Research article 75

# Inhibition of neurogenesis at the zebrafish midbrain-hindbrain boundary by the combined and dose-dependent activity of a new hairy/E(spl) gene pair

Jovica Ninkovic<sup>1,2,‡,§</sup>, Alexandra Tallafuss<sup>1,2,\*,‡</sup>, Christoph Leucht<sup>1,2</sup>, Jacek Topczewski<sup>3,†</sup>, Birgit Tannhäuser<sup>1,2</sup>, Lilianna Solnica-Krezel<sup>3</sup> and Laure Bally-Cuif<sup>1,2,§</sup>

<sup>1</sup>Zebrafish Neurogenetics Junior Research Group, Institute of Virology, Technical University-Munich, Trogerstrasse 4b, D-81675 Munich, Germany

<sup>2</sup>GSF-National Research Center for Environment and Health, Institute of Developmental Genetics, Ingolstaedter Landstrasse 1, D-85764 Neuherberg, Germany

<sup>3</sup>Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235 USA

\*Present address: Institute of Neuroscience, University of Oregon, Eugene, OR 97403, USA

†Present address: Children's Memorial Institute for Education and Research, Northwestern University Feinberg School of Medicine, Chicago, IL 60614, USA

<sup>‡</sup>These two authors contributed equally to this work

§Authors for correspondence (e-mail: ninkovic@gsf.de and bally@gsf.de)

Accepted 6 October 2004

Development 132, 75-88 Published by The Company of Biologists 2005 doi:10.1242/dev.01525

### **Summary**

The intervening zone (IZ) is a pool of progenitor cells located at the midbrain-hindbrain boundary (MHB) and important for MHB maintenance, midbrain-hindbrain growth and the generation of midbrain-hindbrain neurons. Recently, we implicated the Hairy/E(spl) transcription factor Her5 in the formation of the medial (most basal) part of the IZ (MIZ) in zebrafish; the molecular bases for lateral IZ (LIZ) formation, however, remain unknown. We now demonstrate that her5 is physically linked to a new family member, him, displaying an identical MHB expression pattern. Using single and double knockdowns of him and her5, as well as a him+her5 deletion mutant background (b404), we demonstrate that Him and Her5 are equally necessary for MIZ formation, and that they act redundantly in LIZ formation in vivo. We show that these processes do not involve cross-regulation

between Him and Her5 expression or activities, although Him and Her5 can heterodimerize with high affinity. Increasing the function of one factor when the other is depleted further shows that Him and Her5 are functionally interchangeable. Together, our results demonstrate that patterning and neurogenesis are integrated by the her5-him gene pair to maintain a progenitor pool at the embryonic MHB. We propose a molecular mechanism for this process where the global 'Him+Her5' activity inhibits ngn1 expression in a dose-dependent manner and through different sensitivity thresholds along the medio-lateral axis of the neural plate.

Key words: Hairy, E(spl), *her5*, *him*, Midbrain-hindbrain, MHB, Neurogenesis, Zebrafish

### Introduction

Development of the vertebrate central nervous system (CNS) is a complex process that needs to connect patterning and neurogenesis. Crucial to this process are local events of neurogenesis inhibition, which maintain pools of progenitors in defined locations of the neural tube. The delayed differentiation of these progenitor zones permits the generation of large as well as spatiotemporally patterned structures, such as the layered cortex in higher vertebrates, the polarized optic tectum in birds, or the retina. The molecular events controlling the generation or maintenance of neural progenitor pools remain largely hypothetical.

The embryonic midbrain-hindbrain domain (MH) is characterized by the maintenance of a zone of delayed differentiation at the midbrain-hindbrain boundary (MHB). This zone, called 'intervening zone' (IZ), separates midbrain from anterior hindbrain neuronal clusters and has been described in all vertebrates (Bally-Cuif et al., 1993; Geling et

al., 2003; Vaage, 1969). Its functional importance is attested by genetic ablation experiments. For instance, in mouse embryos lacking the function of the two bHLH E(spl)-like transcription factors Hes1 and Hes3, premature differentiation of the IZ occurs, leading to the lack of several MH neuronal populations, and to the collapse of MH structures (Hirata et al., 2001). These defects may primarily result from a disruption of the isthmic organizer, an inducing cell population located at the MHB and involved in MH maintenance (Hirata et al., 2001; Martinez, 2001; Rhinn and Brand, 2001; Wurst and Bally-Cuif, 2001). Recent results in zebrafish have permitted dissection of the mechanisms of IZ formation in more detail. There, expression of the hairy/E(spl) gene her5 (Muller et al., 1996) precisely delineates the IZ at all embryonic stages (Geling et al., 2003). At the onset of neurogenesis (tail-bud stage), her5 expression separates the early midbrain ventrocaudal proneural cluster (vcc) from the anterior hindbrain proneural clusters of rhombomere 2 (presumptive motorneurons –r2MN– and lateral

neurons -r2LN-). In the absence of Her5 function, ectopic neurogenesis occurs in the medial (future basal) part of the IZ, as revealed by the ectopic expression of the proneural genes neurogenin1 (ngn1) and coe2 and the later differentiation of neurons across the basal MHB, bridging the vcc and r2MN (Geling et al., 2003; Geling et al., 2004). Conversely, forced expression of ngn1 within the MH domain leads to a partial downregulation of MHB markers' expression (Geling et al., 2003). These results have two implications. First, they confirm that the IZ is necessary to maintain MHB integrity. Second, they demonstrate that the IZ is composed of at least two domains along the mediolateral axis, which differ in their requirement for Her5 function: the medial IZ domain (MIZ), which crucially depends on Her5 for neurogenesis inhibition, and the lateral (future alar) IZ domain (LIZ), which forms even in the absence of Her5. Within the MIZ, Her5 acts as a prepattern factor that prevents the formation of a proneural cluster, and inhibits expression of ngn1 and coe2 upstream of Notch signaling (Geling et al., 2004).

Our study of Her5 function did not address the formation of the LIZ, in spite of its crucial role in controlling midbrain and anterior hindbrain alar neurogenesis. To now approach this issue, we reasoned that other Hairy/E(spl) factors might be expressed within this domain and act redundantly with Her5. Because there are examples of physically linked E(spl) genes in Drosophila (E(spl) complex) (Klambt et al., 1989; Knust et al., 1992) and zebrafish (her1 and her7) (Henry et al., 2002), and because linked genes are more likely to share spatiotemporal characteristics of expression, we searched for new Hairy/E(spl) genes in the vicinity of the her5 locus. Sequencing a her5-containing PAC revealed a new her-like gene, him, adjacent to her5 and in opposite orientation (hence him for her5 image), identically expressed across the IZ. We report here that Him is the hypothetical factor cooperating with Her5 to control LIZ formation in vivo, and that Him also crucially contributes to MIZ formation. Together, our results unravel the genetic combination preventing neurogenesis across the MHB.

### Materials and methods

### Cloning and phylogenic analysis of him

Systematic sequencing of genomic DNA surrounding known *her* genes was performed using PAC clones obtained from RZPD. A new ORF was detected close to the *her5* gene locus in PAC BUSMP706H15152Q2. 5' RACE experiments were done to identify full-length cDNA, according to the manufacturer's recommendations (Invitrogen). The newly cloned gene, *him*, corresponds to ENSDARG00000002707 now predicted by The Welcome Trust Sanger Institute, with the exception that in the prediction the first exon is missed and the last exon is truncated.

The phylogenetic tree of zebrafish Her family was done using the phylodendrone software (www.es.embnet.org/Doc/phylodendron/treeprint-form.html). To construct the phylogenetic tree, the VectorNTI software and full-length sequences were used. The accession numbers of compared proteins are: Her5: NP\_571152, Her1: NP\_571153, Her7: NP\_571684, Her4: NP\_571165, Her2: NP\_571164, Her3: NP\_571155, Her9: NP\_571948 and Her6: NP\_571154. Proteins predicted by The Wellcome Trust Sanger Institute are: Her11 (ENSDARP00000012990), Her13 (ENSDARP0000008307), Hes6 (ENSDARP00000021078) and Her12 (ENSDARP00000038100) (http://www.ensembl.org, release from 08-02-2004).

### Zebrafish strains and transgenic lines

Embryos obtained from natural spawning of AB wild-type or transgenic fish, her5PAC::egfp (Tallafuss and Bally-Cuif, 2003) and –8.4ngn1::egfp (Blader et al., 2003), were raised and staged according to Kimmel et al. (Kimmel et al., 1995). *no isthmus* (*noi*<sup>1129a</sup>), *acerebellar* (*ace*<sup>11282a</sup>) (Brand et al., 1996) and *knypek* (*b404*, *kny*<sup>1119</sup>) (Solnica-Krezel et al., 1996; Topczewski et al., 2001) mutants were obtained by pairwise mating of heterozygous adult carriers, as described previously.

### Protein expression interference assays

Morpholino antisense oligonucleotides (her5MO<sup>ATG</sup>) were purchased from Gene-Tools, Inc. (Oregon, USA). The morpholino was dissolved to a stock concentration of 5 mM in H<sub>2</sub>O and injected into one-cell stage embryos at 1 mM. himMOs lead to non-specific cell death (not shown). Thus, GripNA antisense oligonucleotides preventing him translation, specific for the him ATG region (himGripNAATG) or acceptor site of the second him exon (himGripNASPL), were purchased from Active Motif (Belgium). GripNAs were dissolved to stock solution of 1 mM in H<sub>2</sub>O and injected into one-cell stage embryos at 0.5 mM. At this dose, the effect of himGripNAs on ngn1 expression was maximal. Sequences of antisence oligonucleotides were as follows: her5MOATG: 5'-TTGGTTCGCTCATTTTGTGTATTCC-3'; *himGrip*NA<sup>ATG</sup>: 5'-ATTCGGTGTGCTCTTCAT-3' himGripNASPL: 5'-TACTCACAGTGTCTGCAG-3'. All injection experiments were repeated at least three times.

