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ABSTRACT

Synthetic and genetically encoded chromo- and fluorophores have become indispensable tools for biomedical
research enabling a myriad of applications in imaging modalities based on biomedical optics. The versatility
offered by the optoacoustic (photoacoustic) contrast mechanism enables to detect signals from any substance
absorbing light, and hence these probes can be used as optoacoustic contrast agents. While contrast versatility
generally represents an advantage of optoacoustics, the strong background signal generated by light absorption
in endogeneous chromophores hampers the optoacoustic capacity to detect a photo-absorbing agent of interest.
Increasing the optoacoustic sensitivity is then determined by the capability to differentiate specific features of
such agent. For example, multispectral optoacoustic tomography (MSOT) exploits illuminating the tissue at
multiple optical wavelengths to spectrally resolve (unmix) the contribution of different chromophores. Herein,
we present an alternative approach to enhance the sensitivity and specificity in the detection of optoacoustic
contrast agents. This is achieved with photoswitchable probes that change optical absorption upon illumination
with specific optical wavelengths. Thereby, temporally unmixed MSOT (tuMSOT) is based on photoswitching
the compounds according to defined schedules to elicit specific time-varying optoacoustic signals, and then use
temporal unmixing algorithms to locate the contrast agent based on their particular temporal profile. The
photoswitching kinetics is further affected by light intensity, so that tuMSOT can be employed to estimate the
light fluence distribution in a biological sample. The performance of the method is demonstrated herein with the
reversibly switchable fluorescent protein Dronpa and its fast-switching fatigue resistant variant Dronpa-M159T.

Keywords: Optoacoustic imaging, photoswitchable proteins, Dronpa, Dronpa-M159T, temporally unmixed
multispectral optoacoustic tomography.

1. INTRODUCTION

Synthetic as well as genetically encoded chromo- and fluorophores are essential tools for biomedical research
and diagnostics enabling a large range of applications in vitro and in vivo.1 Dedicated imaging instrumentation
is used to distinguish specific absorbing or fluorescent contrast agents from background signals based on their
absorbance or fluorescence spectrum. This is typically done by means of optical filters that extract a small
bandwidth of the spectrum of the contrast agent of interest, in a way that multiple filters covering a large
portion of the optical spectrum can be employed to increase the contrast-to-noise ratio (CNR) associated to the
distribution of the contrast agent.2, 3

On the other hand, optoacoustic (photoacoustic) imaging enables breaking the light diffusion limit for re-
solving optical contrast in biological tissues with much higher resolution than optical techniques, thus offering
new in vivo insights that growingly attract interest of the biomedical research community.4–7 In more detail, the
conversion of light to mechanical waves (optoacoustic effect) is mediated by the local absorption of photons and
nonradiative relaxation of the absorbers, which results in thermal energy and thermoelastic expansion. Thereby,
optoacoustic contrast can e.g. be provided by fluorophores such as well-established dyes or genetically encoded
fluorescent proteins,8, 9 and a larger contrast versatility is further enabled by a myriad of probes and genetic
reporters absorbing light photons.10–12 The sensitivity in the detection of molecules for light intensities below
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the safety exposure limit is ultimately conditioned by the ultrasound measuring technology, being significantly
lower than in fluorescence imaging systems. More importantly, the strong background signal generated by light
absortion in endogeneous chromophores hampers the optoacoustic capacity to detect the photo-absorbing agent
of interest. Increasing the optoacoustic senstivity is then determined by the capability to differentiate specific fea-
tures of such agent. In this way, multispectral optoacoustic tomography (MSOT) exploits illuminating the tissue
at multiple optical wavelengths to spectrally resolve (unmix) the contribution of different chromophores.13–15

Specificity in the absorption properties is also present in a special subset of chromo- and fluorophores that
change their photo-physical properties as a function of incident light. For example, reversibly switchable fluo-
rescent proteins (RSFPs) can be reversibly switched between a fluorescent and a non-fluorescent state.16 These
photoresponsive chromo- and fluorophores have been used in tracking schemes and single molecule studies or
in so-called super-resolution microscopy techniques that enable fluorescence imaging well beyond the diffraction
limit.17

