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ABSTRACT   

We used raster-scan optoacoustic mesoscopy (RSOM) at 50 MHz, and at 100 MHz, to monitor tumor growth, and tumor 
angiogenesis, which is a central hallmark of cancer, in-vivo. In this study we compared the performance, and the effect of 
the 50 MHz, and the 100 MHz frequencies on the quality of the final image.  
The system is based on a reflection-mode implementation of RSOM. The detectors used are custom made, 
ultrawideband, and spherically focused. The use of such detectors enables light coupling from the same side as the 
detector, thus reflection-mode. Light is in turn coupled using a fiber bundle, and the detector is raster scanned in the 
xy-plane. Subsequently, to retrieve small features, the raw data are reconstructed using a multi-bandwidth, beamforming 
reconstruction algorithm. 
Comparison of the system performance at the different frequencies shows as expected a higher resolution in case of the 
100 MHz detector compared to the 50 MHz. On the other hand the 50 MHz has a better SNR, can detect features from 
deeper layers, and has higher angular acceptance. Based on these characteristics the 50 MHz detector was mostly used. 
After comparing the performance we monitored the growth of B16F10 cells, melanin tumor, over the course of 9 days. 
We see correspondence between the optoacoustic measurements and the cryoslice validations. Additionally, in areas 
close to the tumor we see sprouting of new vessels, starting at day 4-5, which corresponds to tumor angiogenesis.   
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1. INTRODUCTION  

Optoacoustics is a relatively new imaging modality, which overcomes the limitations of optical imaging by indirectly 
measuring the generated ultrasound. The advantages of this over a pure optical method is that you directly get 
absorption, and the scattering of ultrasonic waves is 2-3 orders of magnitude lower in biological tissue than it is for 
optical waves[1].  Because of these characteristics optoacoustics has been growing recently, and it has been used for 
macroscopic applications[2-4], mesoscopic[5, 6], and microscopic ones[7-9]. In the tomographic case the achieved 
resolutions are on the order of 100-200 µm, and the depth of imaging is 1-2 cm, thus such approaches are useful for 
whole body small animal imaging[4], or for clinical applications[10]. The advantages over other modalities in this case 
are the high resolution imaging, combined with high depth of penetration, and the delivery of functional and molecular 
parametrs of disease biomarkers.  
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detectors will enable the manufacturing of point like detectors, with wide angular acceptance, and a flat bandwidth[21, 
22]. Another addition might be using a hybrid optoacoustic ultrasound to collect even more information about the 
anatomy, and the heterogeneity of the tumor[23, 24]. 
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