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Abstract

Objective: We present a parametric method forlinkage anal-
ysis of quantitative phenotypes. The method provides a test
for linkage as well as an estimate of different phenotype pa-
rameters. We have implemented our new method in the pro-
gram GENEHUNTER-QMOD and evaluated its properties by
performing simulations. Methods: The phenotype is mod-
eled as a normally distributed variable, with a separate
distribution for each genotype. Parameter estimates are
obtained by maximizing the LOD score over the normal
distribution parameters with a gradient-based optimization
called PGRAD method. Results: The PGRAD method has
lower power to detect linkage than the variance compo-
nents analysis (VCA) in case of a normal distribution and
small pedigrees. However, it outperforms the VCA and Hase-
man-Elston regression for extended pedigrees, nonran-
domly ascertained data and non-normally distributed
phenotypes. Here, the higher power even goes along with
conservativeness, while the VCA has an inflated type | error.

Parameter estimation tends to underestimate residual var-
iances but performs better for expectation values of the
phenotype distributions. Conclusion: With GENEHUNTER-
QMOD, a powerful new tool is provided to explicitly model
quantitative phenotypes in the context of linkage analysis. It
is freely available at http://www.helmholtz-muenchen.de/
genepi/downloads. Copyright © 2012 S. Karger AG, Basel

Introduction

To a large degree, human diseases are influenced or
caused by genetic variants. In order to understand the
mechanism of the disease and to treat patients in a caus-
ative way, a first step is to locate the genetic variants in
the human genome. An important tool for achieving this
goalislinkage analysis. Linkage analysis uses the fact that
alleles at loci that are physically close together are often
inherited together. When mapping disease genes, linkage
analysis investigates if alleles at a marker locus with a
known position are disproportionately often inherited
together with the disease. In the era of genome-wide or
exome-wide sequencing to screen for rare disease-caus-
ing variants, linkage analysis has the important task to
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restrict the analysis to those genetic regions that most
likely harbor the corresponding genes.

There are various types of statistical methods for link-
age analysis. A commonly used test statistic is the loga-
rithm-of-odds score (LOD score). Examples of software
packages for linkage analysis are GENEHUNTER (1],
MERLIN [2] or ALLEGRO (3] (for an overview, see e.g.
[4]). Linkage analysis is possible for both dichotomous
and quantitative phenotypes. In the latter, the phenotype
is expressed by a measured numeric variable (for a thor-
ough introduction to quantitative phenotypes, see for
instance [5] or [6]). A method dealing with quantitative
traits is the variance components analysis (VCA), which
has been implemented in several software packages, e.g.
GENEHUNTER or SOLAR [7]. In addition to the LOD
score, extra information regarding the variance compo-
nents is given. Another linkage analysis method to map
quantitative trait loci is the Haseman-Elston regression
approach [8]. However, the Haseman-Elston regression
only exploits relationships between sib pairs in the analy-
sis and does not provide specific information about the
genotype-phenotype relation. The MDE method [9], a
more sophisticated method based on the Haseman-
Elston regression, uses relative pairs of various types in
the analysis. Like VCA and the parametric approach im-
plemented in the LINKAGE package [10], it assumes
equal residual phenotypic variances for all three disease
locus genotypes.

In this paper, we present a parametric linkage analysis
method for quantitative phenotypes called PGRAD opti-
mization, which uses the complete pedigree information
rather than merely looking at pairs of relatives. It models
the phenotype as a normally distributed variable condi-
tional on the genotype at the trait locus. By maximizing
the LOD score over the genotype-specific means and
variances, it can both locate the putative disease locus
and provide specific information about the genotype-
phenotype relation.

Parametric linkage analysis for quantitative traits has
been previously implemented into the software packages
LINKAGE [10] and PAP [11]. However, both programs
use the Elston-Stewart algorithm [12], which restricts the
analysis to a small number of markers. This impedes
their application to gene mapping projects based on
SNPs, which are less informative than microsatellite
markers, such that a larger number of SNPs needs to be
analyzed jointly.

We have implemented the PGRAD method in the
GENEHUNTER software package, which is based on the
Lander-Green algorithm [13] and therefore can simulta-
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neously handle many markers. GENEHUNTER is a free
program which was originally written by Kruglyak et
al. [1]. Since then, it has been modified and enhanced
several times (see for instance [14-18]). The new exten-
sion for PGRAD optimization is called GENEHUNTER-
QMOD. Our method allows researchers to model geno-
type-specific residual variances, dominance effects, and
genomic imprinting. By performing simulations, we
compare the power of GENEHUNTER-QMOD to that of
the VCA and Haseman-Elston regression for a variety of
scenarios.

Methods

Overview

In this section, we briefly explain the principles of linkage
analysis. Basically, parametric linkage analysis is performed by
means of a statistical likelihood ratio test. We start by giving the
definition of the LOD score, which is also the final output of the
GENEHUNTER calculation.

P(data|¢,0)

P(data|¢,0=1/2) @

LOD = max log,,

60,112

With 'data, we denote the marker information and the disease
phenotypes of the investigated persons for a given pedigree. ¢
comprises the parameters of the genotype-phenotype relation,
which usually includes three genotype-specific penetrances in the
case of a dichotomous trait, and the disease allele frequency. 6 is
the recombination fraction between the putative disease locus
and the marker, which is related to the genetic distance. 8 = 0
means that the locus is located directly at the marker, 8= 1/2 im-
plies that there is no linkage between the disease locus and the
marker. Since 6 is unknown, the LOD score is maximized over
# € [0, 1/2]. The recombination fraction yielding the largest LOD
score is the maximum likelihood estimate, which corresponds to
the distance between the marker and the disease locus. In the
multimarker situation, 8 is replaced by the genetic position x of
the disease locus.

