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Abstract

Objectives: We aimed at extending the Natural and Orthog-
onal Interaction (NOIA) framework, developed for modeling
gene-gene interactions in the analysis of quantitative traits,
to allow for reduced genetic models, dichotomous traits,
and gene-environment interactions. We evaluate the perfor-
mance of the NOIA statistical models using simulated data
and lung cancer data. Methods: The NOIA statistical mod-
els are developed for additive, dominant, and recessive ge-

netic models as well as for a binary environmental exposure.
Using the Kronecker product rule, a NOIA statistical model is
built to model gene-environment interactions. By treating
the genotypic values as the logarithm of odds, the NOIA sta-
tistical models are extended to the analysis of case-control
data. Results: Our simulations showed that power for testing
associations while allowing for interaction using the NOIA
statistical model is much higher than using functional mod-
els for most of the scenarios we simulated. When applied to
lung cancer data, much smaller p values were obtained us-
ing the NOIA statistical model for either the main effects or
the SNP-smoking interactions for some of the SNPs tested.
Conclusion: The NOIA statistical models are usually more
powerful than the functional models in detecting main ef-
fects and interaction effects for both quantitative traits and
binary traits. Copyright © 2012 S. Karger AG, Basel
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introduction

Although genome-wide association studies (GWAS)
have been successful in identifying disease susceptibility
loci, it remains a challenging goal for statistical geneti-
cists to identify and characterize effects of genetic and
environmental factors that influence common complex
traits [1, 2]. The significant SNP associations identified by
GWAS are estimated to account for only a few percent of
the genetic variance [3, 4]. Since most of these studies
have used a single-locus analysis strategy, there is increas-
ing interest in genome-wide interaction analysis in the
efforts of finding the missing heritability. An important
issue is how one can properly quantify the genetic and
environmental effects in a unified manner such that cor-
rect estimation can be achieved for the relative contribu-
tions of different factors. This is the case especially when
there exist gene-gene or gene-environment interactions.

The term GxE interaction has various different mean-
ings. The nature of an interaction may be biological or
merely statistical. A statistical interaction may be defined
as departure from an additive model on some scale. For
a quantitative trait, if the contributions of a genetic locus
and an environmental factor are additive on the scale of
this trait, we say that there is no interaction between the
locus and the environment factor. Any deviation from
this additivity will be referred to as a GxE interaction. For
a binary trait (such as a disease), we define the GxE inter-
action as deviation from additivity of a genetic effect and
an environmental effect on the log-odds scale.

The statistical formulation of the Natural and Orthog-
onal Interaction (NOIA) model of genetic effects has re-
cently been developed [5] and provides a framework in
which estimates of genetic effects for a quantitative trait
remain orthogonal even under the departure from Har-
dy-Weinberg proportions of the loci. The orthogonal es-
timates do not change in a reduced model and hence are
very convenient for model selection for finding the ge-
netic architecture of the traits [6]. More importantly, the
NOIA framework directly leads to a proper and orthogo-
nal decomposition of genetic variance and hence to a
more meaningful calculation of the heritability of the
trait, while facilitating the modeling of multiple genetic
factors along with their interactions.

In this paper, we evaluate the performance of the or-
thogonal models, compared to the usual models, in both
testing for interaction between two factors and testing for
association while allowing for interaction. We extend the
NOIA framework in several different ways. First, we de-
rive the NOIA formulation to all possible reduced genet-
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ic models, including the additive, dominant, and reces-
sive models. We then extend the NOIA framework to in-
clude abinaryenvironmental exposure and its interaction
with a gene with a reduced or saturated genetic model.
Finally, we also explore the possibility of generalizing the
orthogonal models to the analysis of binary traits, such
as diseases. We found that the meaning of orthogonality
is somewhat different on the log-odds scale than its orig-
inal meaning for a quantitative trait: although the estima-
tors are no longer orthogonal, the variance decomposi-
tion remains orthogonal when the log-odds are simply
treated as genetic effects under the alternative hypothesis
of an effect in the NOIA formulation. Our simulation re-
sults showed that, for both quantitative and qualitative
traits, the statistical models have higher power than the
usual functional ones in most of the scenarios we have
tested. We also illustrate the usage of the formulations
using real data.