Herein, we describe an alternative exploitation of the photoswitching capability of specific compounds to
enhance the sensitivity and specificity of optoacoustics imaging. This is achieved by photoswitching the com-
pounds according to defined sequences of optical wavelengths to create specific time-varying optoacoustic signals,
so that temporal unmixing algorithms are subsequently used to locate the contrast agent based on its particular
temporal profile. On the other hand, the switching kinetics can further be exploited for light fluence normaliza-
tion. Optoacoustic images are proportional to the light fluence distribution, which can have variations higher
than an order of magnitude for millimeter- to centimeter-scale depths. Several procedures based on theoretical
models, iterative methods or multispectral approaches have been suggested for light fluence normalization.18–21

For photoswitchable probes, the activation and deactivation time constants are a function of the number of
incident photons and hence depend on the light fluence distribution. Thereby, herein we take advantage of the
spatial dependence of the temporal profiles to propose a method to correct for the light fluence distribution in
optoacoustic images, so that tuMSOT can potentially be used as a quantitative molecular imaging tool.

2. MATERIALS AND METHODS

2.1 Experimental setup

The experimental system employed is depicted in Fig. 1a. A spherical array of 256 piezocomposite detectors was
used to provide a three-dimensional optoacoustic image of a sample with each laser pulse, so that an imaging rate
determined by the pulse repetition frequency of the laser is achieved.22 A mutant version of the photoswitchable
protein Dronpa (Dronpa-M159T) as well as the wild-type protein were used in the experiments. The imaging
sample was immersed in water to guarantee acoustic coupling. An optical parametric oscillator (OPO)-based
laser was used as an illumination source. The laser wavelength can be tuned in the range 420-710 nm in a per
pulse basis, so that a sequence of arbitrary wavelengths in this range can be generated at the pulse repetition
frequency of the laser (50 Hz). For activation and deactivation of the protein, the wavelength was switched
between 420 and 488 nm as indicated in Fig. 1b.

2.2 Temporal unmixing

Assuming a stochastic process, the number of active molecules for a given instant N(t) can be expressed as

N(t) = N0e
−αt, (1)

where N0 is the number of initially activated molecules and α is the photoswitching rate. Under the same
environmental parameters such as temperature, viscosity and pH, α is proportional to the light fluence, i.e.,
α = kΦ, being k a constant that depends on the photoswitching kinetics of a specific substance and on the
optical wavelength employed. Considering that the optoacoustic signal intensity p(t) is similarly proportional to
the number of activated molecules, its temporal dependence can be expressed as

p(t) = p0e
−kΦt, (2)

p0 being the initial optoacoustic signal rendered with the probe in its fully activated state. Both Eqs. 1 and 2
are expressed as a function of time t, which in our particular case represents number of excitation laser pulses.
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Figure 1. (a) Lay-out of the experimental system to image the reversible switchable fluorescent proteins (RSFP). (b)
Photophysical properties of Dronpa and Dronpa-M159T, depicting the switching modes of the proteins and the excitation
wavelengths employed for switching.

The time profile associated to the optoacoustic signal generated by the probe can be distinguished from the
constant optoacoustic signal generated by background components. Thereby, an unmixing algorithm can be
employed to estimate the distribution of the probe as explained in Ref. 23.

2.3 Light fluence estimation

As mentioned in the previous section, the time constant α is proportional to the light fluence so that the light
fluence distribution can be estimated from a sequence of optoacoustic images. For this, the actual measured
temporal profiles of the optoacoustic signal at different locations in the images were fitted to an exponential-like
curve y(t) in the form of

y(t) = a1e
−b1t + a2e

−b2t. (3)

In Eq. 3, the light fluence is assumed to be proportional to b1. The second term in Eq. 3 was included to
account for the residual signal in the tubing for the deactivated protein as well as for potential slow variations
associated to laser fluctuations, temperature changes, bleaching and other parameters. More details are provided
in Ref. 24.

