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Abstract
Quantitative mechanistic models are valuable tools for disentangling biochemical pathways

and for achieving a comprehensive understanding of biological systems. However, to be

quantitative the parameters of these models have to be estimated from experimental data.

In the presence of significant stochastic fluctuations this is a challenging task as stochastic

simulations are usually too time-consuming and a macroscopic description using reaction

rate equations (RREs) is no longer accurate. In this manuscript, we therefore consider

moment-closure approximation (MA) and the system size expansion (SSE), which approxi-

mate the statistical moments of stochastic processes and tend to be more precise than mac-

roscopic descriptions. We introduce gradient-based parameter optimization methods and

uncertainty analysis methods for MA and SSE. Efficiency and reliability of the methods are

assessed using simulation examples as well as by an application to data for Epo-induced

JAK/STAT signaling. The application revealed that even if merely population-average data

are available, MA and SSE improve parameter identifiability in comparison to RRE. Further-

more, the simulation examples revealed that the resulting estimates are more reliable for an

intermediate volume regime. In this regime the estimation error is reduced and we propose

methods to determine the regime boundaries. These results illustrate that inference using

MA and SSE is feasible and possesses a high sensitivity.

Author Summary

In this manuscript, we introduce efficient methods for parameter estimation for stochastic
processes. The stochasticity of chemical reactions can influence the average behavior of
the considered system. For some biological systems, a microscopic, stochastic description
is computationally intractable but a macroscopic, deterministic description too inaccurate.
This inaccuracy manifests itself in an error in parameter estimates, which impede the
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predictive power of the proposed model. Until now, no rigorous analysis on the magnitude
of the estimation error exists. We show by means of two simulation examples that using
mesoscopic descriptions based on the system size expansions and moment-closure
approximations can reduce this estimation error compared to inference using a macro-
scopic description. This reduction is most pronounced in an intermediate volume regime
where the influence of stochasticity on the average behavior is moderately strong. For the
JAK/STAT pathway where experimental data is available, we show that one parameter
that was not structurally identifiable when using a macroscopic description becomes struc-
turally identifiable when using a mesoscopic description for parameter estimation.

Introduction
On the single-cell level many biological processes are influenced by stochastic fluctuations [1–
3]. This stochasticity must be accounted for when constructing quantitative mechanistic models
for the behavior of cells. Traditionally, dynamics of stochastic biochemical processes are mod-
eled using the Chemical Master Equation (CME) [4]. The CME provides an accurate micro-
scopic description of stochastic chemical kinetics [5] and enables the prediction of the behavior
of biochemical reaction networks. To achieve high prediction accuracy, however, the parameters
of the CME have to be inferred from experimental data. This inference is challenging and the
development of new methods to perform efficient inference is the subject of current research.

In the literature, methods to perform statistical inference for single-cell time-lapse data [6–
13] and populations snapshot data [14–20] have been proposed. These methods use the Sto-
chastic Simulation Algorithm (SSA) [21], as well as various approximations of the CME such
as the Finite State Projection (FSP) [22], moment closure approximations (MA) [23] and the
linear-noise approximation (LNA) [24]. We next provide a brief discussion of these methods,
in particular their use to infer the parameters from experimental single-cell data—a visual sum-
mary of these methods and their properties is provided in Fig 1. In this manuscript we will
only consider population snapshot data and thus focus on the respective methods.

The parameters of stochastic processes are frequently inferred using Approximate Bayesian
Computing approaches [25]. These methods rely on exhaustive stochastic simulations and
accept parameter values if the differences between simulation and experimental data is suffi-
ciently small [7, 13, 19]. While many methods which exploit stochastic simulations are asymp-
totically exact, their computational efficiency suffers from the required number of simulations.
While SSA-based methods are asymptotically exact, appropriate stopping criteria and distance
measures are difficult to obtain [26]. Furthermore, the computational efficiency of Approximate
Bayesian Computing methods suffers from the tremendous number of required SSA runs.