### In situ hybridization and immunohistochemistry

Probe synthesis, in situ hybridization and immunohistochemistry were carried out as previously described (Hammerschmidt et al., 1996). The following in situ antisense RNA probes were used: *her5* (Muller et al., 1996), *him* (this paper), *ngn1* (Korzh et al., 1998), *pax2.1* (Lun and Brand, 1998) and *egfp* (Clontech). Primary antibodies used for immunohistochemistry were rabbit anti-GFP (ams biotechnology Europe, TP401) used at a final dilution of 1/500 and mouse antihuman neural protein HuC/HuD (MoBiTec A-21271) (1/300). They were revealed by using FITC-conjugated goat anti-rabbit secondary antibody (Jackson ImmunoResearch Laboratories, 111-095-003) or Cy3-conjugated goat anti-mouse secondary antibody (Jackson ImmunoResearch Laboratories, 115-165-044) (1/200), as appropriate. Embryos were scored and photographed under a Zeiss SV 11 stereomicroscope or a Zeiss Axioplan photomicroscope.

#### **RNA** injections

knypek capped RNA was synthesized using Ambion mMessage mMachine kit following the recommended procedure. Capped RNA was injected at the concentration of 60 ng/μl into the embryos at the one-cell stage.

### **Protein interaction assays**

For two-hybrid assays, The MATCHMAKER GAL4 Two-Hybrid System 3 (Clontech) was used following procedures described by the manufacturer. The 'bait' and 'AD' plasmids were constructed by fusing in-frame the complete ORFs of *her5*, *him* and *ngn1* to either pGBKT7 (encoding the GAL4 DNA-binding domain) or pGADT7 (encoding the GAL4 activation domain). The relative stringency of Her5 homodimerization versus its heterodimerization with Him was quantified by  $\beta$ -galactosidase assay according to the manufacturer's recommendation (Clontech). The  $\beta$ -galactosidase activity was quantified according to Lazo et al. (Lazo et al., 1978).

### Co-immunoprecipitation and western blot analysis

Transformed yeast cells expressing the two proteins of interest were lysed in 0.5 ml of lysis buffer (50 mM Tris-HCl pH 8, 150 mM NaCl, 0.1% NP40, 0.1 mM DTT, 0.1 mg/ml pepstatin A, 0.03 mM leupeptin, 145 mM benzamidine, 0.37 mg/ml aprotinin, 1 mM

phenylmethylsulfonyl fluoride) with 0.25 g of glass beads (425-600 μl, Sigma) for one hour at 4°C with shaking. The extracts were then centrifuged at 15 000 g for 10 minutes at 4°C to eliminate cell debris, and the supernatant was collected. For immunoprecipitation, 0.4 ml aliquots of lysate were precleaned by incubation with 150 µl of pre-immune rabbit serum and 100 µl of 1:1 slurry of Protein A Sepharose<sup>TM</sup> CL-4B (Amersham Bioscience AB) for 30 minutes at 4°C. Precleaned extracts were immunoprecipitated with 10 µl of rabbit anti-HA antibody (dilution 1/1000) (Sigma) and 100 µl of 1:1 slurry of Protein A Sepharose CL-4B (Amersham Bioscience AB) for 30 minutes at 4°C. The sepharose beads were washed three times with 1 ml of lysis buffer. The precipitates were fractionated on SDS-PAGE and subsequent western blot analysis was performed according to standard protocols, by using mouse anti-c-Myc antibodies (1/1000) (Sigma). The primary antibodies were revealed using HRP-coupled secondary antibodies (Jackson Laboratories) diluted to 1/200 and enhanced chemiluminescence (Amersham Bioscience AB).

### Quantification of him mRNA in the her5PAC::egfp line

Total RNA was isolated from her5PAC::egfp embryos and WT siblings at the five-somite stage and reverse-transcribed before realtime PCR amplification. Real-time PCR was done by using LightCycler FastStart DNA Master SYBR Green I kit (Roche, Germany) and Light Cycler Instrument (Roche, Germany). Quantitative values were obtained from the threshold cycle number at which the increase in the signal associated with exponential growth of the PCR products begins to be detected using the LightCycler Software, according to the manufacturer's recommendations. The precise amount of total RNA added to each reaction mix (based on optical density) and its quality (lack of extensive degradation) are both difficult to assess precisely. We therefore also quantified the transcript of the pax6 gene as the endogenous RNA control, and both samples were normalized to the basis of pax6 content (R-value on the graph). The nucleotide sequences of the specific primers used are shown in Table 1. The thermal cycling conditions comprised an initial denaturation step at 95°C for 10 minutes and 65 cycles at 95°C for 15 seconds, 55°C for 10 seconds and 72°C for 15 seconds. The quantifications were performed in triplicate on a pool of 50 embryos for each line and results represent the mean value±s.e.m.

### Results

# A new hairy/E(spl) gene, him, is physically linked to her5 in a head-to-head orientation

We searched for genes physically linked to her5 by sequencing a her5-containing PAC (Tallafuss and Bally-Cuif, 2003). This revealed the presence of an open reading frame encoding a new Hairy/E(spl) factor located 3.3 kb upstream of her5 and in a head-to-head orientation (Fig. 1A). RT-PCR experiments demonstrated the presence of the corresponding transcript in embryos (not shown), and blasting against the zebrafish genome (release from 08-02-04) confirmed the association of this gene with her5. We named this new gene him (for 'her5 image') (GenBank accession number AY705671). The genomic structure of him was determined by aligning cDNA and genomic sequences and shows several alterations compared to the zebrafish genome prediction, notably the presence of an additional 5' coding exon (true exon 1) as well as a different position and size of the last exon (exon 4), coding for 195 amino acids instead of the 22 predicted (Fig. 1A).

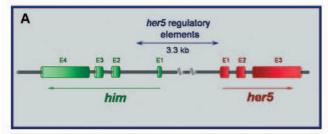
The head-to-head association of the gene pair him-her5 is reminiscent of the genomic organization of *her7-her1* (Henry et al., 2002). Further analysis of the zebrafish genome suggests

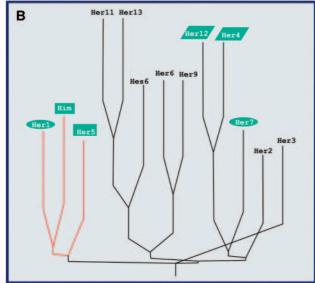
Table 1. Sequences of primers used in real-time PCR

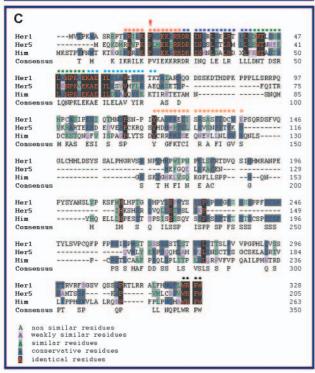
| Gene | Oligonucleotide                  | Sequence*                                             | Amplicon size (bp) |
|------|----------------------------------|-------------------------------------------------------|--------------------|
| him  | forward primer<br>reverse primer | 5'-GTTATATCTCCTGCGGGT-3'<br>5'-GGGATAAGAGGAAGCCTTT-3' | 163                |
| otx1 | forward primer<br>reverse primer | 5'-GATACCCAGCAACACCG-3'<br>5'-ATCTTCAGTGCCACCT-3'     | 136                |
| рахб | forward primer<br>reverse primer | 5'-TTTGCCTGGGAGATTC-3'<br>5'-CTCTGCCCGTTGAGCATTCT-3'  | 167                |

\*Primers were chosen with the assistance of LightCycler Probe Design software.

at least another additional gene pair, *her4* and a new predicted *her* gene that we named *her12* (ENSDARG00000028110) (Fig. 1B). Therefore, we propose that a paired organization might be a conserved feature among zebrafish *her* genes.


The Him protein, translated from our full-length cDNA sequence, consists of 297 amino acids and exhibits all structural features of an Hairy/E(Spl) bHLH factor acting as transcriptional repressor (Davis and Turner, 2001): a conserved proline residue in the basic domain, an 'orange' domain (Dawson et al., 1995) and a WRPW tetrapeptide in the C-terminus (Fisher et al., 1996) (Fig. 1C). Within the zebrafish Her family, Him shows the highest similarity to Her1 with 28.6% identical and 35.2% conserved amino acid (aa) residues. Similarity between Him and Her5 is slightly weaker (20.1% identical and 29.2% conserved aa residues) (Fig. 1B, red lines, and Fig. 1C). Comparison restricted to the functional bHLH domain reveals 66% identity to Her1 and 50% identity to Her5.


### *him* expression within the presumptive midbrainhindbrain is identical to *her5* and marks the intervening zone


We analyzed him expression by RT-PCR and in situ hybridization. him, like her5, is maternally expressed (Fig. 2A). Early zygotic him expression is ubiquitous (data not shown) but rapidly resolves in a first, transient, profile within the presumptive dorsal endoderm and mesoderm (Fig. 2B) at 30% epiboly: him is expressed in deep scattered cells of the dorsal embryonic margin and in the deep layer of the dorsal mesendoderm (Fig. 2B and 2B', red arrows). From midgastrulation onwards (70% epiboly), him expression in the presumptive endo- and mesoderm becomes undetectable (Fig. 2C). At that stage, him becomes transcribed in the anterior neural plate, in a V-shaped domain interrupted at the midline (Fig. 2C, red arrowhead). Expression in the lateral aspects of this domain is slightly broader and stronger than medially. At the three-somite stage, this expression fuses medially and, by anatomical landmarks, is clearly located within the presumptive MH domain (Fig. 2E,F). him expression is maintained at the MHB later on until 36 hpf (Fig. 2H,I). Starting at late gastrulation, him is also expressed in the presomitic mesoderm (Fig. 2D-F, blue arrows). Expression in this territory is detectable until late somitogenesis (Fig. 2H).

To determine whether and to what extent *him* and *her5* share expressing cells within the presumptive MH, we compared their expression profiles by double ISH. At three somites (Fig. 2F), observation at high resolution of double-stained embryos showed that the MH expression of *him* and *her5* are exactly identical. Thus, *him* expression, like *her5*, precisely delineates

the MH primordium (Tallafuss and Bally-Cuif, 2003). Like *her5* (Geling et al., 2003), it is also a permanent marker of the IZ, separating the early midbrain proneural cluster vcc from rhombomere 2 presumptive motor- and sensory neurons at late gastrulation (Fig. 2J). *him* expression is detected in this domain slightly earlier than *her5* (not shown).







