation.

A NEW GENERATION OF
METHODS FOR
PROMOTER PREDICTION
There are still many different approaches

to attack the problem of promoter

recognition and this review will focus on

attempts to locate promoters in whole

genomes. There was also considerable

progress in defining subset-specific or at

least associated patterns (eg TF-sites).

However, this is a more specialised

application and will therefore be

mentioned only briefly. A recent review

has dealt in more detail with recent

advances in pattern finding.15 Another

review giving the history of in silico

pattern was published by Gary Stormo.16

The new generation of promoter

predictors appears to be several times

better than all previous approaches (see

the comparisons17–20). This is very

encouraging but raises another problem.

With the rate of predictions falling well

below 1 match in 10,000 bp or even

50,000 bp, determination of specificity

becomes an almost impossible task. In

order to calculate specificity both the

number of true positives (TP) as well as

the number of true negatives (TN) need

to be known for a sufficiently large test

set. For example the formulae used by

Larsen et al.21 to calculate sensitivity and

specificity are as follows:

Sensitivity ¼ TP=(TP þ FN)

Specificity ¼ TN=(TN þ FP)

(where TP ¼ true positives, TN ¼ true

negatives, FN ¼ false negatives, FP ¼

Promoter structure
models

New prediction
methods

Table 1: Web sites of promoter prediction programs

PromoterInspector online use
(registration page)

http://www.genomatix.de/cgi-bin/promoterinspector/
promoterinspector.pl

DRAGON Promoter Finder online use http://sdmc.krdl.org.sg/promoter/promoter1_3/DPFV13.htm
Eponine online use http://servlet.sanger.ac.uk:8080/eponine/
FirstEF online use http://rulai.cshl.org/tools/FirstEF/
CONPRO online use http://stl.bioinformatics.med.umich.edu/conpro/
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false positives). This is by no means the

only way to calculate characteristics, but

all methods require the knowledge of the

values for TP, TN, FN and FP.

For the new generation of methods

several million base pairs with perfect

annotation would be required.

Unfortunately, our current knowledge of

the human or mouse genome is not

enough to allow discrimination between

false positives and additional unknown

TPs, which also makes the number of TNs

inaccessible. Therefore, a less demanding

property would be selectivity, defined as the

ratio of the amount of true positives (total

matches that could be correlated with

known genes) to additional matches to

give at least an idea about the relative

performance of the programs. However, as

programs work differently with respect to

strand orientation and predicted property

(region versus transcription start site, TSS)

comparison becomes difficult. Since the

authors also used different methods and

data sets to access and compare their

methods, it is virtually impossible to derive

a meaningful and fair comparison of

performance from the published data at

this point.

The best way to compare programs

would be to take the genome or a part of

it, such as one or more whole

chromosomes, and estimate the selectivity

and the sensitivity as described above. Of

course, this will give no idea of additional

matches not conflicting with existing

annotation, which might be false positives

or real new promoters. Unfortunately,

this is also impossible for all the programs

based on published results, thus only some

published data that explain what kind of

problems are associated with the various

approaches are referred to.

There are several ways one could

categorise the methods. This review takes

a genome-oriented approach and

differentiates two major classes of

approaches: one class of programs that

attempts promoter prediction or

localisation in whole anonymous genomic

sequences and another class that takes

advantage of genome annotation or other

means to limit the actual search space for

promoter finding. Technical criteria such

as the basic models used are not applied

since only overall results are really

important. However, only programs that

allow a genome-wide analysis are referred

to.

The first category does not require any

kind of a priori information about the

sequence to be analysed except that it

should be a mammalian genome (most

programs have been trained on human

sequences). The advantage is that such

programs can be applied to genomic

sequences as they appear, with no need to

wait for gene annotation. This also avoids

propagation of errors in the annotation

process.

PROGRAMS WORKING ON
WHOLE ANONYMOUS
GENOMES
The first method of this category, which

happens to be also the first representative

of the new generation, was

PromoterInspector.17 This method is

based on a content analysis of promoter

features represented by IUPAC-strings

rather than specific transcription elements,

and predicts regions containing a

promoter. No strand orientation or TSS

position is determined, which poses a

problem in comparing this with programs

that predict promoters directly. The

Specificity/selectivity

Table 2: Web sites for whole genome annotation

ElDorado http://www.genomatix.de/
free_login.html

Registration site, includes promoter
annotation for human and mouse genomes

ENSEMBL http://www.ensembl.org/ Includes genomes human, mouse, zebrafish,
fugu and mosquito