The actual calculation of the LOD score is a complex task. A
thorough description can be found in Strauch (19, p. 41]. In the
context of the GENEHUNTER software, its heart is the Lander-
Green algorithm [13]. The advantage of this algorithm is that its
computational cost rises linearly with the number of markers in
the data set. Unfortunately, there is an exponential dependency
on the number of meioses in the used pedigrees. Each meiosis
determines one bit in the inheritance vector. Therefore, GENE-
HUNTER can be applied to data sets with many markers, but us-
ing pedigrees with an inheritance vector of more than 17-18 bits
leads to unacceptably high computation time and memory de-
mands on a standard PC (Quad-Core CPU, 3.0 GHz, 8 GB RAM).

Since the parameters of the disease model are often unknown,
it is conceivable to estimate them. This can be achieved by further
maximizing the LOD score function given in equation (1) over the
disease model parameters ¢. Such a maximization of the LOD
score is called MOD score analysis, the maximized LOD score is
also called MOD score. '

Hum Hered 2012;73:208-219 209

Kopie von subito e.V., geliefert fur Helmholtz Zentrum Minchen - Dt. Forschungszentrum f Umwelt und Gesundheit GmbH (SLS02X00668)



@

MOD = max max log,,

¢ 6e0.1/2)

P(data|¢,6)
P(data|¢,0= 1/2) '

Besides providing a maximum likelihood estimate of the dis-
ease model parameters and the recombination fraction, the MOD
score also serves as the likelihood ratio test statistic for the null
hypothesis of no linkage. When seen from the perspective of
parametric linkage analysis as in equation (2), the MOD score
calculation is done by maximizing the likelihood ratio over the
trait model parameters ¢, rather than maximizing each of the two
likelihoods separately. For this reason, it has sometimes been ar-
gued whether the MOD score is in fact a real linkage test statistic.
However, it has been shown for the special case of affected sib
pairs [20] as well as for general pedigrees [21] that the likelihood
ratio used in a parametric LOD or MOD score analysis is exactly
the same as the nonparametric likelihood ratio using the proba-
bilities z; that a family falls into a certain allele-sharing class. For
example, the possible triangle test for affected sib pairs {22] in-
cludes the probabilities z, 2, or 2, that an affected sib pair shares
0, 1 or 2 alleles identical by descent, respectively. Importantly, the
parameters z; are fixed to their values under H; in the denomina-
tor likelihood. Therefore, the nonparametric allele sharing-based
test statistic, in which a maximization is performed over the z;,
represents a true likelihood ratio test for the null hypothesis of no
linkage. Because of the identity of the parametric and the non-
parametric likelihood ratio, the same also holds for the paramet-
ric MOD score.

In the dichotomous case, the asymptotic distribution of the
MOD score under the null hypothesis is known for special pedi-
gree structures [21], and the corresponding p value can be easily
obtained. In most cases, and particularly for quantitative pheno-
types, the null distribution is unknown and the p value has to be
determined empirically. The approach we use to determine p val-
ues had already been implemented in GENEHUNTER-MOD-
SCORE, which performs MOD score analysis for dichotomous
traits (see [18] for a thorough description). The empirical p value
is calculated by simulating data sets under the null hypothesis: the
original data set is taken, and founder alleles at the marker loci
are assigned randomly, taking the corresponding marker allele
frequencies into account. The inheritance of alleles to the next
generation is simulated with respect to the recombination values
for the intermarker distances, also keeping the pedigree structure
of the original data set. Then the MOD score of the simulated data
is calculated and compared to the MOD score of the original data.
This is repeated with many simulated marker data sets. We denote
these simulated data sets with Hj replicates.

The p value is the probability of obtaining the original MOD
score, or a larger one if the null hypothesis is valid. It is approxi-
mated by the empirical p value:

n
=—, 3
P= ©)
where N is the total number of Hy replicates, and # < N the num-
ber of Hj replicates with a MOD score larger than or equal to the
original MOD score. If p is sufficiently small, the null hypothesis
of no linkage is rejected.

Approach
So far, parametric linkage analysis with GENEHUNTER
has only been possible for dichotomous phenotypes. The disease
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model consists of the disease allele frequency p and the penetranc-
es. The latter are the probabilities of suffering from the (dichoto-
mous) disease depending on the genotype. We denote the wild-
type alleles with +’ and the mutant alleles that increase the disease
risk with ‘m’.

Without imprinting effects, we thus have three possible geno-
types at the disease locus: homozygous wild-type (+:+), heterozy-
gous (m,+) and homozygous mutant (m,m).

Our intention was to develop a model for quantitative traits
that provides as much information as possible about the pheno-
type. For instance, the average value of the phenotype of a person
with a certain genotype ((+,+), (m,+), (m,m)) as well as the average
variation of phenotype values of persons with the same genotype
are of interest. Under the assumption that, given a certain geno-
type, the phenotype is normally distributed with mean y; and
standard deviation o3, the density function is

_ (x_'“f)z 4
fix)= ol @

exp| —
2mo,

with i € {(+,4), (m,+), (n,m)}. A way to interpret this model would
be to assume that one gene locus has a major effect on the pheno-
type, determining the value u, depending on the genotype. Other
genetic or environmental effects are considered by o; thus creat-
ing ‘noise’ around the average phenotype value u. Hence, ¢ com-
prises polygenic and environmental variance. It is assumed that
these factors causing residual variance are independent between
individuals.

The influence of other minor genes may depend on the geno-
type at the considered disease locus. In addition, environmental
factors may also have a different influence, depending on the ge-
notype at the disease locus. Therefore, it can be useful to model
a separate ‘noise’ parameter for every genotype.

Allin all, we have three density functions, one for each of the
possible genotypes, each with its own expectation value u; and its
standard deviation g;. Each density function describes the distri-
bution of the quantitative phenotype of persons with one specific
genotype: (+:+), (m,+) or (m,m) (see also fig. 1).

These density functions describe the probability of a person
with a certain genotype having a certain phenotype. Theyare thus
equivalent to the penetrances in the dichotomous case. Therefore,
we adapted the GENEHUNTER version for dichotomous traits to
the quantitative case by replacing the penetrances with the den-
sity functions.