Inference using FSP methods is usually more efficient than using the SSA [20]. The parame-
ter dependent probability distribution of the process is simulated and the likelihood of the data
under this distribution is evaluated (Fig 1b). This likelihood function is a multinomial proba-
bility distribution [15, 16] and efficient gradient-based optimization methods can be used [18].
The ODE systems might however be large and hence their simulation is intractable even when
using state-of-the-art sliding window [27] and tensor train approaches [12]. Even with tailored
methods [12, 27, 28], the simulation of many reaction networks remains computationally
intractable and hence FSP-based inference is still very limited.

To circumvent the computational complexity of evaluating the full probability distribution,
MA [29–32] and the SSE methods [24] have been introduced. Both classes of methods approxi-
mate the statistical moments of the stochastic process which is described by the CME:
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• The MA is based on the hierarchy of evolution equations for the statistical moments of the
CME solution. This hierarchy is truncated at an order N and the (N + 1)th order moments
usually contained in the remaining system are approximated by functions of the lower-order
moments. This approximation is based on an assumption of the distribution solution of the
CME [33–35]. The Nth order MA is in the following denoted by NMA.

• The SSE of the CME is a series expansion in the inverse volume of the compartment in which
the system is confined [24]. The leading order in the mean gives the reaction rate equations
(RRE) while the leading order in the variance gives the LNA. The consideration of additional
terms in the expansion gives the expected mesoscopic rate equation (EMRE) [36] (the first-
order correction to the RRE) and the inverse omega square (IOS) method [37] (the first-
order correction to the LNA).

Both MA and SSE approaches generate a system of coupled ordinary differential equations
(ODEs) for the approximate moments. It has been shown that the difference between MA and
SSE methods decreases with increasing volume and approaches the solution of the CME [23].
The accuracy of MA equations and the conditions under which they provide physically mean-
ingful results have recently been studied for several distribution choices [23, 33, 38].

Fig 1. Inferencemethods for stochastic processes. (a) Single-cell snapshot data collected using a high-throughput technique, such as flow
cytometry. (b) Empirical density functions for SSA runs (black—) and experimental data (blue—), the difference is used as distance measure in
Approximate Bayesian Computing. (c) Instantaneous probability distribution computed using FSP (black—) to evaluate the likelihood of the
observing the individual cells (blue ×). (d) Mean computed using MA/SSE (black—) as well as measured mean and its uncertainty (blue—). (e)
Summary of the properties of the displayed methods.

doi:10.1371/journal.pcbi.1005030.g001
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For statistical inference of parameters the LNA and 2MA have recently been used [10, 17,
18, 39, 40]. The comparison of the measured and simulated moments often provides good
parameter estimates [17, 18] and the corresponding estimation problems are tractable. Besides
reducing the computational complexity, MA and SSE approaches also enable the application of
techniques which were already established for deterministic models, e.g., structural identifiabil-
ity analysis [41]. Accordingly, the literature for the application of MA and SSE methods for
inference is promising, there is however plenty of room for improvement: (i) in none of the
studies have gradient-based optimization methods with sensitivity equations been employed,
even though they have been shown to be superior for a wide range of dynamical systems [42];
(ii) the estimation error of inferred parameter values is influenced by the fact that the MA and
LNA typically provide an approximation of the moments for chemical systems with at least
one bimolecular reaction (see [43] for more details on when the LNA is exact). Hence a system-
atic evaluation of estimation errors in the inferred parameter values, say as a function of the
compartment volume is direly needed so that one can decide which modeling approach is best
suited for a given compartment volume. (iii) it has been shown that EMRE and IOS yield more
accurate approximations to the CME than possible using the LNA and RRE [36, 43–45]
(although there are exceptions such as when the LNA is exact up to second-order moments
with the CME [43]). Similarly in the limit of large volumes, it has been shown that higher-
order MA equations are more accurate than lower-order ones [23]; for example the 3MA is
more accurate than the commonly used 2MA. However to-date the equations derived by con-
sidering the terms in the SSE beyond the LNA and the equations obtained using the 3MA have
not been used for inference.