Methods

One-Locus Models: Quantitative Traits
If a quantitative trait is influenced by a single diallelic gene, or
locus,

Y=G+e, (1)

the genotypic value can be modeled using linear regression on the
number of a reference allele, say allele 2, as follows:

G=p+(N—Na+es, )

where G = Gy, Gi2, and Gy, are the genotypic values when the
number of reference alleles is N = 0, 1, and 2, respectively, and

’zplzpzz /v
4P11p22 % &)

“‘ZPUPn v

with genotype frequencies py, pr, and pyy, respectively. Here, N
and V denote the mean and variance of N

€=

N= D2+ 2p2
V=pi+ 22y — (P12 + 2022 =pu + p22 — (P — p2)>

respectively. The genetic effect vector E, consists of the three re-
gression parameters u = G, a = COV(N, G)/V, and 8 = Gy, — (G,
+ Gp)/2, and can be expressed as

M Py Py Pa |G

-

E =|a|= P’u p’lz plzz Gy, | @
g —% 1 _% G,
if we define
) N,—N
Py=p; ]V : 5
Ma et al.
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The vector of genotypic values, G, canbe expressed by

G, 1 -N —2pupn V|1
G,|=SE =|1 1-N 4p.p,/V ||a| (6)
Gzz I 2- N _zpnplz IV é

Here, &; is the design matrix. In a regression analysis, we make
inference on parameters (u, &, and ). Therefore, S, can also be
referred to as coding matrix for sampled data because each row of
S; includes the code for regression on the parameters for an indi-
vidual with the corresponding genotype. For example, if an indi-
vidual has the genotype 12, data for this individual will be coded
according to the second row of S; as follows:

G=u+(1—ﬁ)a+4i;@5. 7)

Unlike the genotypic values, G, the genetic effects, E, depend
on genotype frequencies, and the model based on these parame-
ters is referred to as statistical model [5]. As shown in Alvarez-
Castro and Carlborg [5], this statistical model is orthogonal,
meaning that estimates of these parameters are uncorrelated. The
orthogonality of the statistical model is also reflected by the fact
that the variance of G can be decomposed into those of the addi-
tive and dominant components

Vg = Var[(N — N)a] + Var[ed] (8)

because COVI(N — N)a, €8] = 0. The additive and dominant vari-
ances can be expressed as

Va=ao®V )

Vs =4pup1ap2: 8 (propa + 4pupaz + puprd)/ V. (10

Traditionally, the one-locus genotypes are coded in one of the
following two ways: (-1, 0, 1) and (0, 1, 2). In either case, the ge-
netic effects do not depend on allele frequencies and are deter-
mined merely by the functionality of the locus. So, both coding
methods correspond to functional models. For these two coding
schemes, the genotypic values are expressed as

G, {1 -1 o}(Rr
G,|=[1 0 1||la|=8E, an
G,| 1 1 ojld

and
G,] (1 o 0)R
G,|=]1 1 1||a|=S8,E, (12)
G,| (1 2 o]|d

respectively. These two functional models are related to the sta-
tistical model through

M L pp=pn P
al=|0 1 Pullals (13)
) |0 0 1 jld

and
M N P |[R
al= 1 pLlial (14)
é 0 0 1 |id

Gene-Environment Interactions

respectively. In contrast to the statistical model, neither of these
two functional models is orthogonal.

One-Locus Models: Qualitative Traits

For the analysis of case-control data sampled according to a
qualitative trait such as a disease, we can define a similar statisti-
cal model by treating the genotypic values and the genetic effects
as the logit (i.e. logarithm of the odds) of the disease. However,
two important features of the orthogonal models may no longer
be valid here. First, the estimates of parameters using logistic re-
gression are not uncorrelated. Recall that the variance of esti-
mates of parameters for linear regression can be expressed as

Var(B) = A(XTX) 7, (15)

where X'is the design matrix, as far as the error terms for all sam-
ples are independent and identically distributed with variance o7,
which can be shown to be diagonal for the statistical model [5].
However, for logistic regression, the variance of estimates of pa-
rameters is

Var(B) = (ATVx)7, (16)
where Vis a diagonal matrix with elements
el — 7g) 17)

for the i-th individual in the sample, with 77, the probability of
being affected given the values of regressor for the individual. It
can be shown that