With this adaptation, it is now possible to calculate the LOD
score for every genetic position in the genome for a given quanti-
tative model. Then, the position with the highest LOD score will
be our guess for the disease locus.

As in the dichotomous case, the model parameters of the
quantitative phenotype (here: u; 0; and disease allele frequency
p) are often unknown and need to be estimated. This is done by
maximization of the LOD score, which is a function of the vector
w of the phenotype parameters:

gR =R, w—g(w), ®)
with
w= ('“(+ )M, +) o) P 1) P, +)’”(m,m)’P)- ©)

Of course, g(w) is the quantitative LOD score for the given pa-
rameter vector w. We also assume that it has already been maxi-

Kiinzel/Strauch

Kopie von subito e.V., geliefert fir Helmholtz Zentrum Minchen - Dt. Forschungszentrum f Umwelt und Gesundheit GmbH (SLS02X00668)



mized over the recombination fraction 8 or the genetic position x
in the multipoint case.

The best estimate for the parameter vector w is the one that
yields the highest LOD score because this best explains the data.
We therefore need to maximize g over w. A first idea would be to
find the maximum analytically. This would be by far the compu-
tationally most efficient and elegant solution. Unfortunately, the
arising equations have no analytical solution. This can easily be
seen by looking at the algorithm as described by Strauch [19] that
is represented by g. Therefore, we need to find a numerical ap-
proximation of the maximum of g Modern mathematics pro-
vides many different methods for multidimensional optimiza-
tion. The point is to choose the right method for the problem.

Since the density functions f; are differentiable in u; and o3, g
is differentiable in w. This feature has to be exploited when choos-
ing the right optimization method. Therefore, gradient-based
methods might be of use. The optimization should take place on
a bounded space because there are some natural restrictions for
the phenotype parameters. The affected allele frequency p is a
probability and therefore lies in [0, 1]. Then, for all genotypes,
0; > 0. In general, an upper boundary for ¢; can also be found
without restricting the problem. For instance, the difference be-
tween the largest and smallest phenotypes in the data set is a rea-
sonable upper limit since the average variation of the phenotype
is unlikely to be higher than that. Theoretically, the expectation
values u; can have any values in R. Again, it is no severe restric-
tion to assume that they lie within the range of the smallest and
largest phenotypes or any similar interval. Thus, the optimization
takes place in a multidimensional cuboid

Q::[ll,ul]X[lz,uz}x-~-><[l7,u7]CR7. )

The variables /; and u; denote the respective lower and upper
boundaries. Then,

g2Q—R, geC(Q) 8)
is the LOD score function on the phenotype parameter set Q. We
are looking for

= 9
8o =maxg(w), ©)

and

Wi € Q With §(Wo ) = Zrnex -

Then wpay is the estimate of the phenotype parameters.

We know that Q is a compact subset of R’. Also, g is differen-
tiable, in particular continuous. Therefore, basic analysis tells us
that a maximum of g on Q exists.

A requirement of the optimization method is thus that itis able
to operate on a bounded subset of K. Otherwise, a lot of compu-
tational effort would be wasted on testing parameter sets that
could have been outruled by simple logic. Another crucial point
is the computational cost. As mentioned before, the calculation of
the LOD score depends exponentially on the number of persons
in the families which are analyzed. Depending on the actual size
of the pedigrees, calling the LOD score function g may well take
several seconds wallclock time. With these considerations, we can
narrow down the amount of optimization methods that come into
consideration for our maximization problem. We implemented
and tested those which remained, and chose the method that was
fastest and converged most often.

(10)
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Algorithm

Itis a convention to formulate minimization rather than max-
imization problems. However, this is no loss of generality since
the maximum of a function 4 can be found by applying the min-
imizing algorithm to —h. Therefore, we will also stick to this con-
vention.

Gradient-free methods like the downhill simplex algorithm
(also known as Nelder-Mead algorithm) almost never converged
on our test data sets. Additionally, it did not improve the result of
the starting value much. The simulated annealing method needed
too many function evaluations to be of practical use. Among gra-
dient-based methods, we tested the Spectral Projected Gradient
method (23] and the GENCAN method {24}, which had both ac-
ceptable results concerning optimization results as well as calcu-
lation time. However, these methods were outperformed with re-
gard to both points by the Projected Gradient method (PGRAD).
A thorough description can be found in Kelley [25]. A combina-
tion of several optimization methods turned out to be infeasible
due to computation time.

We therefore chose the PGRAD method. The algorithm is a
natural extension of the steepest descent algorithm to problems
on simple bounded subsets. The basic idea is to choose an initial
point wy € Q that is already close to the minimum. The algorithm
then calculates the direction with the lowest derivation (‘steepest
descent’) and follows this direction into the minimum. In the fol-
lowing section, we will give a description of the optimization al-
gorithm. Afterwards, we will present how we chose the starting
value wy.

Optimization

As already mentioned, we have to choose a starting value wy.
From this point, we construct a sequence w; that hopefully con-
verges into the minimum. In order to describe the construction,
we need to explain the following terms: by

oh Oh
_ 3eens w
K W) ( )]

we denote the gradient of h in w. It describes the direction of the
steepest ascent of  in w. wy; is the j-th component of the vector
w, not the j-th element of the sequence. Then we have that

Vhiw)= (11)

Bw(l)

Lowy =,
P(w), ={w;, L <w; <y (12)
U W, =i

is the projection onto Q. This maps w to the nearest point in Q.
Given an iterate w;, the new iterate is

Wy, = P(w, = \Vh(w,)). (13)
We call \; >0 the steplength parameter. Since -Vh (w;) determines
the direction of the steepest descent, we can interpret equation
(13) as a step of length \; ||[VA (w) || in the direction of the mini-
mum. \; is determined by the so-called sufficient decrease condi-
tion. We define

w(\,)=P(w—\Vh(w)). (14)
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Then \; satisfies the condition of sufficient decrease if

h(w()\,.))—h(w)s;—a| lw—w\)| |-

i

(15)

a is a parameter that can be adapted to the particular function
one wishes to minimize. Typically, it is set to 107%.

