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Early injury of the neonatal lung
contributes to premature lung aging:
a hypothesis
Silke Meiners1* and Anne Hilgendorff1,2

Abstract

Chronic lung disease of the newborn, also known as bronchopulmonary dysplasia (BPD), is the most common
chronic lung disease in early infancy and results in an increased risk for long-lasting pulmonary impairment in the
adult. BPD develops upon injury of the immature lung by oxygen toxicity, mechanical ventilation, and infections
which trigger sustained inflammatory immune responses and extensive remodeling of the extracellular matrix
together with dysregulated growth factor signaling. Histopathologically, BPD is characterized by impaired alveolarization,
disrupted vascular development, and saccular wall fibrosis. Here, we explore the hypothesis that development of BPD
involves disturbance of conserved pathways of molecular aging that may contribute to premature aging of the lung
and an increased susceptibility to chronic lung diseases in adulthood.
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Introduction
Chronic lung disease of the newborn, also known as
bronchopulmonary dysplasia (BPD), is the most com-
mon chronic lung disease in early infancy and results in
an increased risk for pulmonary and neurologic impair-
ment persisting into adulthood [1]. BPD is defined by
the need for supplemental oxygen and/or ventilator
support for longer than 28 days, or beyond 36 weeks
post-menstrual age, and is classified into three different
grades of severity (mild, moderate, severe) [2]. The inci-
dence of BPD is reported up to 77 % in infants born at
less than 32 weeks of gestation with a birth weight below
1 kg [3]. Histopathologically, BPD lungs show impaired
alveolarization associated with diminished development
of small vessels [4, 5]. These structural alterations are
accompanied by characteristic inflammatory changes
and extensive remodeling of the extracellular matrix
(ECM) together with increased smooth muscle mass in
small pulmonary arteries and airways [4]. Risk factors
for the development of BPD that have been identified by

clinical and experimental studies include infections oc-
curring both in utero and post-partum, as well as oxygen
toxicity and the impact of mechanical ventilation [6].
Such injuries occur beyond structural and functional im-
maturity of the organ and the background of genetic
susceptibility.
Below, we would like to explore the hypothesis that early

lung injury affects conserved pathways of aging thereby
contributing to the development of BPD. For that, we
first outline the molecular pathways of aging and then
summarize available knowledge on how these pathways are
affected by experimental hyperoxia and mechanical ventila-
tion of the newborn lung and in BPD. Recent data indicate
that adult preterm birth survivors, especially those who
developed BPD, exhibit features of clinically relevant
respiratory dysfunction later in life [7, 8]. We propose that
early alterations in major aging pathways drive premature
aging of the lung thereby adding to the risk for develop-
ment of chronic lung diseases later in life [9, 10].

Review
Molecular concepts of aging
Over the past 30 years, basic and translational research has
identified several molecular pathways of aging defined as
the “hallmarks of aging,” i.e., genomic instability, telomere
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attrition, epigenetic alterations, loss of proteostasis, deregu-
lated nutrient sensing, mitochondrial dysfunction, cellular
senescence, altered intercellular communication, and stem
cell exhaustion, which provide a molecular foundation for
organismal aging [11]. Strikingly, all of these pathways are
key pathways for organismal growth, maintenance, and
communication. We have recently added an additional hall-
mark to these molecular pathways, i.e., dysregulation of the
ECM, and dissected the distinct aging hallmarks for their
differential contribution to the development of age-related
chronic lung diseases such as chronic obstructive pulmon-
ary disease (COPD), lung cancer, and idiopathic pulmonary
fibrosis (IPF) [12]. Below, we will summarize available
evidence that early injury of the neonatal lung as in
BPD affects distinct hallmark pathways of aging. This
may drive premature aging of the adult lung and early
onset of chronic lung diseases in later life.