X'VX=nSTD'S (18)
where
11'“(1—'1'r11)p11 0 0
D= 0 o (l=m,) Py, 0 , (19)
0 0 T, (1 — 'rrzz)pu

and Sis a design matrix. This means that, for logistic regression,
the statistical model defined in equation (6) has no orthogonal
estimates as in the case of linear regression, unless the gene is not
associated with the disease (1r; would then assume the same val-
ues for all genotypes). Second, as will be shown later, the estimates
of the main effects for a full interaction model are no longer the
same as the corresponding effects of the reduced models, i.e. the
single-locus model and the environment-only models. Neverthe-
less, the orthogonal decomposition of variance is still valid here
on the log-odds scale. We will therefore apply this model to the
analysis of case-control data. We will hereafter use a common
terminology, statistical model, for both quantitative and qualita-
tive traits, and evaluate its performance in simulation studies. We
do not explicitly model the influence of the genotype frequencies
onthe variance of the regression parameters in logistic regression.

We extended the formulations for the statistical and function-
al models to the following three reduced genetic models: additive,
dominant, and recessive.

Gene-Environment Interaction

Suppose we have a binary environmental exposure, M, with
phenotypic values M; and M, for unexposed and exposed indi-
viduals, respectively. Denote the unexposed frequency by m. A
functional model for this environmental exposure is

Hum Hered 2012;73:185-194 187
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(Mt (R 0
TiM T 1lay )
with effects defined as
- R 1 0(M,
= = . 21
£l )

For a two-level factor, following Alvarez-Castro and Carlborg
[5], the criterion for orthogonality can be derived as follows: from
the regression model

M (10
M| |0 1|(M, e
=[. . =ZSE=XE 22
.- [ M, 22)
M: 01
orthogonality requires that
XX =nSTZT28=S"DS (23)
is diagonal, where
D:["" ’ ] o9
0 m,

and m, = m and m, = 1 — m are the exposure frequencies. Since

T m15121 + m25§1 S, S1; -+ M8, 55
X'X=n 5 ) (25)
S, Sy, + 1,5,85, msy;, +m,sy,
it follows that the model S is orthogonal when
ms13512 + M52 = 0. (26)

Using this criterion, we find that the functional model given
above is not orthogonal.

The orthogonal (or statistical) model for the binary environ-
mental factor is

. M, 1 m-1}{ u

=l " ) &
with effects defined as

. yz m 1—-m|[M,

=l ) o

Using the Kronecker product rule [5], we have the following
non-orthogonal functional model for the gene-environment in-
teraction:

G, M 10 00 0 O}f[R
G, M 1110 0 0flag
éGM _ G,, | 1200 0 0fjd; ’ (29)
G, M, 1 0 0 1 0 0f|lay
G, "y 11111 1}jaa
G,, , 1 201 2 0)ida
188 Hum Hered 2012;73:185-194

and the following statistical model:

1 —N  =2p,p,/V m-1 ——(m—l)N
1 1-N  4pyp,,/V m—1 (m—1)(1—-N)
& _|! 2-N —2p,p,/V m-1 (m—l)(z_—ﬁ)
M N —2p,p,lV m —mN
1 1-N 4p,p,/V m m{1—N)
1 2-N =2p,p,/V m m(2—N)

”‘2(’" - 1>p12p22 v M
4(”’ - I)Pnpzz v a;

*Z(m - l)pnpzz v 56

. (30)
=2mp,p,, 1V Ay

4mp, p,, 1V aa

=2mp,p,, IV

The relation between the statistical and functional models is

p) (1 N p, 1-m (1-m)N (1-m)p,|(R
a| fo 1 p, O 1-m  (1—m)p',||%
%|_lo o 1 0 0 1-m ||de . 631)
al (00 0 1 N P Ay
aal 10 0 0 0 1 P aa
da) 10 0 0 0 0 1 da

One of the desired properties of the statistical models is that
the marginal effects of the gene or the environmental exposure
are the same as the corresponding main effects of the full GxE
model. This is the case for the linear regression of a quantitative
trajt. For a quantitative trait determined by a gene and a binary
exposure, from the vector of genotypic values G =Gy My Gy
Goamp Gy Giany GzzMz)T, the marginal model for the gene is

G'11=mGyyy, + (1 — m)Gyyy, (32)
G'12=mGyap, + (1 — m)Gpop, (33)
Gy = mGuu, + (1 — m)Gazp,. (349

It can be shown that the corresponding marginal genetic ef-
fects is

14

M Pu P2 Pnl||G Mg
a'\=p, Py P
&l |- 1 —1

2 2

G'L|=\a;| 35)

G’22 5G

A similar expression can be obtained for the marginal effects
of the environmental exposure. However, this may not be the case
for the statistical model under the alternate model of association
defined on the log-odds scale for a qualitative trait. This is because
the same relation for the genotypic values in equations (32), (33),
and (34) is valid on the scale of penetrance, and the penetrances
are non-linearly related to the log-odds.