Next, we need to find a termination criterion. In the uncon-
strained case, a necessary condition for a local minimum is that
||VH|| is zero. With constrained problems, this is not necessarily
the case. A natural substitution is to end the iteration if the differ-
ence of consecutive iterates is small: ||w;,; - wi|| < & In order to
prevent the method from running on and on when no minimum
can be found, an additional termination criterion is set: the opti-
mization is stopped after n,,,, iterations. When applying the al-
gorithm to the LOD score optimization problem, we set h = ~g.

Starting Values

A disadvantage of gradient-based methods is that, in general,
convergence to the global minimum cannot be guaranteed. The
method will iterate from the starting point to the next minimum,
which might well be alocal minimum and not the global one. An-
other problem is that the duration and the computational cost of
the iteration depend on the initial value and its closeness to the
minimum.

We deal with the first issue by repeating the iteration with sev-
eral different starting values. In this way, we increase the proba-
bility to find the global minimum since not all starting values will
lie close to the same local minimum. In order to obtain a starting
value that is already close to the minimum, we roughly guess the
parameters of the phenotype and use them as a first starting val-
ue. [n general, carrying one mutant allele (#,+) leads to an average
increase or decrease of the phenotype, compared to the homozy-
gous wild-type genotype (+,+). A second mutant allele (m,m) leads
to a further increase or decrease (see also fig. 1). We can use this
for the following approach: qy, ..., 4, denotes the ordered set of all
phenotypes in the data set such that g; < ¢;,1V;. We assume that
the mutant allele m increases the phenotype. We initially allocate
the lowest third of the (ordered) phenotypes to the (+,+) genotype,
the second third to the (m,+) genotype, and the highest third to
the (m,m) genotype. We then calculate the empirical mean and
standard deviation for the respective genotype:

2

R
'u’(+,+):-n:§qi’ (+,+):;;(qi_'u’(+,+))‘

The other parameters are calculated with the respective thirds
of the phenotypes. The disease allele frequency p is set to any ran-
dom number in {0, 1], preferably some value close to zero.

Other starting values can be obtained by multiplying the start-
ing values in equation (16) with a positive random number r. It
should not vary too much from 1.0 in order to keep the basic idea
of equation (16) but still provide a different spot to start with, so
that the optimization will avoid local minima. We suggest r € [0.5,
1.5]. We refrain from using different random numbers of 7; for the
starting values in equation (16) since this could destroy the as-
sumed inequality foy = Wims = Mim,m)-

(16)

Phenotype Models
In special cases, it can be useful to adapt the model formula-
tion described in the section Approach. For instance, if it is sus-
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Fig. 1. Density functions of the phenotype depending on the ge-
notype.

pected that the disease is determined by imprinting effects, it is
useful to include this in our model as a separate parameter. In this
case, (+,m) means that the wild-type allele is transmitted by the
father and the mutant allele by the mother. On the other hand, a
person with a (m,+) genotype has a paternal mutant allele and a
maternal wild-type allele. Accordingly, the quantitative model in
GENEHUNTER-QMOD can be extended with a fourth normal
distribution for the (+,m) genotype. Then, we have two additional
parameters, the expectation value g ) and the standard devia-
tion oy, ). The parameter vector w (see equation (6)) is extended
by these two parameters, and the optimization process is carried
out analogously to the nonimprinting case.

We may also know that the residual variation is independent
of the phenotype, i.e. all standard deviations of the phenotype
distributions in equation (4) are equal. In this case, we can adapt
our model in GENEHUNTER-QMOD by setting

T )T ) T 17)

m, + m,m)'

Again, the optimization is carried out analogously to the ordinary
case.

Another adaptation is the modeling of additivity, i.e. the ab-
sence of dominance effects. This means that the average pheno-
type of heterozygous persons is exactly between the average phe-
notype of homozygous mutant and wild-type individuals:

1

l“(m,+)“§(/‘(+,+) +:“(m,m))- (18)

Since this is a characteristic of many inherited traits, we de-

cided to implement the purely additive model in GENEHUNT-
ER-QMOD, too.

Validation

In order to assess the performance of PGRAD optimization
using the quantitative MOD score as test statistic, we evaluated
the type I error and power of the method as implemented in
GENEHUNTER-QMOD. Furthermore, the estimates of the pa-
rameters of the phenotype model were of interest, i.e. the expecta-
tion values u; and standard deviations o; for the three genotypes
(see fig. 1).
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For all data sets we analyzed, we used ten different starting
values as described in section Starting Values. The maximum
number of iterations of the PGRAD algorithm was set to 500. A
higher number of iterations led only to improvements on the sixth
decimal place of the MOD score if the PGRAD method had not
converged before.

Type I Error Rate Estimation

For the simulations, we used the program SIBSIM developed
by Franke et al. [26], which allows us to create pedigree files with
any given number of families and any kind of family structure.
The position of the disease locus can also be specified. We made
some small modifications to the software so that we could explic-
itly specify the genotype-specific expectation values w; and the
standard deviations o; of the phenotype. SIBSIM then creates the
appropriate pedigree file and assigns to each person a random
quantitative phenotype according to the respective density func-
tions (fig. 1). The genotypes of the founders are set randomly un-
der the assumption of Hardy-Weinberg equilibrium.

In order to estimate the type I error of a certain scenario, we
simulated 500 pedigree files under the null hypothesis of no link-
age. Each pedigree file contained 300 sib pair pedigrees, i.e. fam-
ilies with two parents with two children. We used one highly in-
formative marker with 20 equifrequent alleles. In the analysis, the
genotypes for both parents and siblings were available, as were all
phenotypes. We set the genetic distance between marker and dis-
ease locus to 1,000 cM, which equates to a recombination fraction
6 which deviates from 1/2 by less than 10~*° (Haldane mapping
function), so that we can safely assume no linkage in the data. We
then calculated the MOD score of each data set. Since the asymp-
totic distribution of the MOD score is unknown in the case of
quantitative traits, we calculated the p value of each simulated
data set empirically by performing a further round of simulations.