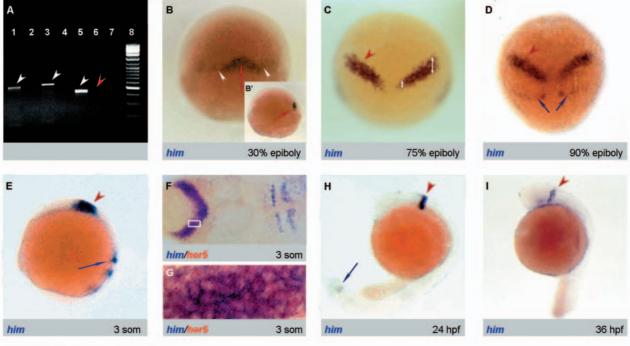
Taken together, our data suggest a more complex picture than expected from the genomic organization of *him* and *her5*. *him* and *her5* share expression within the MH domain, but differ elsewhere in *her5*-specific versus *him*-specific domains (pharyngeal precursors versus presomitic mesoderm at late gastrulation, respectively). In the neural plate however, Him is, together with Her5, the earliest marker of the MH and IZ, prompting us to analyze its function in this domain in more detail, in relation to MH patterning and Her5 activity.

# Like Her5, and in contrast to most MH factors, Him does not control patterning events within the MH region

Refined regionalization and maintenance of the MH domain at somitogenesis stages depends on a positive cross-regulatory loop involving Fgf8 and Pax2.1 (Brand et al., 1996; Lun and Brand, 1998; Reifers et al., 1998; Tallafuss and Bally-Cuif, 2003). To determine whether him was part of this loop, we analyzed its expression in ace/fgf8 and noi/pax2.1 mutants (Brand et al., 1996; Lun and Brand, 1998; Reifers et al., 1998). Expression of him in ace mutant embryos is initiated normally (data not shown) but, from mid-somitogenesis stages onwards, gradually narrows to persist at the MHB only in a dorsal patch (Fig. 3A,B). At 24 hpf him expression in ace is undetectable (data not shown). Similarly, in noi mutants, a downregulation of him expression can be observed from mid-segmentation stages onwards. In contrast to ace, him expression in noi later remains restricted to the ventral MHB (Fig. 3C,D), like her5 (Lun and Brand, 1998; Reifers et al., 1998). Together, these observations demonstrate that the maintenance of him expression is, like that of other MH genes and within a similar time-window, under control of the MH regulatory loop.

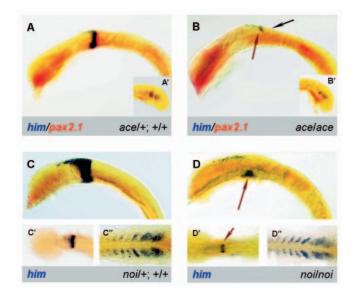
Because Him is one of the earliest selective markers of the MH primordium, we asked in turn whether Him activity was involved in controlling aspects of MH regionalization. Loss of Him function, performed by injection of an antisense *GripNA* oligonucleotide specific for the ATG region of *him* (*himGripNA* ATG) into one-celled embryos (see below for results demonstrating the functionality and specificity of this *GripNA*), however affected neither the expression of MH

Fig. 1. Sequence analysis and phylogeny of the new bHLH transcription factor Him. (A) Genomic organization of the him/her5 locus. The coding region is interrupted by three introns, the bHLH domain being encoded by exons E2 and E3. Note that the first exon of him is within the domain identified as necessary for MH expression of her5 (Tallafuss and Bally-Cuif, 2003). (B) Phylogenetic tree of the zebrafish Her family, showing relationship between known and predicted Her proteins. The alignment used for tree construction was obtained using the VectorNTI software, and is based on full-length sequences. Paired genes are boxed in blue, and individual pairs are marked with the same symbol (oval, rectangle or diamond). Accession numbers for the proteins used in this tree are: Her5 (NP\_571152), Her1(NP\_571153), Her7(NP\_571684), Her4(NP\_571165), Her2(NP\_571164), Her3(NP\_571155), Her9(NP\_571948) and Her6(NP\_571154). Proteins predicted by The Wellcome Trust Sanger Institute (http://www.ensembl.org) are: Her11, Her12, Her13 and Hes6. (C) Sequence alignment of Her1, Her5 and Him. Basic domains are overlaid with red asterisks, Helix 1 domains with dark blue, loop domains with green, Helix 2 domains with light blue, orange domains (H3/H4) with orange stars and WRPW tetrapeptides


patterning markers (e.g. *pax2.1*, *eng2*, *eng3*), nor that of IsO activity markers (e.g. *wnt1*, *fgf8*) at the 3- and 15-somite stages (data not shown).

Thus, although *him* expression depends on the MH maintenance loop, Him activity itself does not appear to impinge on this loop to influence MH patterning, like that of Her5.

# Him activity is crucial for the formation of the medial IZ at early neurogenesis stages


We demonstrated previously that Her5 is crucially necessary to prevent neurogenesis across the MIZ (Geling et al., 2003). Because of the similar expression of *him*, and its encoding a related Hairy/E(Spl) factor, we explored a potential involvement of Him in IZ formation. At early neurogenesis stages, the IZ is also the major site of *pax2.1* expression, which we used as landmark in future experiments (see Fig. 4D).

We tested a requirement for Him in IZ formation in loss-offunction experiments where him mRNA translation was blocked by specific antisense GripNAs. Two GripNAs were used: himGripNAATG (as above), and a second GripNA targeting the acceptor splice site of him exon2 (himGripNA<sup>SPL</sup>). Undistinguishable phenotypes (see below) were obtained with the two GripNAs, but not with a control GripNA of unrelated sequence, indicating that the phenotypes observed are a specific consequence of Him dysfunction. Specifically, himGripNAs-injected embryos assayed at the three-somite stage for ngn1 expression displayed a complete lack of the MIZ, with bridging of the vcc and r2MN clusters by ectopic ngn1-expressing cells (76% of cases, n=21 for himGripNAATG, 83% of cases, n=24 for himGripNASPL) (Fig. 4B,C, compare to 4D). This phenotype is followed by the development of ectopic differentiated neurons across the basal MHB at later stages (data not shown). It is in all respects



**Fig. 2.** *him* is expressed dynamically during embryonic development, in exact overlap with *her5* within the midbrain-hindbrain domain. (A) Maternal expression of *him* and *her5*, revealed by RT-PCR. (1,8). (1) *him* specific primers with cDNA isolated from four-cell stage embryos; (2) *him* specific primers without cDNA; (3) *her5* specific primers with cDNA isolated from four-cell stage embryos; (4) *her5* specific primers without cDNA; (5) *pax2.1* specific primers with cDNA isolated from three-somite stage embryos; (6) *pax2.1* specific primers with cDNA isolated from four-cell stage embryos; (7) *pax2.1* specific primers without cDNA; (8) 100 bp DNA ladder (*Fermentas MBI*). Note the selective amplification of *him* and *her5* in lanes (1) and (3) (white arrowheads), compared to the negative control *pax2.1* (red arrowhead). (B-J) *him* expression revealed by whole-mount ISH (probe combination color-coded and indicated at the bottom left of each panel; stages at the bottom right; (B-D) dorsal views, anterior up; (E,H,I) lateral views, anterior left; (F,G,J) dorsal views of flat-mounted embryos, anterior left). At 30% epiboly (B), *him* is transcribed in the

deep layer of the mesoderm (red arrows, see sagittal view in B') and in scattered cells of the dorsal embryonic margin (white arrowheads). him expression within the MH domain (red arrowheads) is initiated at 75% epiboly (C) (note the difference in expression in medial and lateral parts of the IZ is indicated with white arrows) and maintained until 36 hpf (I). Note in F (and see higher magnification of the boxed area in G) that him and her5 expression in this domain are exactly coincident. him expression in the presomitic mesoderm starts at 90% epiboly (D) (blue arrows) and is maintained until 24 hpf (H). him and ngn1 are complementarily expressed in the MH region (J). Red arrowheads indicate him expression at the MHB and blue arrows expression in the presomitic mesoderm. IZ, intervening zone; vcc, ventrocaudal cluster, r2M, presumptive motorneurons of rhombomere 2; r2L, presumptive lateral neurons of rhombomere 2; r4M, presumptive motorneurons of rhombomere 4.



**Fig. 3.** *him* expression is controlled by Pax2.1 and Fgf8 during the MH maintenance loop. (A,B) *him* (blue) and *pax2.1* (red) expression in *ace* mutants (B) and WT siblings (A) at the 21-somite stage (all embryos deyolked, lateral view, anterior left). Note that both genes are coincidentally switched off at the MHB, except for a common dorsal patch (arrows), while *him* expression in the presomitic mesoderm is intact (A',B', insets). (C,D) *him* expression (blue) in *noi* mutants (D) and WT siblings (C) at the 17-somite stage (C,D: deyolked embryos, lateral views, anterior left; C'-D": dorsal views of flat-mounted heads (C',D') and tails (C",D"). *him* expression at the MHB is restricted to a ventral patch in *noi* (arrow), while presomitic expression is unaffected (C",D").

similar to that triggered by loss of Her5 function in *her5*MO<sup>ATG</sup> morphants (Fig. 4A) (Geling et al., 2003). Thus, loss-of-function of either Her5 or Him results in the same failure to form and maintain the MIZ.

# Him and Her5 are independently required for medial IZ formation

The above results are compatible with a simple model where Him and/or Her5 would act in a common regulatory cascade, one factor positively regulating expression of the other gene. Thus, loss of Him function would cause loss of her5 expression, or the reverse. Alternatively, Him and Her5 might be independently necessary for MIZ formation. To address this question, we studied him and her5 expression in embryos where Her5 or Him activity, respectively, was blocked. We observed that him expression was unchanged in Her5 morphants, in both the MH region and the presomitic mesoderm, under conditions where ngn1 expression was strongly induced in place of the MIZ (Fig. 4E,F, and data not shown). Thus him expression is not under immediate control of Her5. Likewise, injection of *Grip*NA<sup>ATG</sup> into wild-type embryos did not produce alterations in her5 transcription, although the MIZ was lost (Fig. 4I compared to 4K, and data not shown). Furthermore, injection of *Grip*NA<sup>ATG</sup> did not affect the production of the fusion Her5-GFP protein, driven under control of all her5 regulatory elements in her5PAC::egfp transgenics (Tallafuss and Bally-Cuif, 2003) (Fig. 4J,L). Thus, Him does not influence her5 transcription or translation.