For the three reduced genetic models, the formulations for sta-
tistical and functional models for GXE and their relationships are

Maetal.
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given in the online supplementary material (for all online suppl.
material, see www.karger.com/doi/10.1159/000339906).

Simulation Methods

Simulation of Data with a Quantitative Trait

It is straightforward to simulate data of independent individu-
als randomly sampled with a quantitative trait influenced by a
diallelic gene and a binary exposure. For given values of the vari-
ant allele frequency p and the exposure prevalence m, assuming
independency between the gene and the exposure and Hardy-
Weinberg proportion for the gene, an individual was assigned
joint genotype 111, 121, 221, 112, 122, or 222 with probabilities
PP — m), 2p(1 — p)A — m), (1 — p)*(1 — m), pPm, 2p(1 — p)m,
or (1 — p)®m, respectively. Each individual was then assigned a
value of the quantitative trait according to the genotypes using the
genotypic values determined from a pre-specified vector of ge-
netic effects: E ' = [R, ag, dg, aus aa, da]. A residual was then
added to the simulated quantitative trait by generating a random
number from a normal distribution with pre-specified mean (0)
and variance (2. Data so simulated for 1,000 individuals served
as a replicate. For each genetic model, 1,000 replicates were simu-
lated.

Simulations of Case-Control Data

We simulated case-control data with both main and interac-
tion effects using the logistic models. If the risk of disease is de-
termined by a diallelic gene and a binary exposure, we assume
that the penetrance model is given by

1
Prid=1li)|]= ——,
(4=1) 1+ exp(—G,)
where d = 1 denotes the fact that an individual is affected, and G;
is the genotypic value when the joint genotype is i with i = 111,

121, 221, 112, 122, or 222. Using Bayes’ theorem, we have the dis-
tribution of the 6 genotypes in the cases as follows

P,-/[l+exp(—G,.)]
Ejl)j/[l-i—exp(-Gj)}’

where P; is the frequency of genotype i in the population, given by
PP — m), 2p(1 — p)(1 — m), (1 — p)* (1 — m), p’m, 2p(1 — p)m,
or (1 — p)®m, respectively, as in the simulation of a quantitative
trait. Given the genotypic values and the frequencies of the joint
genotypes, this expression was used for simulating joint geno-
types of cases. For the simulation of controls, we have a similar
expression:

(36)

Pr(ild=1)= (37)

_ B /[1 +exp(G,.)]
_ZJP;'/{l“'”e"p(Gj)]‘

The genotypic values were determined from the pre-specified
genetic effects E . It should be noted that, unlike the simulated
data for a quantitative trait, not only the allele frequencies, but
also the genetic effects, in the simulated case-control data are usu-
ally different from the corresponding pre-specified values (popu-
lation parameters) because of ascertainment bias.

Pr(ild =0) (38)

Gene-Environment Interactions

Results

Results of Simulations

Our first simulation exhibited both main effects of a
gene and a binary exposure and their interaction on a
quantitative trait, representing the general scenario

E”T=[R, ag, dg, axp aa, da] = [100.0, 4.0, 1.0, 3.0, 2.0,
1.5]. The residual variance was 144.0, and the allele fre-
quency and exposure frequency were 0.15 and 0.22, respec-
tively. The vector of the genetic effects in the statistical
model was then [102.33, 5.37, 1.33, 3.98, 3.05, 1.5]. Online
supplementary figure S1 shows the distribution of the es-
timates of all six effects in all the 1,000 replicates. It can be
seen that, for both the statistical and the functional mod-
els, the vectors of the genetic effects were estimated accu-
rately. Figure 1 shows the power as a function of critical
values of the Wald test p values for the four parameters: the
additive effects of the gene, the dominant effects of the
gene, the environmental effect, and the interaction effect
between the additive effect of the gene and the environ-
mental effect for both the statistical models and function-
al models. For the dominant-by-environment interaction
effects, the estimates and the test p values were identical
for the statistical and functional models. Also shown is the
power for the additive and dominant effects of the gene us-
ing the gene-only statistical models. It is clear that, for the
additive effect of the gene, both the GXE model and the
gene-only model had much higher power than the func-
tional models. For the environmental effect, the statistical
model had higher power than the functional model.