Fortunately, the previous program extension GENEHUNT-
ER-MODSCORE, which calculates MOD scores for dichotomous
traits [18], was already able to perform the p value calculation. The
MOD score distribution was simulated by creating pedigrees with
the same structure and the same phenotypes as the original data
set, randomly generating marker data under the null hypothesis
of no linkage. These replicates of the inner simulation loop are
therefore called H, replicates (see section Overview). For each of
the 5,000 H, replicates which were generated in this manner, the
MOD score was calculated and compared to the MOD score of the
original simulated data set. The p value equals the relativeamount
of MOD scores reaching or surpassing the MOD score of the orig-
inal data, i.e. the empirical probability under the null hypothesis
to obtain an equal or larger test statistic.

We decided to use a nominal a level of 5%. Therefore, we
counted all the data sets simulated by SIBSIM with a p value
<0.05. The relative amount of these data sets is the empirical
probability to reject the null hypothesis if the null hypothesis is
valid. Therefore, it is the type I error rate.

Power Estimation

The estimation of the power was done in a similar way as the
typel error estimation. We simulated data with SIBSIM under the
assumption of complete linkage. Therefore, we set the genetic dis-
tance between marker and disease locus to 0 cM. The number of
families and the family structure remained as introduced in sec-
tion Type I Error Rate Estimation. The MOD score and the cor-
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responding p value were calculated by means of an inner loop of
simulations under Hj, as before. This time, a p value <0.05 de-
noted a justly rejected null hypothesis. Therefore, the relative
amount of data sets with p values = 0.05 is the estimate of the
power of the scenario.

Sample Method

In order to obtain a precise estimate of the p value, many Hy
replicates have to be created, and the corresponding MOD score
has to be calculated. This is a huge computational effort. To cal-
culate a p value by using 5,000 Hy replicates may easily take more
than 10 days (standard PC), which is too long for practical appli-
cation. Fortunately, a good approximation of the p value can be
obtained without performing a full MOD score calculation for
every Hy replicate. When calculating the p value, we only need to
know whether the MOD score of the Hy replicate is larger than the
MOD score of the original data or not. Simulations showed that
this information is highly correlated with the average LOD score
value gon Q. In particular, we took 500 randomly chosen function
evaluations of g for a Hj replicate and calculated the arithmetic
mean. Then we did the same for the original data. If the arithme-
tic mean of the Hy replicate was higher/lower than the corre-
sponding arithmetic mean of the original data, the same was true
for the MOD scores. Since the evaluation of such arandom sample
takes only a fraction of the time of the PGRAD optimization, we
can calculate the p value of a Hy replicate much faster. We call this
technique sample method.

Parameter Estimation

We estimated the genotype-phenotype relation by using the
parameter set that yielded the PGRAD-maximized LOD score,
i.e. the MOD score. We compared the distribution of parameter
estimates obtained for the simulated replicates with the true gen-
erating value.

Comparison to Other Methods

In addition, the type I error rate and power for all scenarios
have also been analyzed with the VCA as implemented in GENE-
HUNTER (see [27] for more information). LOD scores obtained
by the VCA, when calculated without a dominance component as
we did here, asymptotically follow a 50:50 mixture of a x* distri-
bution with one degree of freedom and a point mass at zero. In
addition, all scenarios have been analyzed with the traditional

Haseman-Elston method as implemented in GENEHUNTER.

Results

The results are given in four parts. First, the type [ er-
ror and power results for different scenarios with ran-
domly ascertained data are described, followed by the re-
sults for scenarios with nonrandom ascertainment. Then,
the results of the phenotype parameter estimation are
given. In the end, we present a brief application of the
GENEHUNTER-QMOD to a real data set, namely the
investigation of human family data regarding sensitiza-
tion to house dust mite allergens.
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Type I Error and Power

In this section, we only investigate scenarios with ran-
dom ascertainment. First, we wanted to know how our
method dealt with a normally distributed phenotype.
Scenario 1 addresses the ‘simple case’ without domi-
nance effects and equal variances (table 1). As for the
simulations, the analysis with GENEHUNTER-QMOD
was performed assuming no dominance and the same
residual variances for all three genotypes. The type I er-
ror rate estimation showed that the sample method re-
jects Hy with a probability of 0.06 and the VCA with
0.062 (table 1). Therefore, both methods are slightly
above the nominal type I error rate of 0.05. However,
based on the number of replicates we used for the calcu-
lation of the type I error (500), this is not statistically dif-
ferent from the nominal level. Haseman-Elston regres-
sion shows a type I error rate of 0.05 and is therefore
perfectly accurate.

Since our model was specifically designed for pheno-
types with different variances, another scenario was also
created without dominance effects, but with genotype-
dependent residual variances. This time, the analysis
with GENEHUNTER-QMOD was performed assuming
no dominance but different residual variances for all ge-
notypes. Here, the VCA and Haseman-Elston regression
reject Hy with a probability of 0.04 and 0.038, respective-
ly. However, given that 500 replicates were simulated,
these values are not significantly different from the ex-
pected value of 0.05. The sample method shows a true
type I error rate of 0.024 and is therefore conservative.