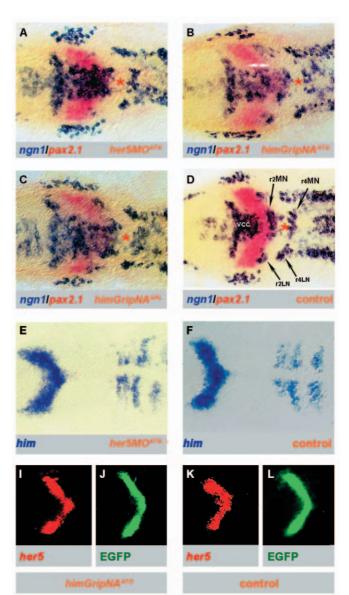



Fig. 4. The activity of both Him and Her5 is necessary to prevent neurogenesis across the medial IZ in vivo. (A-D) The inhibition of either Him or Her5 function triggers ectopic neurogenesis in place of the MIZ (dorsal views of the MH region in flat-mounted embryos at the four-somite stage, anterior to the left). Embryos are probed for ngn1 (blue) and pax2.1 (red) expression following injection of  $her5\mathrm{MO}^{ATG}(\mathrm{A}), himGrip\mathrm{NA}^{\mathrm{ATG}}(\mathrm{B}), himGrip\mathrm{NA}^{\mathrm{SPL}}$  (C) (orange labels), compared to a non-injected WT control embryo (D). Note that the vcc and r2MN are bridged by ectopic ngn1-positive cells (double arrows) after blocking Her5 or Him activity, while other undifferentiated areas are not affected (e.g. area between r2MN and r4MN, asterisk. (G-L) him and her5 expression are not successive and interdependent steps of the anti-neurogenic cascade acting in the MIZ (dorsal views of the MH area in flat-mounted embryos at the three-somite stage, anterior to the left, used markers are colorcoded). (G,H) him expression in wild-type embryos (H) or after injection with her5MOATG (G). Note that him expression is not modified. (I-L) Expression of her5 (I,K) and GFP (J,L) in *her5PAC::egfp* embryos injected (K,L) or not (I,J) with *himGrip*NA<sup>ATG</sup>. Note that *her5* and GFP expression are unaffected. vcc: ventro-caudal cluster, r2MN: prospective motorneurons of rhombomere 2, r4MN: prospective motorneurons of rhombomere 4.

We conclude that Him and Her5 do not act in a simple cascade of cross-regulation of expression. Rather, the two genes are expressed independently of each other and are both essential to MIZ formation.

# The crucial determinant of MIZ formation is the total dose of Him + Her5 inhibitory activities

Several hypotheses could account for the above results. First, Him and Her5 might both be required for MIZ formation because they need to heterodimerize with each other to be active. Alternatively, these factors do not have unique essential activities, but rather are required to reach together a threshold level of Hairy/E(spl) activity necessary to prevent proneural gene expression. Finally, both factors might exert distinct and/or complementary functions necessary for MIZ formation.

To unravel the relevance of each hypothesis in vivo, we first tested whether Him and Her5 could interact in a yeast twohybrid system. bHLH factors have the capacity to dimerize via their HLH domain, however their affinity for hetero-versus homodimerization cannot be a priori predicted, and some instances of DNA binding as oligomers have also been reported (Firulli et al., 2000; Iso et al., 2001; Wainwright and Ish-Horowicz, 1992). We observed that Her5 can homodimerize as well as bind Ngn1, while Him and Ngn1 failed to interact. In addition, heterodimers of Him and Her5 were produced. Whether Him is also able to homodimerize could not be tested due to unexplained toxicity of the him-expressing constructs (Table 2). All these interactions were confirmed by coimmunoprecipitation (Fig. 5A). Moreover, the affinity for heterodimerization between Him and Her5, based on betagalactosidase activity (Lazo et al., 1978), appeared six-fold higher than the affinity of Her5 for homodimerization (Fig. 5B), suggesting that the Him-Her5 configuration predominates in vivo if the amount of proteins is equal. Thus, the requirement for Him and Her5 for MIZ formation in vivo might indeed be explained by the necessity for these factors to heterodimerize.

Our finding that Her5 can homodimerize, however, as well as reports of functional bHLH oligomers (Firulli et al., 2000; Iso et al., 2001; Wainwright and Ish-Horowicz, 1992), suggest that Her5 and/or Him alone could permit MIZ formation, provided the dose of this factor is sufficient. To test this hypothesis we studied neurogenesis in *her5PAC::egfp* transgenic embryos (Tallafuss and Bally-Cuif, 2003), where Him is in excess. This transgenic line was obtained by

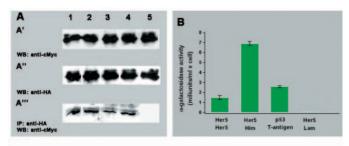
Table 2. Possible interactions of the proteins relevant to IZ formation, revealed in a yeast two-hybrid assay

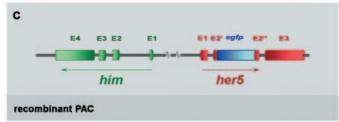
|                    |      | pGBKT7 |           |  |
|--------------------|------|--------|-----------|--|
| pGADT7             | Her5 | Him    | T-antigen |  |
| Her5               | +    | +      | +         |  |
| Ngn1<br>p53<br>Lam | +    | _      | +         |  |
| p53                | +    | +      | +         |  |
| Lam                | _    | _      | _         |  |

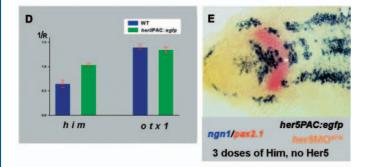
The assay was performed with full-length Her5, Him and Ngn1 proteins expressed from pGBKT7 and pGADT7 expression vectors. p53 expressed from pGADT7 and T-antigen expressed from pGBKT7 were used as positive controls. Lam protein from pGADT7 was used as a negative control for interactions.

recombination of egfp into the second exon of her5 in a her5containing PAC. Thus, in this transgene her5 is not functional. However, because of the small genetic distance separating the her5 and him locus, and because the entire recombinant PAC was used for germ line transformation (Tallafuss and Bally-Cuif, 2003), these transgenics carry an additional copy of him together with the her5-egfp fusion (see Fig. 5C for a scheme of the transgene). Real-time PCR confirmed a 1.5-fold increase in the amount of him messenger in embryos heterozygous for the *her5PAC::egfp* transgene, while the amount of *otx1* mRNA, used as a control, was unchanged (Fig. 5D). Because him regulatory elements are also contained within the recombined PAC, additional him transcripts produced from the transgene display the endogenous him profile, restricted to the IZ within the neural plate (not shown). Therefore, her5PAC::egfp transgenics provide an ideal background to measure MIZ formation in a context where her5 expression is normal but the dose of Him is increased across the IZ. Most interestingly, we observed that her5PAC::egfp transgenic embryos where Her5 activity was blocked by her5MOATG formed a normal MIZ (Fig. 5E, compare to Fig. 4D). In all cases, we verified that Her5 activity was completely abolished, by monitoring the lack of EGFP protein expression (data not shown). Thus Him, when present in sufficient amount (in a minimum of three doses, as in her5PAC::egfp/+ heterozygote embryos), is capable of replacing Her5 activity to prevent neurogenesis across the MIZ.

We conclude from these observations that the crucial component of MIZ formation and maintenance is a threshold level of 'Him + Her5' inhibitory activity. In the normal embryo, this level is probably achieved by Her5-Him heterodimers, although a possible contribution of homodimers and/or oligomers from each factor separately cannot be excluded.


### Formation of the lateral IZ also relies on the level of 'Him + Her5 activity' but with a lower threshold than the medial IZ


The LIZ is preserved in both *her5* and *him* single knockdown embryos, suggesting that it might require other factors than Him and Her5 for its formation. Alternatively, the LIZ might primarily differ from the MIZ in requiring a lower threshold of 'Him + Her5' activity, the endogenous level of one factor alone (two doses) being sufficient to block neurogenesis in this location. To address these hypotheses we assayed for lateral *ngn1* expression in double knockdown embryos obtained by the co-injection of *her5*MO<sup>ATG</sup> and *himGrip*NA<sup>ATG</sup>. Strikingly, we observed that the simultaneous interference with both Her5 and Him activities results in ectopic *ngn1* expression in place of the entire IZ, i.e. including the LIZ (88% of cases, *n*=25) (Fig. 6A,A' compared to 6D,D'), in striking contrast to single knockdowns (0% of cases for *her5* knockdowns, *n*=21, 0% of cases for *him* knockdowns, *n*=24) (Fig. 6B,C).


To confirm these results we analyzed *b404* mutants (Topczewski et al., 2001), which we found to carry a deletion encompassing the *her5* and *him* locus in addition to *knypek* (*kny*). As expected, expression of both *him* and *her5* in these mutants is completely absent at all stages (Fig. 7A-D). Mutations in zebrafish *kny* impair gastrulation movements of convergence and extension that normally narrow the embryonic body and elongate it from head to tail, resulting in shorter and broader embryos (see Fig. 7B,D) (Henry et al.,

<sup>+,</sup> interaction between the proteins tested, revealed by activation of *ade*, *his* and *mel* genes.

<sup>-,</sup> absence of interaction.