Molecular pathways of aging are altered by injury of the
neonatal lung and in BPD
Hyperoxia as mediated by oxygen supplementation results
in increased levels of reactive oxygen species and subse-
quent oxidative damage of DNA contributing to genomic
instability [13, 14]. Very similar to the adult lung, oxygen
supplementation of preterm infants induces oxidative
stress in the immature lung and causes oxidative modifica-
tions of DNA and activation of DNA damage response
pathways such as p53 and ATM as observed in hyperoxic
ventilated premature baboons and in a rat model of BPD
[15–18]. In spontaneous dwarf rats, increased resistance to
hyperoxic stress was associated with reduced signs of
DNA damage in multiple organs including the lung and
contributed to an extended life span of this rat strain com-
pared to their wild-type controls [19]. These data suggest a
causal relationship between regulation of DNA damage
upon hyperoxia and life span.
Telomere sequences protect the ends of chromosomes

and are lost upon DNA replication, thereby limiting the
proliferative capacity of cells [20]. Attrition of telomeres
over time is a characteristic feature of aging and serves
as one of the major markers for premature aging [11].
While there is no evidence for a general association of
birth size and telomere length in adult life [21], some re-
cent studies suggest that telomere length in circulating
leukocytes or salivary cells is shorter in young adults born
preterm compared to that in young adults born at term
[22, 23]. Accelerated attrition of telomeres may thus po-
tentially add to the risk of chronic lung diseases as devel-
opment and progression of both, COPD and IPF, have
been associated with reduced telomere function [12].
Development and maturation of the neonatal to the

adult lung involves major epigenetic alterations such as
changes in DNA methylation, histone marks, and micro-
RNA (miRNA) expression [24–29]. Emerging evidence

suggests that early alterations in epigenetic marks are asso-
ciated with chronic lung diseases such as asthma, COPD,
and IPF [30]. Dysregulation of chromatin remodeling path-
ways including DNA methylation, histone acetylation, and
miRNA regulation have also been reported in response to
hyperoxia in the neonatal lung in several experimental
models and in BPD patients: The process of alveolar
septation in the mouse and human lung is accompanied
by altered DNA methylation profiles that coincide with
distinct changes in gene expression. Of note, dysregu-
lated alveolar septation as observed in BPD was associ-
ated with distinct methylation profiles suggesting that
abnormal DNA methylation contributes to differential
gene expression in human BPD [31]. In particular, bone
morphogenetic protein (BMP) 7 showed an inverse cor-
relation between DNA methylation and expression in
human BPD samples, with BMP7 being expressed at re-
duced levels in BPD. As BMP7 opposes the activity of
transforming growth factor beta (TGF-β), this may
allow enhanced TGF-β signaling in the immature lung
contributing pulmonary fibrosis and arrested lung de-
velopment [32]. Alterations in chromatin remodeling
and histone acetylation have also been reported for pre-
term infants that were at risk for BPD development
[33]. In experimental rat and mouse models of neonatal
lung injury, hyperoxia was shown to result in diminished
expression of histone deacetylases (HDAC) 1 and 2 similar
to reduced HDAC activity in lungs of COPD patients but
contrary to the increased levels of HDACs in IPF lungs
[34–37]. In hyperoxia-treated neonatal rats, DNA methy-
lation by DNMT3b- and EZH2-catalyzed histone methyla-
tion was observed [38]. Whether similar DNA and histone
modifications also occur in chronic lung diseases remain
to be investigated. Pronounced changes in the miRNA
profile have also been observed in response to hyperoxia
in neonatal lungs during experimental development of
BPD [39, 40]. A recent meta-analysis on miRNA profiles
in BPD reported upregulation of miRNA-21, miRNA-34a,
miRNA-431, and Let-7f and downregulation of miRNA-
335 in BPD lung tissues compared to normal groups [41].
Except for miRNA-21, however, there is no major overlap
with miRNA profiles of patients with chronic lung dis-
eases [42], suggesting that miRNA regulation in the new-
born lung might be inherently different from the adult
organ [43]. In summary, these experimental and clinical
data suggest that changes in epigenetic programming
are associated with neonatal lung damage by oxygen
supplementation and BPD development but that there
are inherent differences between the immature new-
born and adult lung.
Proteostasis, i.e., maintenance of protein homeostasis,

ranges from correct protein synthesis, proper protein mat-
uration, folding, and interaction to controlled disposal of
unwanted and damaged proteins. Loss of proteostasis has
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been proposed as a major hallmark of aging [11]. Accumu-
lating data suggest that protein folding and degradation
pathways are dysregulated by hyperoxia and mechanical
ventilation as recently reviewed by us [44]. For the new-
born lung, some evidence suggests that increased stress of
the endoplasmic reticulum (ER) [45] and augmented
autophagy contributes to hyperoxia-induced surfactant
protein (SP)-C accumulation and subsequent injury of
neonatal rat lungs [46]. Increased ER stress and autophagy
have also been described as characteristic features of IPF
and COPD, respectively [47]. Thorough evaluation of pro-
tein homeostasis in the preterm lung, however, is missing
possibly due to the difficulties in obtaining reliable protein
data from small-sized lung samples in experimental and
clinical BPD.
Another aging hallmark is deregulated nutrient sensing