Since not all quantitative phenotypes are normal-
ly distributed, we investigated how GENEHUNTER-
QMOD, VCA and Haseman-Elston regression perform
with data for which the assumption of normality does not
hold. For the next scenario, we therefore simulated the
phenotypes for each genotype with lognormal distribu-
tions:

1 (ln X — M )2
x/2—1;0'ix i 20}2

0 x=0

x>0

fi(x)= 19)

That is, the phenotype, given genotype i, had a specific
lognormal distribution, with parameters y; and o2 The
sample method has a type I error rate of 0.036, and Hase-
man-Elston regression a type I error rate of 0.034 (see
table 1, scenario 3). Again, both type I error rates do not
differ significantly from the expected value of 0.05. The
type I error rate of the VCA is 0.134 and therefore exceeds
by far the nominal level.
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Table 1. True type [ error rate comparison of the sample method,
the VCA and Haseman-Elston regression

Scenario 0-2(+,+) 02(,,,,+) Ul(m,m) as ayca  OHE

1 200.0 200.0 200.0 0.060 0.062 0.050
2 100.0 2250 400.0 0.024 0.04 0.038
3 2.25 6.25 9.0 0.036 0.134 0.034
4 350.0 350.0 350.0 0.046 0.042 0.042

as, ayey and agp denote the true type Lerror rate of the sample
method, the VCA and Haseman-Elston regression, respectively.
Note that the parameters of scenario 3 correspond to lognormal
distributions. The expectation values gt .y, fhm,+) A0d Uiy, my Were
set to 20.0, 40.0 and 60.0, respectively, in scenario 1, 2 and 4. In
scenario 3, they were set to 20.0, 100.0 and 180.0, respectively.
Note that each family in scenario 4 consists of two parents and
four siblings instead of two. The disease allele frequency p was set
to 0.4 in scenarios 1,2 and 3. In scenario 4, we have p=0.1. In each
scenario, the type I error was calculated using 500 replicates sim-
ulated under the null hypothesis of no linkage.

Table 2. Power of the sample method, the VCA and Haseman-
Elston regression

Scenario P Pyca Pyg
1 0.82 0.98 0915
2 0.874 0.95 0.745
3 0.645 0.295 0.13
4 0.82 0.77 0.225

Py is the power of the sample method, Py, is the power of the
VCA and Pyg denotes the power of Haseman-Elston regression.
The parameters of the scenarios are as in table 1. In each scenario,
the power was calculated using 200 replicates simulated under the
assumption of complete linkage.

Next, we examined scenarios with families consisting
of two parents and four siblings. In order to avoid having
a power of 1 for all types of analysis, we increased the re-
sidual variance o7to 350.0 for all three genotypes in the
simulation. All three methods yield an acceptable type I
error rate, although with a slight nonsignificant tenden-
cy towards conservativeness. The sample method comes
closest to the theoretical value of 0.05 (table 1, scenario 4).

When we analyzed the power, we created 200 data sets
for each scenario under complete linkage. Again, GENE-
HUNTER-QMOD calculated 5,000 Hy replicates in order
to obtain the p value for each original simulated data set.
All results are shown in table 2. In scenario 1 with equal
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Table 3. True type I error rate and power of the sample method,
the VCA and Haseman-Elston regression when using an ascer-
tainment condition

Scenario Qg QycA aygp PS PVCA PHE
5 0.066 0.0 0.06 0.895 0.04 0.585
6 0.032 0.088 0.052 094 0.89 0.03
7 0.042 00 0.052 0975 0.0 0.495

s, ayca and oy denote the true type I error rate of the sample
method, the VCA and Haseman-Elston regression, respectively.
P, Pyca and Py denote the empirical power of the three methods.
The expectation values in scenarios 5, 6 and 7 were set to ) =
20.0, timq+) = 40.0 and gy = 60.0, and the variances to 0%, 4y =

(mt) = Om,m) = 200.0. The disease allele frequency in the gener-
ated data sets from which the families were drawn was set to 0.1.
In each scenario, the type I error was calculated using 500 repli-
cates simulated under the null hypothesis of no linkage, and the
power was calculated using 200 replicates simulated under the as-
sumption of complete linkage.

variances, the power of the VCA is by 0.16 higher com-
pared to the sample method. The power difference be-
tween the sample method and the VCA is reduced to
0.076 when analyzing scenario 2 with different variances.
Note that the VCA assumes equal variances, while the
sample method/PGRAD optimization does not. On the
other hand, in the lognormal case (scenario 3), the sample
method has 0.35 power gain compared to the VCA meth-
od. In the case of different variances, the sample method
has a moderately higher power compared to the scenario
with equal residual variances. Haseman-Elston regres-
sion performs well for normally distributed data, al-
though not as well as the VCA. Different variances in the
phenotype result in a power loss of 17% (91.5 vs. 74.5%).
However, Haseman-Elston regression has the lowest
power of the three methods when non-normally distrib-
uted data are analyzed, i.e. being 0.13 in scenario 3.

When pedigrees with four instead of two sibs are ana-
lyzed, the sample method outperforms both the VCA and
Haseman-Elston regression. The power of the sample
method in scenario 4 remained at 0.82, whereas the pow-
er of the VCA dropped to 0.77, and the power of Hase-
man-Elston regression even to 0.225.

Ascertainment .
Since the recruitment of families is often carried out

with a certain selection scheme, we also investigated sce-
narios with nonrandom ascertainment. Again, we simu-
lated scenarios with 200 data sets for each scenario for

Linkage Analysis with
GENEHUNTER-QMOD

power analysis and 500 data sets for type I error analysis.
Family structure, marker and disease locus as well as
number of Hy replicates for p value calculation remained
as in scenarios 1, 2 and 3. Along the lines of Kleensang et
al. [28], we imposed the following ascertainment condi-
tions. Scenario 5 contains only families with at least one
sibling in the highest quartile of the original distribution
(single-proband selection). In scenario 6, families were
only selected if siblings were either both in the highest or
both in the lowest quartile. Scenario 7 consists of families
with one sibling in the highest and the other sibling in the
lowest quartile (double-proband selection). Families were
simulated using SIBSIM and drawn until each data set
contained 300 families with the corresponding structure
according to the ascertainment criterion. The results are
shown in table 3.