2000; Topczewski et al., 2001). In addition to this phenotype, assaying b404 mutants for neurogenesis revealed ectopic ngn1positive cells in place of both the MIZ (Fig. 7F, asterisk) and LIZ (Fig. 7F, arrow, enlarged in F'), a phenotype never observed in control siblings (Fig. 7E, enlarged in E') or in embryos for a null point mutation in the knypek gene  $(kny^{m119})$ allele, not shown) (Solnica-Krezel et al., 1996). The number of ngn1-positive cells in the lateral aspect of the MH domain (white box in Fig. 7E-G) is increased by 40% in b404 embryos compared to control siblings (n=13 mutants and 10 wild-type embryos), while other populations of neuronal precursors, such as trigeminal ganglia neurons, are unaffected (black box in Fig. 7E-G), further supporting the specificity of this phenotype. Further, this phenotype was maintained upon rescuing Kny function in b404 homozygous embryos injected with kny mRNA at the one-cell stage (Fig. 7H,H').

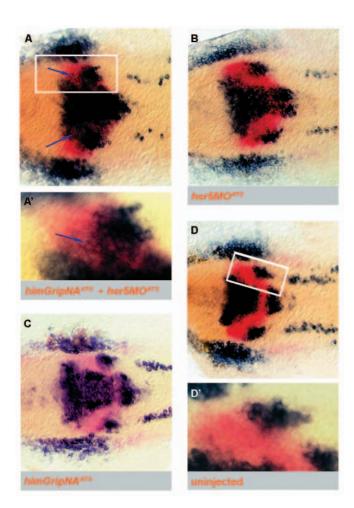

The above results demonstrate that ectopic neurogenesis in b404 is selective of the IZ and unrelated to the lack of Kny activity itself. It remains possible however that the b404 deletion encompasses other genes than him and her5 that contribute to this phenotype. To address this issue, we rescued Him activity in *b404* homozygotes (Fig. 7J) by crossing them into the transgenic her5PAC::egfp background. *b404/b404;her5PAC::egfp* embryos display a normal expression of him in time and space (Fig. 7J), but no expression of her5 (not shown). We observed that, under these conditions, the LIZ was preserved (Fig. 7I, white box, enlarged in I'). Thus, restoring Him activity is sufficient to rescue formation of the LIZ in b404 mutants, strongly arguing that the neurogenic phenotype in the lateral MH of these mutants results from the

Fig. 5. The crucial determinant of medial IZ formation is the level of Him + Her5 inhibitory activity, probably achieved in vivo by Him/Her5 heterodimers but replaceable by a higher level of either factor alone. (A) Co-immunoprecipitation assays reveal possible interactions between the bHLH transcription factors important to prevent/promote neurogenesis at the MHB. Crude protein extracts were isolated from yeasts transformed with the following constructs combinations: (1) her5pGBKT/ + her5pGADT7, (2) her5pGBKT7 + ngn1pGADT7, (3) himpGBKT7 + her5pGADT7, (4) T-antigen pGBKT7 + p53pGADT7; (5) her5pGADT7 + lampGADT7. Isolated extracts were either probed with anti-cMyc antibodies (A') and anti-HA antibodies (A") or immunoprecipitated with anti-HA antibodies and then probed with anti-cMyc antibodies (A"'). (B) Stringency of Her5 homodimerization and Her5/Him heterodimerization, based on beta-galactosidase activity of yeast cells expressing appropriate construct combinations (Lazo et al., 1978). Note that the interaction between Him and Her5 is significantly stronger than Her5 homodimerization. (C-E) A higher dose of Him alone can compensate for the loss of Her5 activity and maintain the MIZ. (C) Schematic representation of the transgene integrated to generate her5PAC::egfp embryos (Tallafuss and Bally-Cuif, 2003): the egfp cDNA (blue cylinder) is inserted into the her5 region coding for the bHLH domain, resulting in a dysfunctional protein unable to bind both DNA and other bHLH factors. However, the him gene, contained in the PAC, is intact. (D) Quantification of him and otx1 (control) mRNAs in her5PAC::egfp transgenic compared to wild-type embryos using realtime RT-PCR. We do not know the number of recombined PAC copies integrated into the genome in our transgenic lines; however, note that the amount of him mRNA is 1.5-fold higher in the her5PAC::egfp transgenic embryo than in wild-type siblings. The change in threshold-crossing cycle (1/R) is shown for each mRNA relative to that for pax6 (assumed as a housekeeping gene) (a decrease in threshold-crossing corresponds to increase in mRNA level). The increase in *him* expression in the transgenic line is significant (P<0.02 by Student's t-test). Standard deviations are indicated with red lines. (E) Blocking Her5 activity (by injecting her5MOATG) in her5PAC::egfp transgenic embryos fails to trigger ectopic expression of *ngn1* across the MIZ (white asterisk) (flat-mounted embryo at three somites, anterior left, used markers color-coded).

lack of Her5 and Him function. In addition, these results demonstrate that one dose of Him activity provides a level of inhibition sufficient for LIZ formation. In contrast, loss of the MIZ was maintained in *b404/b404;her5PAC::egfp* embryos (Fig. 7I), in keeping with our finding that MIZ formation requires more than one or two copies of *him* or *her5* (Fig. 4A-C, 5E).

# Him and Her5 are equally potent neurogenesis inhibitors in the lateral IZ

We demonstrated above that the total amount of Him + Her5 inhibitory activity is the crucial determinant for IZ formation, and that increased levels of Him could compensate for loss of Her5 both in the medial and lateral IZ. These experiments however did not address the relative contribution of Her5 to the total inhibitory activity required for IZ formation. To determine whether Him and Her5 contribute equally to this activity, we analyzed LIZ formation in b404/+; kny<sup>m119</sup>/+ embryos where the function of either Her5 (Fig. 7K) or Him (Fig. 7L) was abolished. This background, obtained by crossing b404/+ with kny<sup>m119</sup>/+ heterozygote adults, allows immediate identification of the embryos carrying one single copy of each gene him and her5, since such embryos display the knypek phenotype. Blocking the activity of Him or Her5 b404/+; kny<sup>m119</sup>/+

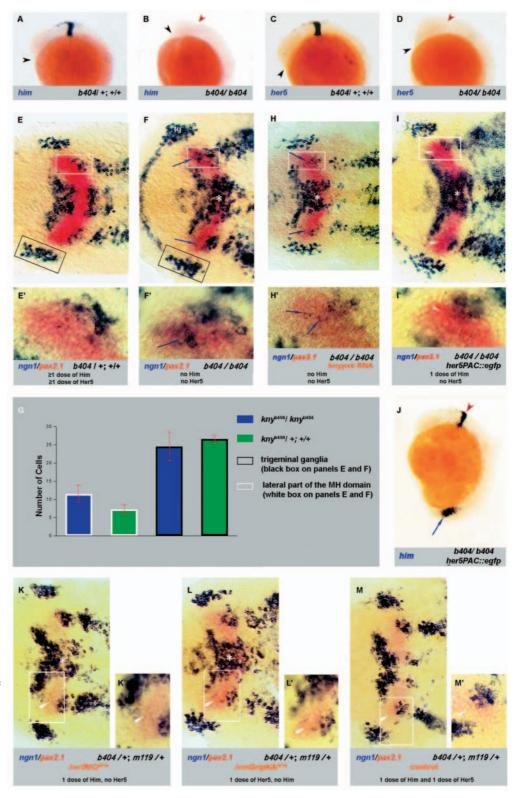


**Fig. 6.** The activity of both Her5 and Him is necessary to prevent neurogenesis in the lateral IZ. Dorsal views of flat-mounted –8.4ngn1::egfp transgenic embryos (Blader et al., 2003) probed at the three-somite stage for egfp expression (blue) after injection of 1 mM her5MO<sup>ATG</sup> + 0.25 mM himGripNA<sup>ATG</sup> (A), 1 mM her5MO<sup>ATG</sup> (B), 0.25 mM himGripNA<sup>ATG</sup> (C), compared to an uninjected control (D). A' and D' are enlargements of the boxed areas in A and D, respectively. The IZ is indicated by pax2.1 expression (red staining). Note that the LIZ is undergoing ectopic neurogenesis only in the embryo injected with both her5MO<sup>ATG</sup> and himGripNA<sup>ATG</sup> (blue arrows).

embryos leaves only one functional copy of either *her5* or *him*, respectively. Assaying for *ngn1* expression revealed that the LIZ forms normally in such embryos (Fig. 7K,K' and 7L,L' compared to 7M,M', white arrowhead) (while, as expected, the MIZ is lost, Fig. 7K, and 7L, compared to 7M, white arrow). These results are in agreement with an equal potency of Him and Her5 to inhibit lateral neurogenesis at the MHB and, like for the MIZ, we propose that a crucial determinant of LIZ formation is the threshold of Him + Her5 activities rather than the specific presence of both factors.

### **Discussion**

Maintaining a progenitor pool at the embryonic MHB is crucial to MH growth and IsO maintenance, and we report here a new molecular player and its associated mechanism preventing neurogenesis in this territory. Looking for genes physically linked to her5, we unraveled a previously unknown, paired and divergently transcribed hairy/E(spl) gene, him, which shares with her5 expression across the IZ. We demonstrate that blocking either Her5 or Him function results in the same failure to form and maintain the MIZ, and that interfering concomitantly with the function of both factors prevents formation of the LIZ. In both domains, we demonstrate that sufficient levels of one factor alone are sufficient to compensate for the lack of the other. Together, our results are most compatible with a model where the molecular basis of IZ formation is the total Him + Her5 inhibitory activity, at different thresholds along the mediolateral axis. They highlight a new mechanism, relying on paired Hairy/E(spl) factors, for the maintenance of a non-differentiating signaling boundary during embryonic development.


### him and her5 are a new co-functional gene pair

him and her5 are located 3 kb apart in a head-to-head, in a manner reminiscent of the her7/her1 gene pair (Henry et al., 2002). Our search through the zebrafish genome revealed an additional similarly organized pair of her genes, her4/her12, located on chromosome fragment ctg10516. ESTs BM023698 and AL716753 match with 100% to the cDNA sequence deducted from ENSDARG00000028110, suggesting that her12 is a real transcribed gene. Thus, our results suggest that a paired and divergently transcribed configuration is a frequent organization of zebrafish her genes. Our search through other vertebrate genomes, however, including mouse and Fugu rubripes (Fugu genome, The Welcome Trust Sanger Institute, release 08-02-04), failed to reveal a similar organization of hairy/E(spl)-like genes in these species, suggesting that the molecular process(es) generating her pairs took place along the lineage leading to zebrafish.