Another simulation was performed for a scenario
where only the gene was responsible for the trait: ET =
[100.0, 4.0, 2.0, 0.0, 0.0, 0.0]. The residual variance was
144.0, and the allele frequency and exposure frequency
were 0.15 and 0.22, respectively. The vector of the genetic
effects in the statistical model was then [101.71, 5.40, 2.00,
0.00, 0.00, 0.00]. Again, the estimates of the parameters
were accurate, as shown in online supplementary figure
§2, for both the statistical and functional models.

For the additive effect of the gene and the additive-by-
environment interaction effect, the estimate of the statis-
tical model had fewer variations among the replicates
than that of the functional model. Power for detecting the
additive effect was again much higher in the statistical
model than in the functional model (fig. 2). Power for de-
tecting the dominant effects using both statistical and
functional models were very low because of the small
simulating value compared to the residual variance (2 vs.
144). For the other two parameters, for which the simulat-
ing values were zero, the false-positive rates were very

Hum Hered 2012;73:185-194 189
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Fig. 1. Power versus critical values of the Wald testing p values as a test statistic for a simulated data set with a
quantitative trait influenced by a gene and an environmental factor. The simulating values of the genetic effects
were E T [100.0, 4.0, 1.0, 3.0, 2.0, 1.5]. The corresponding statistical genetic effects were (102.33, 5.37, 1.33, 3.98,
3.05, 1.5]. The allele frequency and exposure frequency were 0.15 and 0.22, respectively. The simulating resid-

ual variance is 144.0.

close to the nominal value for both the statistical and
functional models.

Similar scenarios were simulated for a qualitative trait.
For a generic scenario, we used a vector of genetic effects
given by [-2.0,0.3,0.1,0.2,0.1, 0.04]. The allele frequency
and exposure frequency were set at 0.25 and 0.25, respec-
tively. Because we simulated a case-control data set, the
ascertainment of equal numbers of cases and controls al-
tered the overall proportions of being affected for differ-
ent genotypes and exposure status. The resulting genetic
effects, averaged over all 1,000 replicates in the sample,
were thus estimated as [-0.28, 0.3, 0.1, 0.2, 0.1, 0.04], re-
ferred to as the actual functional effects.

The statistical effects were then calculated using the ac-
tual allele frequency and exposure frequency and the ac-
tual functional effects: [-0.00, 0.38, 0.06, 0.26, 0.20, -0.15].
Online supplementary figure $3 shows that these actual (or
sample) statistical effects were indeed located in the cor-
responding center of the distribution of estimated param-
eters using logistic regression. Also shown in online sup-
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plementary figure S3 is that the functional model correct-
ly estimated the actual genetic effects. Figure 3 shows that
power of detecting the main additive effect of the gene was
much higher in the statistical model than in the function-
al model. Power of detecting the exposure effect using the
statistical model was also significantly higher than that us-
ing the functional model. For the dominant effect and the
interaction effect, both models had similarly low power.
Similar to the case of a quantitative trait, we also sim-
ulated case-control data for a scenario where only the
gene was associated to the disease, with simulating values
of the genetic effects given by [-2.0, 0.4, 0.2, 0.0, 0.0, 0.0].
The allele frequency and exposure frequency were still set
at0.25 and 0.25, respectively. Again because of ascertain-
ment, the sample genetic effects were actually [-0.31, 0.4,
0.2, 0.0, 0.0, 0.0], and the corresponding statistical effects
were [0.00, 0.45, 0.25, -0.07, 0.00, 0.05]. As shown in
fig. 4, results for power of detecting the additive effects
and the dominant effects were similar to those shown in
fig. 2. Online supplementary figure S4 shows the distri-
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Fig. 2. Power versus critical values of the Wald testing p values as a test statistic for a simulated data set with a
quantitative trait influenced by a gene and an environmental factor. The simulating values of the genetic effects
were E T [100.0, 4.0, 2.0, 0.0, 0.0, 0.0]. The corresponding statistical genetic effects were {101.71, 5.40, 2.00, 0.00,
0.00, 0.00]. The allele frequency and exposure frequency were 0.15 and 0.22, respectively. The simulating re-

sidual variance is 144.0.

butions of estimates of the parameters from analyses us-
ing the statistical and functional models.