The results show that the estimate of the type I error
for the sample method tends to be liberal under the sin-
gle-proband selection (scenario 5), and to be conservative
under the double-proband selection (scenarios 6 and 7).
However, deviations from the expected value of 0.05 can-
not be deemed significant given the number of replicates
(500) used to assess the empirical type I error rate. The
VCA is extremely conservative under the single- and
double-proband selection with both siblings in opposite
quartiles. However, it is too liberal under the double-pro-
band selection with both siblings in the same quartile. By
contrast, Haseman-Elston regression has acceptable type
I error rates in all ascertainment scenarios. The sample
method shows good power in all ascertainment scenari-
os. It is especially strong under the double-proband selec-
tion. The power of the VCA is unacceptably low under the
single- and double-proband selection with siblings in dif-
ferent quartiles (scenarios 5 and 7). It should be noted that
these are the scenarios for which the VCA is also strong-
ly conservative. However, it performs well for the double-
proband selection with siblings in the same quartiles
(scenario 6), although at the price of being liberal, and it
still does not quite reach the power of the sample method.

The power of Haseman-Elston regression shows a re-
versed picture compared to the VCA. While it still per-
forms moderately in scenarios 5 and 7, it has almost no
power in scenario 6. However, even in scenarios 5 and 7,
it fails to reach the power of the sample method by far.

Parameter Estimation

Another intention of the new method implemented in
GENEHUNTER-QMOD was to gather specific informa-
tion about the genotype-phenotype relation. Therefore,
the next point we focused on was the estimation of the
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Table 4. Parameter estimates for scenarios 1 and 6

Parameter True Mean Standard Error, %
value deviation

Scenario 1
o) 20.0 151 107 24.5
Mme) 40.0 37.4 8.8 13.0
Uomm)  60.0 596  17.6 2.0
g 14.1 7.7 2.74 454

Scenario 6
Ha4) 20.0 12.8 7.0 36.0
M 400 36.5 8.2 17.5
Kommy  60.0 603 165 1.5
g 14.1 5.4 3.24 61.7

o is the standard deviation of the genotype-specific density
functions: o = 0, 1) = O(m.+) = Ofm,m)» Se€ table 1.

parameters of the quantitative trait model; that is, the ex-
pectation values g, 1), in+) a0d Wiy m and the standard
deviations 0(, ), On+) and Oy, Of the respective geno-
type-specific distribution of the phenotype. As already
mentioned before, the parameter estimates were the ar-
guments of the model-maximized LOD score function.

We ran the PGRAD method for each of the 200 data
sets simulated in scenarios 1 and 6. The results of the pa-
rameter estimation are given in table 4. The first column
shows the true value for the corresponding parameter.
The second column gives the empirical mean of all 200
estimates for the corresponding parameter. The third
column shows the empirical standard deviation. For the
expectation parameters, the error term (last column)
describes the difference of the true value and the mean
estimate in relation to the difference of the phenotype
means u; (in this case 20.0). In this way, we avoid error
terms which are small due to high phenotypes and not
due to precise estimates.

In order to give the reader an idea of the distribution
of the parameters, we have plotted the distribution of the
expectation value of the homozygous mutant genotype in
scenario 1 (fig. 2). We can see a clear peak at the true val-
ue YUimm) = 60.0.

Application to Real Data

We applied GENEHUNTER-QMOD to human pedi-
gree data regarding sensitization to house dust mite al-
lergens. The data set consists of sib pairs as well as more
complex pedigrees, and includes several European popu-
lations. Here, we analyzed German and English families.
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Fig. 2. Histogram of 200 parameter estimates of Wy . (true
value = 60.0) for scenario 1.

The German population is made up of 44 families with
187 individuals, thereby being 33 families with two sibs
and 11 families with three sibs. The English population
consists of 19 families with 122 individuals, including 7
families with two sibs, 3 families with three sibs, 5 fami-
lies with four affected sibs, and 4 families with an extend-
ed structure.

For each nonfounder, a RAST (Radio-Allergo-Sorbent
Test) class test was carried out by measuring specific IgE
antibodies to crude extract of Dermatophagoides pteron-
yssinus (house dust mite). According to the value of the
IgE level, the individual was assigned a RAST class, rang-
ing from O to 6. This value was taken as the quantitative
phenotype. As for marker information, 604 microsatellite
markers were typed on all chromosomes. The results of
the original analyses for the dichotomous phenotype mite
sensitization have been described previously [29, 30].

The analysis with GENEHUNTER-QMOD yielded a
MOD score of 1.019 on chromosome 4, at marker D45194,
for the German population, with a corresponding p value
of 0.00124. The p value was calculated by generating
50,000 replicates under the null hypothesis.

For the English population, a MOD score of 1.193 oc-
curred at chromosome 5, at marker D55486. The corre-
sponding p value is 0.001. It was calculated by generating
1,000 replicates under the null hypothesis.
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These two genetic loci were already identified in a
previ-ous study with dichotomous phenotypes [15]. Here,
peak MOD scores occurred for the German population at
D45430 (which is directly next to D4S194) and for the
English population at D5S416 (which is also next to
D55486).

Discussion

Our intention was to develop a statistical method for
quantitative linkage analysis which provides as much in-
formation about the phenotype as possible. To this end,
we developed the PGRAD optimization method and im-
plemented it in the Lander-Green-based software pack-
age GENEHUNTER-QMOD.

For randomly ascertained data that match the as-
sumption of normally distributed phenotypes, the power
of GENEHUNTER-QMOD stays behind that of the VCA
when sib pairs are analyzed. However, when larger fami-
lies with four children are analyzed, the sample method
outperforms both Haseman-Elston regression and the
VCA. In our example, the sample method was able to
compensate a stronger noise parameter (i.e. the residual
variances) with the additional information given in fam-
ilies with four siblings, while the VCA and especially
Haseman-Elston regression had a substantial power drop.
It seems that the latter methods do not exploit the addi-
tional information that is given in extended pedigrees to
the same degree as GENEHUNTER-QMOD. In particu-
lar, Haseman-Elston regression only looks at one pair of
sibs at a time, even when larger families are analyzed.