via the IGF-1/AKT/mTOR axis, an evolutionary con-
served growth signaling pathway that integrates nutrient
signals to regulate cell growth [48]. For BPD, intrauterine
growth restriction that results from nutritional and hor-
monal (e.g., insulin) deficiencies of the fetus represents an
independent risk factor [49, 50]. Insufficient nutrient sup-
ply associated with reduced levels of insulin impairs
pulmonary alveolar and vessel growth in fetal sheep lungs
[51]. On the cellular level, there seems to be a fine-tuned
balance of mTOR/Akt activation that needs to be main-
tained for proper lung maturation: On the one hand, in-
duction of Akt signaling protected neonatal lungs from
hypoxia-induced injury [52], while inactivation of the
mTOR/Akt pathway negatively regulated SP-A secretion
in alveolar epithelial cells and contributed to respiratory
distress syndrome in mice or early lethality, respectively
[53, 54]. Thus, while the worsening effects of diminished
nutrient supply are well established for BPD development,
there is only little known about how growth factor signals
are integrated via the IGF-1/AKT/mTOR signaling axis
and how signaling is regulated in a cell type-specific man-
ner in BPD.
Exhaustion of stem cells has been implicated as a driving

factor for several age-related diseases [55, 56]. Most prob-
ably, exhaustion of stem cells is not a typical feature of
BPD, but impaired mobilization of bone marrow-derived
progenitor cells and/or increased sensitivity to oxidative
stress might be a contributing factor to BPD disease path-
ology [57, 58]. Accordingly, reduced recruitment of endo-
thelial progenitor cells (EPC) from the bone marrow has
been reported in neonatal mice in response to hyperoxia
while adult mice showed rather increased EPC levels [59].
Moreover, reduced numbers of cord vein-derived pro-
genitor cells have been associated with development of
BPD [60, 61]. The concept of protective effects of pro-
genitor and stem cells is supported by two recent studies
that showed that paracrine effects of exogenously supple-
mented stem cells alleviate impaired alveolar growth in

neonatal lung injury in rats and mice [62, 63]. Therapeutic
application of stem cells, e.g., mesenchymal stem cells
(MSC), for treatment of BPD is thus a promising option
[58, 64, 65].
Mitochondrial dysfunction has been proposed as another

hallmark of aging [11]. The free radical theory of aging
early on proposed that dysfunctional mitochondria con-
tribute to elevated levels of reactive oxygen species (ROS)
and subsequent oxidative damage of the cell [66]. This
concept has been extended in recent years to a more com-
plex understanding of mitochondrial metabolism and
mitochondrial DNA function in aging [67]. Hyperoxia has
been shown to impair both glycolysis and oxidative phos-
phorylation in alveolar epithelial cells contributing to ele-
vated ROS formation [68]. In the newborn lung, hyperoxia
treatment impaired mitochondrial respiration and added
to BPD development. Moreover, direct inhibition of oxida-
tive phosphorylation by pyraben, an inhibitor of mitochon-
drial complex I, resulted in abnormal alveolar development
[69]. Another study implicated that only early hyperoxia-
induced postnatal mitochondrial ROS production contrib-
utes to BPD development [70]. Mitochondrial dysfunction,
as, e.g., induced by hyperoxia, may thus contribute to
early lung damage of the neonatal lung and develop-
ment of BPD.
Cellular senescence is a defined cellular program of

aging that limits the replicative capacity of cells by cell
cycle arrest, thereby preventing propagation of old and
damaged cells [71]. Senescence also contributes to tissue
remodeling during embryonic development and upon tis-
sue damage [72]. In the neonatal mouse lung, the senes-
cence program was activated by hyperoxia via decreased
histone deacetylase activity and upregulation of p21, con-
tributing to impaired alveolarization [34]. The impact of
prenatal cigarette smoke on premature senescence may
be explained by caveolin-1 expression, linking lung
fibroblast senescence and development of pulmonary
emphysema [73].
Altered intercellular communication due to disturbed