In the four simulations given above, the differences of
powers between the NOIA statistical models and the func-
tional models were extremely large. For instance, in figure
1, it can be seen that the power for testing « = 0 was about
95% and the power for testing for a = 0 was only around
30% at the 1% significance level. The power of tests de-
pends on many factors, including allele frequencies, sam-
ple sizes, genetic effects, and significance level. We plotted
power for a wide range of significance level, which allows
us to compare powers of tests across a broad range. We use
these simulations to illustrate how the transformation
from the usual functional model to the statistical model
may improve power of detecting a genetic factor.

For both quantitative and qualitative traits, we also
simulated a null scenario, that is, a scenario without any
effects either from the gene or the environmental factor
(data not shown), and found that all false-positive rates
were around the nominal level.

Gene-Environment Interactions

Application to a Real Data Set

We applied the NOIA statistical model and the usual
functional model to the ILCCO (International Lung Can-
cer Consortium) data [7], consisting of 17 independent
case-control studies (most but not all of the original studies
agreed to participate in this study). The objectives of the
consortium are to share data to increase statistical power,
reduce duplication of research efforts, replicate novel find-
ings, and realize substantial cost savings. Details of the par-
ticipating studies have been described previously [7]. Our
goal here was to examine how genetic variants, which have
been identified through GWAS, may interact with smok-
ing in determining the risk of lung cancer by pooling the
datasets. Here, we focused on 6 SNPs in 3 regions: rs2736100
and rs402710 (5p15), rs2256543 and rs4324798 (6p21), and
rs16969968 and rs8034191 (15q25). Our analysis included
95,468 Caucasians with 39,686 cases and 55,752 controls
after quality control. For both the NOIA statistical model
and the usual functional model, logistic regression was
performed, with sex, age, and study group as covariates.
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Fig. 3. Power versus critical values of the Wald testing p values as a test statistic for a simulated Case-control data
set with GxE interaction for all replicates. The simulating values of the genetic effects were E * [-2.0, 0.3, 0.1,
0.2,0.1,0.04]. The actual sample values of the genetic effects were [~0.28, 0.3,0.1, 0.2, 0.1, 0.04]. The correspond-
ing statistical genetic effects were [-0.01, 0.38, 0.10, 0.27, 0.13, 0.03]. The allele frequency and exposure frequen-

cy were 0.25 and 0.25, respectively.

Table 1 and online supplementary table S1 show the p

values and estimates and their 95% confidence intervals
of the analysis, respectively. For the 4 SNPs located on
5p15 and 15q25, the NOIA statistical model detected the
genetic additive effects, while the functional model did
not or showed larger p values. For the additive-smoking-
interaction effects, the NOIA statistical model was more
powerful than the functional one for the 2 SNPs on 1525
and for SNP 52256543 on 6q21. For all SNPs and all
models, the smoking effect was extremely significant.
However, here the NOIA statistical models showed much
smaller p values than the functional models. For the co-
variates sex and age, results from the statistical and func-
tional models were the same, as they were modeled in the
same way. None of the SNPs had significant dominant
effects, or dominant-smoking interaction, under either
the statistical model or the functional model. It is inter-
esting that the SNP rs2256543 on 6p21 was detected to
predict lung cancer risk through an interaction with
smoking, but no main effect.