Our results do not suggest a simple evolutionary model leading to the generation of zebrafish her pairs. Indeed, the six her genes involved belong in sequence to two groups of orthologs (group 1: him/her5/her1 versus group 2: her7/her4/her12), but only the her7/her1 pair contains one gene from each group. Thus the situation is not comparable to dlx gene pairs, interpreted to result from a tandem duplication followed by a cluster duplication. Because her4 and her12 have very similar coding sequences, it is possible that these two genes underwent a recent event of gene conversion, facilitated by the formation of intrachromosomal hairpins (Hickey et al., 1991). We failed to detect indications supporting gene conversion within the him/her5 gene pair, but other recombination events might have occurred (D. Chourrout, J.N. and L.B.-C., unpublished observations).

Linked genes sharing sequence similarity have been reported for a variety of genetic functions in several organisms. (Akam, 1989; Alonso and Cabrera, 1988; Bober et al., 1994; Coleman et al., 1987; Kmita and Duboule, 2003; Knust et al., 1992; Stein et al., 1996). Duplication events resulting in linked arrays of related genes generate copies that often share cis-acting regulatory sequences. Whether *him* and *her5* expression across the IZ are coregulated remains to be directly demonstrated but is highly likely, given that the enhancer driving MH expression of *her5* extends into the *him* locus (Tallafuss and Bally-Cuif, 2003). In addition, *him* and *her5* differ in some aspects of their expression profiles (in the shield and presomitic mesoderm, versus presumptive pharyngeal endoderm, respectively). The

Fig. 7. Ectopic neurogenesis in both the medial and lateral IZ in b404 deletion mutants results from the deletion of him and her5. (A-D) b404 mutants lack her5 and him expression. Lateral views of whole-mount embryos assayed for him or her5 expression at the 17-somite stage (anterior left, probes indicated bottom left, genotype bottom right). The position of the MHB in mutant embryos is indicated with a red arrowhead. The position of the head, reflecting the delayed convergence and extension problems in the mutant embryo, is indicated with a black arrowhead. (E-G) Ectopic neurogenesis across the LIZ revealed by ngn1 expression (blue) in b404 mutants (F,F') compared to nonmutant siblings (E,E'). In b404 embryos, ectopic ngn1-positive cells are present both in the lateral (blue arrow) and medial (asterisk) IZ (E' and F' are high magnification of the areas boxed in white in E and F. respectively). (G) The number of ngn1-positive cells in the future alar MH (area indicated with white box in E and F) is 40% higher in mutant embryos compared to WT siblings, while other neural plate areas are not affected (e.g. trigeminal ganglia, area boxed in black in E and F). (H) Reintroducing Knypek function in b404 mutants does not alter the IZ neurogenesis phenotype. Expression of ngn1 (blue) in three-somite b404 mutants where Kny function has been restored by kny RNA injection (dorsal views of flat-mounted embryos, anterior left, A' is a high magnification of the area boxed in A). Note that ectopic ngn1 expression both across the MIZ (asterisk) and LIZ (blue arrows) is not altered compared to uninjected b404 mutants (Fig. 7F). (I-J) Restoring Him function at endogenous levels in b404 mutants is sufficient to rescue the LIZ. (J) Crossing the b404 mutation into the her5PAC::egfp background generates b404/b404;her5PAC::egfp embryos where *him* expression is recovered with endogenous levels and expression pattern (lateral view of a 17-somite embryo, anterior left). (I,I') Expression of ngn1 (blue) in three-somite b404/b404;her5PAC::egfp embryos (dorsal views of flat-mounted



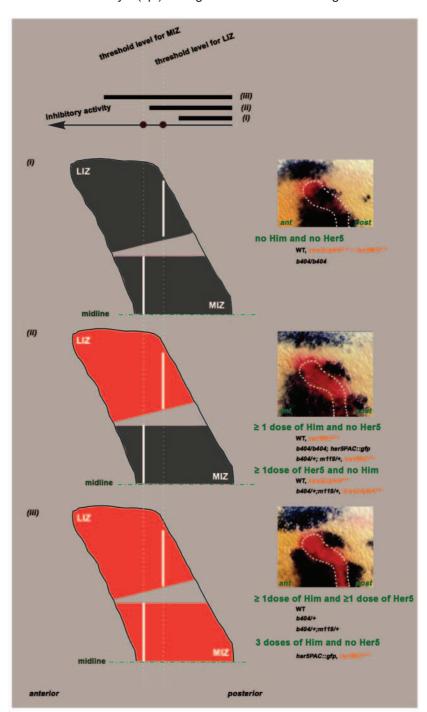

embryos, anterior left, I' is a high magnification of the area boxed in I). Note that no ectopic neurogenesis is detectable any longer across the LIZ (white arrowheads), while the MIZ remains bridged by ectopic *ngn1*-positive cells (asterisk). (K-M). Him and Her5 equally contribute to the total inhibitory activity and one copy of either Him or Her5 is sufficient for formation of the LIZ. Formation of the LIZ in the *b404/+*; *m119/+* embryos is indistinguishable in Him morphants (K,K'), Her5 morphants (L,L') and uninjected embryos (M,M') (white arrowheads). Note that after blocking either Him or Her5 activity ectopic neurogenesis occurs in the MIZ (white asterisk). K',L' and M' are enlargements of boxed area in K, L and M respectively (25 embryos was analyzed for *b404/+*; *m119/+* injected with *her5*MO<sup>ATG</sup>, 27 for *b404/+*; *m119/+* injected with *him*Grip<sup>ATG</sup> and 20 uninjected *b404/+*; *m119/+*).

Fig. 8. Models for IZ formation based on dose dependence for Him + Her5 inhibitory activity. In each panel, a half IZ is represented and color-coded (red: MIZ or LIZ, light grey: intermediate field, dark grey: ngn1-positive areas), and the level of Him + Her5 inhibitory activity is indicated by black horizontal bars. The threshold required for *ngn1* inhibition within the LIZ is lower than the MIZ threshold (white bars). Thus, if Him + Her5 activity is below the LIZ threshold level, ectopic neurogenesis will occur both laterally and medially, and the MIZ and LIZ are lost (i). This situation corresponds to the absence of activity of both Her5 and Him. When Him + Her5 activity reaches the LIZ threshold level (one dose of Her5 or Him is sufficient), ngn1 expression is prevented laterally but not medially, and the LIZ forms but not the MIZ (ii). Finally, if Him + Her5 activity is above the MIZ threshold (≥1 dose of Him and ≥1 dose of Her5 or three doses of Him), the whole IZ is formed properly (normal development of wild-type embryos, (iii). The persisting absence of ngn1 expression within the intermediate field located between the MIZ and LIZ (light grey triangle) could result from additional inhibitor(s) expressed along the AP axis, in register with longitudinal non-differentiation stripes of the rhombomere and spinal cord. Flat-mounted embryos at three-somite stage, with ngn1 expression in dark and pax 2.1 in red, corresponding to each situation are shown adjacent to the scheme. The combinations of inhibitory factors producing the appropriate level of inhibitory activity for each situation are listed (green letters), as well as the genetic ways to obtain this particular inhibitory activity (black letters for genotype and orange for interfering agents).

regulatory elements controlling endodermal expression of her5 are located closer to the her5 ATG than the MH expression elements (Tallafuss and Bally-Cuif, 2003). Thus expression of the *him/her5* pair may be controlled by a combination proximal and gene-specific (accounting for the differential expression sites of the two genes) and distal and probably common elements (driving IZ expression). It is possible that the proximal elements are new modifications in the evolution of the gene pair, extending genetic functions by the acquisition of new expression domains (Ohta, 2000). It will be interesting to determine whether such cis-regulatory organization is involved in generating different expression sites within other gene pairs.

### The combined activities of Her5 and Him determine LIZ formation

We previously identified Her5 as the first determinant of MIZ formation in zebrafish (Geling et al., 2003). However, although her5 expression covers the whole IZ, and ectopic her5 expression can inhibit ngn1 in the lateral MH area, we failed to implicate Her5 alone in LIZ formation in vivo. A main advance of our present work is to provide an interpretation for this finding, by identifying a new Hairy/E(spl) factor, Him, as the partner for Her5 in LIZ formation. Our arguments rely on the phenotype of embryos where the functions of Her5 and Him are concomitantly blocked in a non-genetic interference



approach, and of embryos carrying the *b404* deletion, where both *him* and *her5* genes are absent. In both cases, ectopic *ngn1*-positive cells replace the LIZ. This phenotype is not found by blocking the function of either Him or Her5 alone, and is rescued by selectively reintroducing endogenous levels and profile of Him function into the *b404* background, arguing for its specificity. Further, we show that one copy of either *him* or *her5* (as in *b404/+;kny<sup>m119</sup>/+* heterozygote embryos where Her5 or Him function is blocked) similarly preserves the LIZ, demonstrating that Him and Her5 are equally potent at inhibiting *ngn1* expression in that location. Thus, our results identify Him and Her5 as truly redundant factors that play

equivalent roles, and are together the only determinant, in LIZ formation.

The molecular cascade downstream of Him remains unknown. Because Him is sufficient for LIZ formation in the absence of Her5, we can exclude a mechanism where Him would primarily promote Her5 activity. Rather, because of the similar sequences of Him and Her5, it is more likely that both factors act together on common targets controlling neurogenesis. Within the MIZ, Her5 and Him (J.N. and L.B.-C., unpublished) act upstream of Notch to inhibit expression of ngn1 and coe2, but not other early MH proneural genes such as asha, ashb and ato3 (Geling et al., 2003). It will be important to determine whether the molecular cascade(s) and mechanisms downstream of Her5 and Him are conserved in the MIZ and LIZ. Compared to the MIZ, the LIZ exhibits an additional block, still molecularly unknown, that prevents neurogenesis downstream of Ngn1 activity (Geling et al., 2003). Whether Him and Her5 also take part in this second block remains to be tested.