cell-cell signaling is another characteristic feature of aging
[11]. The release of cytokines and imbalanced growth fac-
tor signaling in the preterm lung, e.g., TGF-β, leads to the
activation of different transcription factors and results in a
characteristic increase in apoptosis of different cell types
[74]. In particular, platelet-derived growth factor-α and
the fibroblast growth factor family play a major role in
myofibroblast-driven secondary crest formation [75]. The
presence of dysmorphic capillaries is related to an altered
pattern of angiogenic growth factors such as reduced ex-
pression of the vascular endothelial growth factor and its
receptors in the neonatal lung [76, 77], accompanied by
diminished endothelial nitric-oxide synthase and soluble
guanylate cyclase in lung blood vessels and airways [78, 79].
These changes contribute to subsequent development of
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pulmonary hypertension and impaired lung lymphatic
drainage [80]. Perturbation of central signaling pathways,
e.g., suppression of the nuclear factor kappa B (NF-kB),
disrupts airway-branching and impairs development of
epithelial, mesenchymal, and endothelial cell structures cul-
minating in a failure of lung development [81–83]. More-
over, there is altered communication of immune and
inflammatory cells with parenchymal cells of the immature
lung contributing to innate and adaptive immune responses
in BPD [84, 85]. These data clearly indicate that altered
intercellular communication as one of the aging hallmarks
is of central relevance for the development of BPD and
most likely contributes to long-term consequences as the
lung matures and ages.
We have recently proposed dysregulation of the ECM

as another pillar in the process of lung aging [12]. Simi-
lar to disease-relevant processes in the aging adult lung,
ECM dysregulation is a characteristic feature of the in-
jured neonatal lung [86]. Experimental studies in rodents
and baboons recapitulated ECM alterations and clearly
linked ECM remodeling to apoptosis, inflammation, and
altered growth factor signaling [85, 87–91]. Accordingly,
therapeutic prevention of ECM degradation in the neo-
natal mouse lung preserved lung growth and structure
upon mechanical ventilation [92, 93]. Moreover, the ECM
is more than a simple scaffold but also directs the fate of
cellular differentiation. This was convincingly shown by
several studies which re-populated cells in de-cellularized
lungs of different matrix compositions [94–96]. Sustained
reorganization of the ECM as observed in BPD may thus
not only alter the function of the ECM as a scaffold for
lung development but may also affect its potential to regu-
late cellular differentiation in the lung. As such, dysregula-
tion of the ECM in BPD may contribute to an altered
long-term ECM memory that fosters development of
chronic lung diseases such as COPD and IPF [12].

Conclusions
We are only beginning to understand the molecular path-
ways that contribute to the development of BPD. Despite
some serious lack of knowledge, there is a remarkable
overlap between cellular pathways involved in aging and
BPD development, such as genomic instability, epigenetic
alterations, loss of proteostasis, deregulated nutrient sens-
ing, mitochondrial dysfunction, cellular senescence, al-
tered intercellular communication, and ECM remodeling.
Regarding the contribution of stem cells, some evidence
suggests that instead of stem cell exhaustion, impaired
mobilization and recruitment of progenitor cells may con-
tribute to the development of BPD. The contribution of
telomere attrition still remains to be investigated. Of note,
most of the studies summarized here provide mainly de-
scriptive evidence for an involvement of specific aging
pathways in BPD. In order to identify a causal role of

distinct aging pathways in the pathogenesis of BPD, one
should test the effect of hyperoxia and mechanical ventila-
tion in animal models with genetic modifications of
single-pathway components: If these pathways causally
contribute to the development of BPD, experimental ag-
gravation would then accelerate damage of the neonatal
lung while its experimental amelioration would retard
BPD development. The hypothesis that early injury via
specific impairment of aging pathways promotes age-
related lung damage later in life can also be tested in such
experimental models by analyzing lung function over time
in adult animals after early injury and upon second hits
such as cigarette smoke exposure or infections.
We recently proposed that the essential nature of the

hallmarks of aging for the organism makes it very likely
that one or the other pathway will be dysregulated in
any chronic lung disease [12]. This notion may also
apply to the development of BPD. Early dysregulation of
cellular and tissue-related maintenance mechanisms
such as DNA repair, proteostasis, stem cells, and cell/cell
and cell/matrix interactions will then contribute to amp-
lification of cellular damage over time and contribute to
impaired lung function later in life. Therapeutic target-
ing of such central maintenance hubs may thus repre-
sent a promising mechanism to interfere with early
injury-induced development of chronic lung diseases.
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