192 Hum Hered 2012;73:185-194

Discussion

Multicollinearity occurs naturally in genetic regres-
sion analysis using functional models between the addi-
tive component and the dominance component and be-
comes even more complicated between the main effects
and interaction effects when two or more genes or envi-
ronmental factors are involved. When multicollinearity
is present, the standard errors can become large, and thus
coefficients need to be very large in order to be statisti-
cally significant. In the NOIA framework, we solve the
collinearity problem by orthogonalizing the dominant
regressor with respect to the additive regressor, in order
to keep the natural meaning of the coefficient of the ad-
ditive regressor, i.e. the effect of allele substitutions. As a
result, the NOIA statistical and functional models have

identical additive regressor (i.e. the number of variant al-
lele) and dominance coefficients, but different additive
coefficient and dominant regressor terms. This strategy
is exactly the same as the Gram-Schmidt process in math-
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Fig. 4. Power versus critical values of the Wald testing p values as a test statistic for a simulated case-control data
set with GxE interaction for all 1,000 replicates. The simulating values of the genetic effects were E E'T[-2.0,04,
0.2, 0.0, 0.0, 0.0]. The actual sample values were [-0.31, 0.4, 0.2, 0.0, 0.0, 0.0]. The corresponding statistical ge-
netic effect were [0.0, 0.5, 0.2, 0.0, 0.0, 0.0]. The allele frequency and exposure frequency were 0.25 and 0.25,
respectively.

Table 1. p values for the main effects and interactions?

Model Add Dom SM Add-SM Dom-SM Sex Age
rs2736100 Functional 0.0005 0.7 1.6e-72 0.3 0.7 9.1e-09 1.7e-16
5p15 Statistical 1.9¢-10 1 3.5e-267 0.3 0.7 9.1e-09 1.7e-16
rs402710 Functional 0.09 1 3.2e-125 0.8 0.9 7.0e-09 3.1e-37
5p15 Statistical 2.3e-08 0.8 4.4e-244 0.7 0.9 7.0e-09 3.1e-37
rs2256543 Functional 0.2 0.6 1.3e-84 0.06 0.4 6.6e-09 4.9e-16
6p21 Statistical 0.5 0.7 1.2e-271 0.04 0.4 6.6e-09 4.9e-16
rs4324798 Functional 0.8 0.6 5.6e-227 0.8 0.8 2.9e-08 5.9¢-29
6p21 Statistical 0.4 04 2.9¢-270 0.3 0.8 2.9¢-08 5.9e-29
rs16969968 Functional 1 0.9 6.0e-96 0.0007 0.6 4.1e-08 3.5¢-28
15q25 Statistical 7.4e-16 0.1 6.9¢-266 9.5e-05 0.6 4.1e-08 3.5¢-28
rs8034191 Functional 0.8 0.9 1l.le-45 0.02 0.6 2.4e-09 2.2e-33
15q25 Statistical 2.2e-15 0.3 2.1e-136 0.006 0.6 2.4e-09 2.2e-33

a The study group has been used as covariate. Add = Additive effect; Dom = dominant effect; SM = smoking.

Gene-Environment Interactions

Hum Hered 2012;73:185-194
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ematics for orthonormalizing a set of vectors. This or-
thogonalizing procedure assigns all the shared variance
of the additive and dominant components in the func-
tional model to the additive component in the statistical
model, thus usually making the power for detecting the
additive effects higher. Our simulations and real-data
analysis confirmed this anticipation. We found that the
statistical model usually showed higher power in detect-
ing main and/or interaction effects for both linear regres-
sion for quantitative traits and logistic regression for bi-
nary traits.

However, caution has to be exercised in interpreting
the results of the statistical model. Specifically, the mean-
ing of the additive effect () in the statistical model is dif-
ferent from that in the functional model (a). The statisti-
cal effect « is determined not only by the true additive
effect a, but also by the dominance effect d and allele fre-
quency. Nevertheless, both tests for @ and for a give in-
formation on whether there exists a genetic factor for a
quantitative trait or the risk of a disease. Our results
shown in the figures indicated that transformation from
the parameters used in the usual functional model to
those in the statistical model leads to a more powerful test
for the existence of a genetic factor while allowing for a
dominant effect and a GxE interaction.

Some of the important properties of the NOIA frame-
work for linear regression of quantitative traits are not
always valid for logistic regression of qualitative traits,
when we generalize the statistical model to the latter case
by treating the logit of the disease as genotypic values and
genetic effects. Under the alternate model, when there is
an association between the genotypes or environmental
factors, the estimates of the logistic regressing parame-
ters are no longer uncorrelated. Also, under the alternate
model, the main effects of a full interaction model are not
the same as the corresponding main effects of the re-
duced single-gene model or the environment-only mod-
el. Nevertheless, we still advocate the application of the
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