In this manuscript, we will introduce an efficient gradient- and sensitivity-based method for
parameter estimation for population snapshot data using MA and SSE-based approaches. This
method is evaluated on experimental data available for the JAK/STAT signaling pathway
model, which is traditionally modeled using the RRE. For this model, we demonstrate that our
approach yields additional insight. Subsequent to this application part, we systematically evalu-
ate the estimation error for two biochemical networks, each with at least one bimolecular reac-
tion. We will provide a first quantification of the improvement achieved using the 3MA and
the SSE truncated beyond the next to leading-order term over the RREs, 2MA and LNA. Using
this evaluation, two simple approaches for the selection of the correct inference approach will
be proposed.

Methods
In the following we outline the considered modeling approaches, parameter estimation, uncer-
tainty analysis, model selection. The workflow is shown in Fig 2.

Chemical master equation
Consider a set of R reactions, involvingM chemical species confined in a reaction volume of
size O. Denoting the set of reactants by (X1, . . ., XM), the r

th reaction can be written as

XM
i¼1

n�ir Xi !
kr
XM
i¼1

nþir Xi:

Here kr is the reaction rate constant, n�ir are the integer stoichiometric coefficients, and we
denote by nir ¼ nþir � n�ir the change in molecules of the ith species in the rth reaction. Under
well-mixed conditions the state of this biochemical system is characterized by the correspond-
ing vector of molecule numbers n = (n1, . . ., nM). The time-evolution of the probability of
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observing the system in state n, then obeys the CME

dPðn; tÞ
dt

¼ O
XR
r¼1

f̂ rðn� nrÞPðn� nr; tÞ � f̂ rðnÞPðn; tÞ
h i

: ð1Þ

Here, νr denotes the stoichiometry (ν1r, . . ., νMr) of the r
th reaction and Of̂ rðnÞ is the propensity

function, i.e., the probability per unit time for reaction r to occur somewhere in the volume O.
Since the CME is often intractable for analytical solution, we here focus on approximation
methods for the mean concentrations μi = hni/Oi, and the corresponding covariances of the
concentration fluctuations about them, Sij = h(ni/O − μi)(nj/O − μj)i, which is outlined in the
following.

Moment-closure approximation
Equations for the moments are straightforwardly derived from the CME Eq (1). For systems
involving non-linear propensities, however, these equations are intractable because the equa-
tion for a certain moment is typically coupled to higher-order moments resulting in an infinite
system of equations. A common procedure to break this hierarchy of moment equations is to
neglect higher than second order cumulants [29]; this indeed is the same as assuming that the
third order cumulant is consistent with a Gaussian distribution. Assuming at most bimolecular
reactions, the result is a set of non-linear ODEs coupling mean and variance called the 2MA

Fig 2. Workflow for modeling, parameter estimation andmodel selection.User inputs are colored in blue, workflow outputs are colored in
orange. MATLAB toolboxes are indicated by gray boxes. The employed method/function/toolbox is indicated as oblique text in every box where
applicable.

doi:10.1371/journal.pcbi.1005030.g002
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and is given by

@mi

@t
¼

XR
r¼1

nir f̂ rðOmÞ þ
1

2

XM
s;l¼1

@2 f̂ rðOmÞ
@ms@ml

Ssl

 !
;

@Sij

@t
¼

XR
r¼1

XM
s¼1

nir
@ f̂ rðOmÞ

@ms

Ssj þ njr
@ f̂ rðOmÞ

@ms

Ssi

 !