UCSC genome browser http://genome.ucsc.edu/ Includes human and mouse genomes
VISTA genome browser http://pipeline.lbl.gov/vistabrowser/ Includes human and mouse genomes
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method was initially reported at a

specificity of 43 per cent,17 and is now

claimed to have a specificity of 85 per cent

based on an artificial genomic sequence

composed from annotated EMBL

entries.22 Full analysis of the human

genome was carried out, which is available

through the ElDorado system. However,

owing to access restriction of the free

subscription, the whole set of promoters

cannot be accessed at once. The data for

chromosome 22 were published and

indicate a sensitivity of 45 per cent.23

The second method in this category

was Dragon Promoter Finder, which is

based on similar ideas as

PromoterInspector but predicts strand-

specific TSS.18 The advance in predictive

capabilities is in part attributed to the use

of five different promoter models by the

authors. Dragon Promoter Finder allows

several levels of sensitivity, leaving it up to

the user to choose the amount of false

positive matches to be tolerated. Dragon

Promoter Finder was also tested on whole

human chromosome 22 and apparently

also works with a high selectivity. The

direct comparison of the program with

PromoterInspector is complicated by the

difference in strand prediction, which the

authors compensated for by counting

every match of PromoterInspector

automatically as false positive (when the

promoter was correctly predicted,

otherwise one match equals two false

positives) to account for the missing

strand orientation.

The third program, Eponine, belongs

half and half to both categories, since it

can analyse anonymous sequences such as

whole human chromosome 22 in

principle, but was applied to a pseudo

chromosome, which included only

regions around known genes.19 As their

comparison shows, not only does

Eponine appear very selective but

PromoterInspector also fares much better

than on the whole chromosome. This

indicates a general bias in favour of

programs that was already observed when

the short test sets of Fickett and

Hatzigeorgiou3 were replaced by longer

genomic regions.17

PROGRAMS WORKING ON
A RESTRICTED SEARCH
SPACE
There are two more programs taking

advantage of existing annotation to

restrict the search space to upstream

regions of a few kilobases. The

FirstExonFinder utilises various

discriminatory functions including

recognition of the first splice site (intron

1) to predict transcription start sites and

has been applied to the 15 kb sequences

upstream of known genes on

chromosomes 21 and 22, using the

approximate position of the gene start and

the strand orientation of the genes to

restrict the search space.20 The method

apparently works quite well for the

known genes on chromosomes 21 and 22.

However, it is unclear how the authors

came up with the whole genome analysis

claiming the existence of about 68,000

genes, since for most of these genes no

information about gene start and

orientation is available (but is required for

the reported specificity to be reached).

This was not clear from the original

publication but has been clarified in a

correction published on the author’s web

site.24

Another method in this category is

ConPro, which analyses one gene at a

time (at least in the web version) but is

not restricted to go after all genes in

principle.25 The methods relies on a

consensus formation of five promoter

prediction programs previously reviewed

by Fickett and Hatzigeorgiou,3 all of

which individually produce large amounts

of false positives (~1 in 1,000 bp). By

restricting the search space and forming

the consensus of the methods, the authors

claim to have been able to predict about

14,000 promoters in the genome, 6,400

of which correspond to well-characterised

genes. As the authors include only a

maximum of 1.5 kb upstream sequences,

the relatively low number of true

positives is no great surprise as first introns

Whole genome analysis

Gene specific analysis
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happen to be several kilobytes on average,

which puts many promoters of even

slightly truncated genes out of reach for

this method.

Hannenhalli and Levy26 published an

approach based on analysis of regions

around CpG islands regions for a few

selected TF-sites, inferring that the

combination of the various parameters

indicates promoters. They concluded that

generally only CpG island-associated

promoters could be detected, as they

found the other parameters to have little

influence on the overall decision. This is

in contrast to most of the other methods

discussed here, which were able to predict

non-CpG island-correlated promoters,

albeit less efficiently. Their method bears

some similarity to a previous published

CpG island finder and cannot be

compared to the general methods of the

previous category.27

MISCELLANEOUS
PROGRAMS
There is a third category of programs that

do not directly attempt to predict

promoters but some properties, which

might be also useful for promoter

prediction and/or analysis. Therefore,

those methods are summarised here.

The program rVISTA takes advantage

of phylogenetic conservation of functional

binding sites in regulatory regions

between human and mouse sequences

(any other pair of genomic sequences

would work as well as long as there is a

clear phylogenetic link of the

corresponding genes28). The authors

show that in their test case, a cytokine

cluster, they can successfully weed out

most of the unspecific matches and retain

functional binding sites. This approach

can be applied to any phylogenetic pair of

regulatory regions, not just promoters,

which is why this approach can be

regarded as a logical next step, once

promoters were actually located by

another method. Another method that

can be used through the web is the

TraFaC program by Jegga et al.29 The

authors follow the idea that similar

regions (promoters as well as enhancers)

may contain a similar composition of TF

binding sites, not necessarily in a

conserved order. Results are depicted as

regulograms to be interpreted by the user.

Levitsky et al.30 published a system that

attempts to calculate various properties of

genomic DNA, among them the potential

to form nucleosomal complexes, which

they claim to be elevated in tissue-

specifically expressed promoters. Given

the enormous amount of chromatin

remodelling involved in transcriptional

activation, this finding should be taken

with care. A potential for nucleosomal

structures per se may well too weak to

predict promoters. However, again after

promoters have been located this might

be a good tool to assess properties of such

promoters.