3. RESULTS

In a first experiment, three tubigs were embedded in agar containing blood, Dronpa and the mutant version
Dronpa-M159T respectively. The resulting optoacoustic image obtained for 488 nm excitation for the fully
activated proteins is displayed in Fig. 2a. The tubings containing the proteins are not visible in this image due
to the strong signal generated at the tubing containing blood. Image unmixing was performed from a sequence
of images were wavelengths 488 nm and 420 nm were alternated. Fig. 2b shows the unmixed distributions of
the wild-type and mutant proteins obtained with an unmixing algorithm termed vertex component analysis
(VCA).25, 26 The temporal profiles for 488 nm excitation are also displayed. This unmixing algorithm allows
isolating the contribution of both proteins even for a signal level which is orders of magnitude lower than that
of blood. Standard unmixing with least square fitting to the time profiles obtained at specific points in the
tubings can also be used for temporal unmixing (Fig. 2c), although the sensitivity is lower with this procedure
as manifested in the cross-talk noise present in the images.

In a second experiment, two tubings were embedded in an agar phantom containing Intralipid to mimic
optical scattering in biological tissues. In this way, light attenuation is produced, so that the optoacoustic signal
for the tubing at a deeper location is lower than that for the other tubing containing the same concentration
of the protein. This is shown in the three dimensional view in Fig. 2d. This image was normalized with the
estimated decay rate inside the tubings, yielding the image displayed in Fig. 2e. The intensity of the signal at
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Figure 2. (a) Maximum intensity projection of the three-dimensional optoacoustic image for an agar phantom with three
tubings containing blood (BL), wild-type Dronpa (WT), and the mutant protein Dronpa-M159T (MU) when both proteins
are fully activated. (b) Unmixed distributions of Dronpa and Dronpa-M159T obtained with vertex component analysis
along with the temporal profiles for 488 nm. (c) Unmixed distributions of Dronpa and Dronpa-M159T obtained with
least square fitting along with the temporal profiles for 488 nm. (d) Three-dimensional image of an agar phantom with
Intralipid containing two tubings at different depths with Dronpa-M159T. (e) Equivalent image after normalizing with
the estimated decay rates inside the tubings.

both tubings in the normalized image is approximately the same,24 which indicates a good performance of the
suggested method for light fluence normalization.

4. CONCLUSIONS

The feasility of generating specific optoacoustic temporal profiles by photoswitching molecules was shown herein,
for which a fast-wavelength-tuning short-pulsed laser operating in the visible region of the spectrum was used.
The capabililty of the laser to tune the optical wavelength in a per-pulse basis can further be exploited to generate
multispectral profiles in a very short time.27 Specifically, the reversibly switchable fluorescent proteins Dronpa
and its fast-switching fatigue resistant variant Dronpa-M159T were used. Optoacoustic imaging experiments
further demonstrate the ability to temporally unmix proteins with identical spectra and strong background
absorbers such as blood.

On the other hand, the presented results showcase the basic feasibility to correct for the light fluence dis-
tribution in biological tissues by accounting for changes in the time deactivation constant of photoswitchable
probes. The photoswitchable fluorescent protein Dronpa-M159T used herein is a very convenient probe for this
purpose as it is fatigue resistant and rapidly switchable. Since the deactivation cycle can be repeated in a very
short time for the fast-switching Dronpa-M159T, dynamic imaging of the distribution of this agent is enabled
provided high-frame rate acquisition is performed,22 where the temporal resolution is generally given by the time
required for the activation-deactivation cycle. The development of probes for tuMSOT, particularly for near-
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infrared wavelengths,28 represents an important challenge to address. In this range of the spectrum, tuMSOT
may potentially be used for quantitative molecular imaging with a very high sensitivity.
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