Also, when non-normal data are analyzed, GENE-
HUNTER-QMOD turns out to be more robust than the
other methods. Our simulations showed that the power
of the scenario with lognormally distributed data was by
0.35 higher when analyzed with our new method com-
pared to the VCA. This is remarkable given that our mod-
el specifically models a normally distributed trait. At this
point, it should be noted that the assumption of a normal
distribution also underlies the VCA. It seems that, due to
the variety of modeling possibilities for the data, our
method provides a certain robustness with regard to vio-
lations of the normality assumption that the VCA meth-
od is lacking. When no ascertainment condition was ap-
plied, the power of the traditional Haseman-Elston meth-
od always stayed behind the power of the VCA, being
higher than that of the sample method only in the ‘stan-
dard’ case of normally distributed data with equal vari-
ances. Therefore, the VCA should be preferred to Hase-

Linkage Analysis with
GENEHUNTER-QMOD

man-Elston regression when one can be sure of normally
distributed data if unselected, population-based samples
are analyzed.

For non-normally distributed data, GENEHUNTER-
QMOD has both higher power and a smaller type I er-
ror rate than the VCA. Therefore, if one cannot safely
assume normally distributed phenotypes, GENEHUNT-
ER-QMOD might be preferred to the VCA as well as to
Haseman-Elston regression.

Simulations under the null hypothesis showed that
GENEHUNTER-QMOD roughly keeps the a level. This
holds even if we use non-normally distributed data,
whereas the VCA is only able to control the type I error if
normality holds. Modifications or extensions of the VCA
method are conceivable, e.g. applying a transformation,
using a robust sandwich estimator for the variance, or
employing a method of simulating markers under the
null hypothesis of no linkage similar to the one used in
this work, as done by Chen et al. [31]. We have found that
Haseman-Elston regression shows a slight tendency to-
wards conservativeness for ‘difficult’ data, meaning non-
normally distributed phenotypes or phenotypes with
genotype-dependent residual variances. However, given
that only 500 replicates could be simulated due to other-
wise excessive computational demands (since the p value
for each replicate needs to be determined by another
round of simulations), these differences from the expect-
ed value of 0.05 are not significant. Haseman-Elston re-
gression yields a correct type I error for the standard case
with a normally distributed phenotype and equal vari-
ances.

For data obtained with an ascertainment condition,
the sample method shows superior power in all scenarios.
The VCA fails completely in the case of single- and dou-
ble-proband selection with siblings in opposite quartiles.
The power is acceptable only under the double-proband
selection with siblings in the same quartiles, but this
comes at the price of an inflated type I error. Therefore,
one should refrain from the use of the VCA under these
conditions. In all ascertainment scenarios, the power of
Haseman-Elston regression stays clearly behind the pow-
er of the sample method, although having an accurate
type I error. Thus, the sample method should be preferred
to Haseman-Elston regression, too.

With regard to type I error and power analysis, our
results of the VCA and Haseman-Elston regression are,
to a large part, consistent with the findings of Kleensang
et al. [28]. In that simulation study, the true type I error
for the VCA also often deviates from the nominal type I
error and is unacceptably liberal when the normality as-
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sumption does not hold. Imposing ascertainment condi-
tions also strongly influences the type I error in both
directions. A low power under normality violations is
described as well. Haseman-Elston regression is shown
to be conservative under non-normally distributed data
(28], as we can confirm with our results. The power is de-
scribed as inferior to the power of the VCA when no as-
certainment condition is applied, which is also consistent
with our findings. At this point, it should be noted that
the power analysis for every method in this paper has
been based on a type I error level of 0.05. As has been
shown by Morris and Elston [32], relative power compar-
isons of two different methods at & = 0.05 do not neces-
sarily lead to the same conclusion as when performed at
lower type I error levels. This should be kept in mind
when generalizing our findings.

An important feature of GENEHUNTER-QMOD is
the parameter estimation. By assuming a separate nor-
mal distribution for each genotype, GENEHUNTER-
QMOD estimates the variance and the mean of each dis-
tribution. Our simulations showed that parameter esti-
mation works well for the means of the different normal
distributions. Especially the estimated parameter for the
(m,m) genotype had a small relative error. Unfortunately,
the estimates of the standard deviations turned out to be
too low. One should consider this when interpreting the
results. These characteristics did not change substantial-
ly when ascertainment conditions were applied.

Conclusion

Linkage analysis continues to be an important method
to identify and locate genes that cause or contribute to
inherited diseases, especially in the era of large-scale se-
quencing. By detecting the corresponding genetic variant
and identifying how it influences the trait, the disease
mechanism can be elucidated, opening the possibility of
a causal treatment. Also, a disease might be diagnosed
even before its manifestation. In this way, preventive
measures can be applied in good time.

With GENEHUNTER-QMOD, we add a method for
the analysis of quantitative phenotypes to the variety of
linkage tools. It provides both an inferential test for link-
age and estimates of the phenotype parameters. The phe-
notype is modeled as a normally distributed variable,
with parameters depending on the genotype. The esti-
mates include both the means and the residual disper-
sions, specific for every genotype. If further information
about the inheritance mode of the disease is available, one
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can specify the disease model appropriately: imprinting,
no dominance and equal residual variances for all geno-
types can be taken into account.

Besides the identification of the gene per se, the gath-
ered information might be useful in several ways. If the
average phenotype changes substantially with the geno-
type, patients with different genotypes might require in-
dividualized treatments, such as a different dose of med-
ication. The estimates of the disease model parameters
might give further clues to the disease mechanism. If the
variance changes with the genotype, the mutation at the
disease locus might trigger other reactions that influence
the phenotype, for instance other genes or environmental
effects that now have a stronger impact. That is, hetero-
geneity of residual variances may hint to gene-gene or
gene-environment interactions.

Because GENEHUNTER-QMOD is based on the
Lander-Green algorithm, it can simultaneously use many
markers in the analysis, which makes it applicable to gene
mapping projects based on SNP arrays. GENEHUNTER-
QMOD is freely available on the web at http://www.helm-
holtz-muenchen.de/genepi/downloads.
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