# A unified model for IZ formation along the entire mediolateral extent of the neural plate

The absence of Her5 leads to disappearance of the entire MIZ and its replacement by *ngn1*-expressing cells, which later differentiate into Hu-, HNK1- and acetylated-tubulin-positive neurons (Geling et al., 2003). Surprisingly, our results now demonstrate that Him plays an equally important role in MIZ formation, since an exactly identical phenotype is triggered by lack of Him activity (this paper, and data not shown). We further rule out an interdependent regulation of *him* and *her5* expression (Fig. 4E-L). Thus, another important implication of our work is that MIZ formation relies on prepatterning by both Him and Her5.

A priori, the finding that loss of Him or Her5 function result in identical phenotypes can have three different molecular interpretations: first, Him and Her5 might act in distinct pathways that converge on and are both necessary for neurogenesis control at the MIZ; second, the activities of Him and Her5 might be interdependent; third, Him and Her5 might have equivalent functions, a minimal dose of 'Him + Her5' activity being required for MIZ formation. The first two mechanisms are unlikely, given the observation that increased levels of Him alone to three doses (as in her5PAC::egfp /+ heterozygote transgenic embryos injected with her5MO, Fig. 5E) can compensate for the lack of Her5 function within the MIZ. We do not have genetic means of assessing whether a high dose of Her5 alone would also suffice for MIZ formation. However, our findings that Him and Her5 are equally potent to prevent lateral neurogenesis strongly suggest that this is the case. Thus, we propose that the crucial determinant of MIZ formation, is a total level of 'Him + Her5' inhibitory activity. Hence, above a threshold of Him + Her5, ngn1 expression is prevented medially and the MIZ is formed, while ngn1 expression is induced below this threshold (Fig. 8). As discussed above, our results indicate that three doses of one factor alone is the minimum level of inhibitory activity required for MIZ formation. Interestingly, however, two doses are sufficient when both Him and Her5 are present, as in b404/+ heterozygote embryos. This result might be related to the higher propensity of Him and Her5 to hetero- than homodimerize, or to an increased activity of heterodimers versus

homodimers or oligomers. Because the same factors Him and Her5 account for LIZ formation, and can functionally replace each other in this domain as well, a parsimonious interpretation of our findings is to implicate the same dose-dependent mechanism within the LIZ, albeit with a lower threshold level (Fig. 8). The LIZ minimal level of inhibition would be achieved with one dose of Him or Her5 alone. Together, our results thus lead to a unified model where the maintenance of a pool of progenitor cells at the MHB is orchestrated by a variable dose-dependency to the Him/Her5 pair.

Even in the absence of Him and Her5, we failed to induce ngn1 expression within a small intermediate field located between the MIZ and LIZ (see Fig. 7F, and grey triangle in Fig. 8). In this domain, an additional (as yet unknown) factor might increase the total inhibitory activity and/or prevent neurogenesis in addition to Him and Her5. We failed to recover additional IZ-expressed E(spl) genes following our search through the zebrafish genome and expression studies (J.N., C.L. and L.B.-C., unpublished). Because the intermediate field is aligned with the longitudinal domains of non-differentiation in the hindbrain and spinal cord, it is perhaps more likely that this factor is expressed along the AP axis of the neural plate, like other known neurogenesis inhibitors (Bally-Cuif and Hammerschmidt, 2003).

An interesting open question remains to identify the cues controlling the differential sensitivity of the MIZ versus LIZ to Him + Her5, and their functional significance. The MIZ and LIZ differ in their proliferation rates: the MIZ exhibits more cells in M phase than the LIZ at late gastrulation, based on antiphosphoH3 immunostaining (Geling et al., 2003). It will be crucial to investigate the possible relationship between MIZ and LIZ cell cycle properties and their response to Him + Her5. Also, several morphogens acting in this region are expressed following a mediolateral gradient. For instance, wnt1 is expressed in a spatio-temporal pattern similar to her5 and him at late gastrulation, thus with initially higher levels laterally than medially, and might enhance cell sensitivity to neurogenesis inhibitors. This might be related to the delay of dorsal differentiation proposed to result from the gradient of Wnt signaling from the spinal cord roof plate (Megason and McMahon, 2002). Conversely Shh signaling from the ventral midline and specifically active at the MHB (Carl and Wittbrodt, 1999; Koster et al., 1997) could increase 'neurogenic competence'. These hypotheses will be important to test experimentally to gain insight into the prepatterning of IZ formation.

# Biological significance of a redundant process for IZ formation

Redundant factors are generally viewed as 'safety' locks, and the biological significance of the Him/Her5 couple might be to secure IZ formation. This case of redundancy is more extreme than observed for Her1/Her7, where the disruption of each gene alone produced distinct (although moderate) somitic defects, indicating partially different activities (Henry et al., 2002). The embryonic MHB progenitor pool serves several vital functions. It generates the large majority of MH neurons and glia, as demonstrated in lineage tracing experiments (Tallafuss and Bally-Cuif, 2003) and genetic or surgical ablation (Cowan and Finger, 1982; Hirata et al., 2001). MH neurons form crucial integration centers involved

in visual, auditory and motor control and social behavior. By its long-lasting proliferative activity, the IZ also permits the expansion of MH tissue over time. Although the relative importance of MH derivatives varies between species, most vertebrates are characterized by highly developed visual, auditory or locomotor functions, which are paired with enlarged mesencephalic derivatives or cerebellum. Finally, and importantly, the IZ coincides in space with the isthmic organizer, necessary for patterning the entire MH domain and for the subdivision of mid-versus hindbrain structures (Bally-Cuif et al., 2000; Liu and Joyner, 2001; Rhinn and Brand, 2001). In the mouse, IZ formation also relies on the two redundant bHLH factors Hes1 and Hes3 (Hirata et al., 2001). In that case however *Hes1* and *Hes3* are not genetically linked and their expression profiles are clearly distinct, overlapping only at the MHB (Allen and Lobe, 1999; Lobe, 1997), suggesting that mouse and zebrafish have independently evolved a strategy for the redundant expression and function of Hairy/E(spl) factors at the MHB. A dose dependency and the spatial details of IZ formation in the mouse have not been explored. The fact that one dose of each factor Him and Her5 suffices to maintain the MIZ in zebrafish, while two doses of each single factor do not, probably explains the maintenance of the two genes him and her5 in zebrafish. Whether Hes1 and Hes3, or Him and Her5, exert in addition other and perhaps distinct activities at the MHB remains to be explored.

The IZ is not an isolated case of maintenance of a nondifferentiation zone at embryonic signaling boundaries. Such events have been reported, e.g. at the *Drosophila* wing margin, along the dorsal and ventral midlines of the neural tube (Alexandre and Wassef, 2003), as well as between rhombomeres (Cheng et al., 2004). Like the IZ, these boundaries are involved in the progressive building and patterning of their adjacent territories, and the maintenance of their integrity necessitates their remaining undifferentiated. This process is achieved by Notch signaling at the wing margin and inter-rhombomeric boundaries, and Shh signaling along the neural tube ventral midline, while the factors involved along the dorsal midline probably involve Wnt and BMP signaling. Our work demonstrates that a distinct molecular mechanism accounts for non-differentiation at the MHB, namely the differential response of MHB cells to the combined inhibitory activity of two twin and co-regulated Hairy/E(spl)like factors, independently of Notch. Our findings add to the panel of identified developmental strategies used to build and maintain signaling centers.

### Note added in proof

him is identical to her11, which has been recently reported for its role in zebrafish somitogenesis (Sieger et al., 2004). The gene referred to as her11 in the present manuscript (Fig. 1B, ENSDARP00000012990), named before publication by Sieger et al., is a different coding sequence and corresponds to her13 of Sieger et al. The gene referred to as her13 in the present manuscript (Fig. 1B, ENSDARP0000008307) is a new gene, not reported by Sieger et al. We suggest that the latter gene be renamed her16 and that the nomenclature of Sieger et al. be used for all other genes in future work.

We are grateful to U. Strähle, M. Wassef and W. Wurst for their critical reading of the manuscript, and to K. Imai, M. Wahl and L.B.-

C. lab members for discussions and suggestions throughout this work. We thank A. Folchert and B. Tannhäuser for expert technical assistance, and the GSF fish facility staff for fish care. We acknowledge M. Brand (pax2.1), J. A. Campos-Ortega (her5) and U. Strähle (ngn1) for gifts of probes and constructs, and D. Meyer for comparison of him sequences prior to publication. Work in L.B.-C. laboratory is supported by a VolkswagenStiftung 'junior research group' grant.