CONCLUSIONS
Although several new methods have been

published in a relatively short period of

time, it is difficult to assess their respective

value for the user, as this depends very

much on the individual problems to be

solved. To obtain an initial annotation of

whole genomes PromoterInspector and

Dragon Promoter Finder should be the

first choice. However, it is important that

such promoters are put into the genomic

context afterwards. Promoters of known

species such as human or mouse should

always be considered in the genomic

annotation context. Currently, ElDorado

is the most complete system offering such

combined information, but the popular

genome browsers can be expected to

follow this lead within the next two years.

The programs in the second category

require a priori knowledge about genes but

offer a few benefits in return. They can

afford to be more sensitive owing to the

more restricted search space and some

yield additional information about the

promoter, so they might be a good choice

to find promoters of known genes, which

are missed by the general approaches.

Although this review focuses on

promoter recognition by in silico methods,

the growing amount of experimentally

CpG island finding

Phylogenetic
comparisons
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determined TSS deserves mentioning. In

particular, oligo-capping has been used to

analyse thousands of cDNAs31 in order to

map the true 59-end of the mRNA which

would be located right inside the

promoter as promoters extend also 39 of

the TSS.1 Two problems with that

approach remain. The first is that because

of technical restrictions, not all mapped

59-ends are the real TSS of the genes since

the whole procedure has an overall

efficiency of about 70–80 per cent. This

means that the experimental approach

yields about as many false positives as the

in silico methods. Therefore, an

experimentally mapped TSS is not always

indicating a promoter. However if such a

mapped TSS is located within a

reasonable range (less than 2 kb) with a

predicted and/or a mapped gene start

from gene finding, or cDNA mapping,

chances are much better that this will

represent a real promoter. This already

highlights the second problem. As oligo-

capping identifies only short, presumably

59, regions of mRNAs correctly, mapping

of the results onto the genome is not a

trivial task. Precise mapping definitely

requires more sophisticated tools than

BLAST and only carefully mapped data

will be useful.

The final question that remains is

whether in silico promoter recognition was

just a short interlude that would be

superseded by genome annotation based

on experimental results. This may well be

the case for the human genome as

enormous efforts have been made to

complete the annotation. However, this is

still continuing two years after the first

draft was published and is not expected to

be finished for another two years. In the

mean time, in silico promoter recognition

will remain as a valuable additional source

of information. As the genomes of more

and more mammalian and other species

become sequenced, the amount of time

for annotation can be expected to be

reduced. However, complete in silico

promoter annotation of a mammalian

genome can be done ahead of any other

annotation in a matter of days on

relatively inexpensive computer systems.

These approaches will also help to define

non-coding RNA genes, suggest

alternative transcription start sites and aid

in the definition of new genes that bear

no resemblance to any known genes.

Therefore, it is expected that such in silico

approaches will remain important tools

for the analysis of new genomic

sequences. Of course, gene prediction

(ie largely coding region prediction) and

promoter prediction can complement

each other as they usually do not rely on

the same features, as noted above.23

Another important topic that gains

more importance is comparative

genomics. As discussed above, such

comparative approaches are also

applicable to promoters.28 However,

since, in particular, first non-coding exons

and intron sequences are often much less

conserved than coding exons, in silico

promoter recognition will be important

to ensure that promoter sequences are

being compared, since promoters also

show very limited sequence conservation

in general.1

In summary, the field of in silico

promoter recognition has seen some

dramatic improvements during recent

years. Further improvements, especially in

the sensitivity of methods, can be

expected in the near future, placing those

tools among the most powerful

instruments for in silico analysis of genome

sequences. Combinations with gene

prediction methods have already been

successfully applied.17,25 Therefore, a

more general improvement of genome

annotation by promoter recognition can

be expected.

Even a perfect method for promoter

recognition would not put the groups

working on promoter recognition out of

a job. There are several major tasks still

awaiting solutions in the field of

in silico analysis of gene regulation. For

example, there is nothing like an

enhancer finder that could be applied to

genomic sequences and the whole field of

epigenetic gene regulation is completely

off limits for bioinformatics analysis at

Experimental TSS
determination

Promoter/gene
prediction
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present (eg methylation, histone

acetylation/deacetylation, chromatin

remodelling in general, for reviews see

Harju et al.32 and Horn and Peterson33).

Fortunately, there is considerable progress

in the experimental analysis of these

phenomena, which might soon provide

the basis for bioinformatics approaches as

well.

Further improvements in DNA

structure prediction, especially some

simple chromatin structural elements such

as nucleosomal or solenoid structures, can

be expected to boost bioinformatics. At

the moment, the three-dimensional

structures involved in gene regulation are

completely ignored in bioinformatics

approaches, as they do not yet yield to

theoretical analysis in a useful way.

However, this field is also making

progress, which might open new

opportunities for bioinformatics.34

The analysis of transcriptional

regulation on a genomic level will remain

the crucial factor in understanding life on

a molecular basis and will help put the

wealth of knowledge gained from

proteomics into the right context. In silico

promoter recognition will remain an

important contributor to this goal.
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