### References

- **Akam, M.** (1989). Hox and HOM: homologous gene clusters in insects and vertebrates. *Cell* **57**, 347-349.
- **Alexandre, P. and Wassef, M.** (2003). The isthmic organizer links anteroposterior and dorsoventral patterning in the mid/hindbrain by generating roof plate structures. *Development* **130**, 5331-5338.
- Allen, T. and Lobe, C. G. (1999). A comparison of Notch, Hes and Grg expression during murine embryonic and post-natal development. *Cell Mol. Biol. (Noisy-le-grand)* 45, 687-708.
- Alonso, M. C. and Cabrera, C. V. (1988). The achaete-scute gene complex of Drosophila melanogaster comprises four homologous genes. *EMBO J.* 7, 2585-2591
- Bally-Cuif, L. and Hammerschmidt, M. (2003). Induction and patterning of neuronal development, and its connection to cell cycle control. *Curr. Opin. Neurobiol.* 13, 16-25.
- Bally-Cuif, L., Goridis, C. and Santoni, M. J. (1993). The mouse NCAM gene displays a biphasic expression pattern during neural tube development. *Development* 117, 543-552.
- Bally-Cuif, L., Goutel, C., Wassef, M., Wurst, W. and Rosa, F. (2000). Coregulation of anterior and posterior mesendodermal development by a hairy-related transcriptional repressor. *Genes Dev.* 14, 1664-1677.
- Blader, P., Plessy, C. and Strahle, U. (2003). Multiple regulatory elements with spatially and temporally distinct activities control neurogenin1 expression in primary neurons of the zebrafish embryo. *Mech. Dev.* 120, 211-218.
- Bober, E., Baum, C., Braun, T. and Arnold, H. H. (1994). A novel NK-related mouse homeobox gene: expression in central and peripheral nervous structures during embryonic development. *Dev. Biol.* 162, 288-303.
- Brand, M., Heisenberg, C. P., Jiang, Y. J., Beuchle, D., Lun, K., Furutani-Seiki, M., Granato, M., Haffter, P., Hammerschmidt, M., Kane, D. A. et al. (1996). Mutations in zebrafish genes affecting the formation of the boundary between midbrain and hindbrain. *Development* 123, 179-190.
- Carl, M. and Wittbrodt, J. (1999). Graded interference with FGF signalling reveals its dorsoventral asymmetry at the mid-hindbrain boundary. *Development* 126, 5659-5667.
- Cheng, Y. C., Amoyel, M., Qiu, X., Jiang, Y. J., Xu, Q. and Wilkinson, D. G. (2004). Notch activation regulates the segregation and differentiation of rhombomere boundary cells in the zebrafish hindbrain. *Dev. Cell* 6, 539-550.
- Coleman, K. G., Poole, S. J., Weir, M. P., Soeller, W. C. and Kornberg, T. (1987). The invected gene of Drosophila: sequence analysis and expression studies reveal a close kinship to the engrailed gene. *Genes Dev.* 1, 19-28.
- Cowan, W. and Finger, T. (1982). Regeneration and regulation in the developing central nervous system, with special reference to the reconstitution of the optic tectum of the chick following removal of the mesencephalic alar plate. *Curr. Top. Neurobiol.* 11, 377-415.
- Davis, R. L. and Turner, D. L. (2001). Vertebrate hairy and Enhancer of split related proteins: transcriptional repressors regulating cellular differentiation and embryonic patterning. *Oncogene* 20, 8342-8357.
- Dawson, S. R., Turner, D. L., Weintraub, H. and Parkhurst, S. M. (1995). Specificity for the hairy/enhancer of split basic helix-loop-helix (bHLH) proteins maps outside the bHLH domain and suggests two separable modes of transcriptional repression. *Mol. Cell. Biol.* 15, 6923-6931.
- **Firulli, B. A., Hadzic, D. B., McDaid, J. R. and Firulli, A. B.** (2000). The basic helix-loop-helix transcription factors dHAND and eHAND exhibit dimerization characteristics that suggest complex regulation of function. *J. Biol. Chem.* **275**, 33567-33573.
- **Fisher, A. L., Ohsako, S. and Caudy, M.** (1996). The WRPW motif of the hairy-related basic helix-loop-helix repressor proteins acts as a 4-amino-acid transcription repression and protein-protein interaction domain. *Mol. Cell. Biol.* **16**, 2670-2677.
- Geling, A., Itoh, M., Tallafuss, A., Chapouton, P., Tannhauser, B., Kuwada, J. Y., Chitnis, A. B. and Bally-Cuif, L. (2003). bHLH

88

- transcription factor Her5 links patterning to regional inhibition of neurogenesis at the midbrain-hindbrain boundary. *Development* **130**, 1591-1604.
- Geling, A., Plessy, C., Rastegar, S., Strahle, U. and Bally-Cuif, L. (2004). Her5 acts as a prepattern factor that blocks neurogenin1 and coe2 expression upstream of Notch to inhibit neurogenesis at the midbrain-hindbrain boundary. *Development* 131, 1993-2006.
- Hammerschmidt, M., Pelegri, F., Mullins, M. C., Kane, D. A., van Eeden, F. J., Granato, M., Brand, M., Furutani-Seiki, M., Haffter, P., Heisenberg, C. P. et al. (1996). dino and mercedes, two genes regulating dorsal development in the zebrafish embryo. *Development* 123, 95-102.
- Henry, C. A., Hall, L. A., Burr Hille, M., Solnica-Krezel, L. and Cooper, M. S. (2000). Somites in zebrafish doubly mutant for knypek and trilobite form without internal mesenchymal cells or compaction. *Curr Biol* 10, 1063-1066.
- Henry, C. A., Urban, M. K., Dill, K. K., Merlie, J. P., Page, M. F., Kimmel, C. B. and Amacher, S. L. (2002). Two linked hairy/Enhancer of split-related zebrafish genes, her1 and her7, function together to refine alternating somite boundaries. *Development* 129, 3693-3704.
- Hickey, D. A., Bally-Cuif, L., Abukashawa, S., Payant, V. and Benkel, B. F. (1991). Concerted evolution of duplicated protein-coding genes in Drosophila. *Proc. Natl. Acad. Sci. USA* 88, 1611-1615.
- Hirata, H., Tomita, K., Bessho, Y. and Kageyama, R. (2001). Hes1 and Hes3 regulate maintenance of the isthmic organizer and development of the mid/hindbrain. EMBO J. 20, 4454-4466.
- Iso, T., Sartorelli, V., Poizat, C., Iezzi, S., Wu, H. Y., Chung, G., Kedes, L. and Hamamori, Y. (2001). HERP, a novel heterodimer partner of HES/E(spl) in Notch signaling. *Mol. Cell. Biol.* 21, 6080-6089.
- Kimmel, C. B., Ballard, W. W., Kimmel, S. R., Ullmann, B. and Schilling, T. F. (1995). Stages of embryonic development of the zebrafish. *Dev. Dyn.* 203, 253-310.
- Klambt, C., Knust, E., Tietze, K. and Campos-Ortega, J. A. (1989). Closely related transcripts encoded by the neurogenic gene complex enhancer of split of Drosophila melanogaster. *EMBO J.* 8, 203-210.
- **Kmita, M. and Duboule, D.** (2003). Organizing axes in time and space; 25 years of colinear tinkering. *Science* **301**, 331-333.
- Knust, E., Schrons, H., Grawe, F. and Campos-Ortega, J. A. (1992). Seven genes of the Enhancer of split complex of Drosophila melanogaster encode helix-loop-helix proteins. *Genetics* 132, 505-518.
- Korzh, V., Sleptsova, I., Liao, J., He, J. and Gong, Z. (1998). Expression of zebrafish bHLH genes ngn1 and nrd defines distinct stages of neural differentiation. *Dev. Dyn.* 213, 92-104.
- Koster, R., Stick, R., Loosli, F. and Wittbrodt, J. (1997). Medaka spalt acts as a target gene of hedgehog signaling. *Development* 124, 3147-3156.
- Lazo, P. S., Ochoa, A. G. and Gascon, S. (1978). alpha-Galactosidase (melibiase) from Saccharomyces carlsbergensis: structrual and kinetic properties. Arch. Biochem. Biophys. 191, 316-324.
- Liu, A. and Joyner, A. L. (2001). Early anterior/posterior patterning of the midbrain and cerebellum. Annu. Rev. Neurosci. 24, 869-896.
- Lobe, C. G. (1997). Expression of the helix-loop-helix factor, Hes3, during embryo development suggests a role in early midbrain-hindbrain patterning. *Mech. Dev.* 62, 227-237.
- Lun, K. and Brand, M. (1998). A series of no isthmus (noi) alleles of the zebrafish pax2.1 gene reveals multiple signaling events in development of the midbrain-hindbrain boundary. *Development* 125, 3049-3062.
- Martinez, S. (2001). The isthmic organizer and brain regionalization. *Int. J. Dev. Biol.* 45, 367-371.
- Megason, S. G. and McMahon, A. P. (2002). A mitogen gradient of dorsal midline Wnts organizes growth in the CNS. *Development* 129, 2087-2098.
- Muller, M., v Weizsacker, E. and Campos-Ortega, J. A. (1996). Expression domains of a zebrafish homologue of the Drosophila pair-rule gene hairy correspond to primordia of alternating somites. *Development* 122, 2071-2078.
- Ohta, T. (2000). Evolution of gene families. Gene 259, 45-52
- Reifers, F., Bohli, H., Walsh, E. C., Crossley, P. H., Stainier, D. Y. and Brand, M. (1998). Fgf8 is mutated in zebrafish acerebellar (ace) mutants and is required for maintenance of midbrain-hindbrain boundary development and somitogenesis. *Development* 125, 2381-2395.
- Rhinn, M. and Brand, M. (2001). The midbrain-hindbrain boundary organizer. *Curr. Opin. Neurobiol.* 11, 34-42.
- Sieger, D., Tautz, D. and Gajewski, M. (2004). her11 is involved in the somitogenesis clock in zebrafish. Dev. Genes Evol. 214, 393-406.
- Solnica-Krezel, L., Stemple, D. L., Mountcastle-Shah, E., Rangini, Z., Neuhauss, S. C., Malicki, J., Schier, A. F., Stainier, D. Y., Zwartkruis,

- F., Abdelilah, S. et al. (1996). Mutations affecting cell fates and cellular rearrangements during gastrulation in zebrafish. *Development* 123, 67-80.
- Stein, S., Niss, K. and Kessel, M. (1996). Differential activation of the clustered homeobox genes CNOT2 and CNOT1 during notogenesis in the chick. *Dev. Biol.* 180, 519-533.
- **Tallafuss, A. and Bally-Cuif, L.** (2003). Tracing of her5 progeny in zebrafish transgenics reveals the dynamics of midbrain-hindbrain neurogenesis and maintenance. *Development* **130**, 4307-4323.
- Topczewski, J., Sepich, D. S., Myers, D. C., Walker, C., Amores, A., Lele,
  Z., Hammerschmidt, M., Postlethwait, J. and Solnica-Krezel, L. (2001).
  The zebrafish glypican knypek controls cell polarity during gastrulation movements of convergent extension. *Dev. Cell.* 1, 251-264.
- Vaage, S. (1969). The segmentation of the primitive neural tube in chick embryos (Gallus domesticus). A morphological, histochemical and autoradiographical investigation. Ergeb. Anat. Entwicklungsgesch 41, 3-87.
- Wainwright, S. M. and Ish-Horowicz, D. (1992). Point mutations in the Drosophila hairy gene demonstrate in vivo requirements for basic, helix-loop-helix, and WRPW domains. *Mol. Cell. Biol.* 12, 2475-2483.
- Wurst, W. and Bally-Cuif, L. (2001). Neural plate patterning: upstream and downstream of the isthmic organizer. *Nat. Rev. Neurosci.* 2, 99-108.