þ 1

O

XR
r¼1

nirnjr f̂ rðOmÞ þ
XM
s;l¼1

@2 f̂ rðOmÞ
@ms@ml

Ssl

 !
:

The 2MA is precise for unimolecular reactions and fairly accurate if the third order moment is
negligible [29]. The latter is mostly the case for large reaction volume and molecule numbers
[29]. For small volumes higher-order moment equation must be used. Neglecting higher than
third order cumulants yields the 3rd order moment-closure approximation (3MA) that are out-
lined in Ref. [29, 30]. The simulation routines were generated using the CERENA toolbox [46].

System size expansion
A different technique to approximate the moments of the CME is given by the SSE. The proce-
dure allows us to expand the CME about the solution of the RREs which are valid for large
reaction volumes O and are given by

@�i

@t
¼
XR
r¼1

nirfrð�Þ :

Here fjð�Þ ¼ lim O!1 f̂jðO�Þ denotes the macroscopic rate function. While the RREs represent

the leading order term of the SSE and yield the average concentrations for large volumes O, the
next term, the LNA, describes the fluctuations about these concentrations. The covariance of
these fluctuations obeys [24, 47]:

@Sij

@t
¼
XR
r¼1

XM
s¼1

nir
@frð�Þ
@�s

Ssj þ njr
@frð�Þ
@�s

Ssi

� �
þ 1

O

XR
r¼1

nirnjrfrð�Þ:

These results are exact for reaction networks comprising up to unimolecular reactions and for
a small subset of networks with bimolecular reactions [43]. For most networks involving bimo-
lecular reactions, the SSE enables us to systematically correct the mean concentrations of the
RREs and the variance predictions of the LNA, by considering higher order terms in the expan-
sion. A more accurate estimate for the mean concentrations than the RREs is given by the
EMRE [36], and follows

@mi

@t
¼ @�i

@t
þ
XR
r¼1

nir
XM
s¼1

@frð�Þ
@�s

ðms � �sÞ þ
1

2

XM
s;l¼1

@2frð�Þ
@�s�l

Ssl �
1

2

XM
s¼1

�s

O
@2frð�Þ
@�2

s

 !
:

Note that these equations yield a correction term of order O−1 to the RREs. Correspondingly,
expressions for the covariances about these more accurate concentrations can be derived using
the IOS approximation, which corrects the LNA estimate to order O−2 [37]. In contrast to RRE
and LNA, EMRE and IOS do not assume large volumes and hence these estimates are expected
to be closer to the true moments predicted by the CME.

In what follows we shall collectively refer to the EMRE and IOS as higher-order SSEs, mean-
ing they are obtained using the SSE truncated to a higher-order than that giving the LNA. The
simulation routines were generated using the CERENA toolbox [46].
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Statistical model of experimental data
In this study we consider population average data as well as single-cell snapshot data. Popula-
tion average data could, among others, be obtained by Western blot and (bulk) mRNA
sequencing. Single-cell snapshot data could be obtained by flow and mass cytometry. Some sta-
tistical properties of these data types are introduced in the following.

Population average data. These data provide information about the mean μi(tk, θ) of mea-
sured quantities m̂ i;k at times tk,

m̂ i;k ¼ miðtk; yÞ þ �i;k;T :

These measurements are noise corrupted. The measurement noise �i, k, T is in the
following assumed to be independently and distributed with mean zero and variance s2

m̂ i;k ;T
,

�i;k;T � N ð0; s2
m̂ i;k ;T

Þ and true population mean μi(tk, θ).

Single-cell snapshot data. These data provide information about the measured quantities
yi at times tk for individual cells. The single cell measurements are given by

ŷðjÞ
i;k ¼ yðjÞi;k þ �i;k;T; j ¼ 1; . . . ;N ;

with yðjÞi;k denoting a sample from the cell population, yðjÞi;k � pðyijtk; yÞ with mean μi(tk, θ), vari-

ance Sii(tk, θ) and fourth order central moment Siiii(tk, θ). The technical noise is assumed to
depend on the replicate and therefore independent of j. From these samples mean and vari-
ances,

m̂ i;k ¼
1

N

XN
j¼1

ŷ ðjÞ
i;k and Ŝii;k ¼

1

N

XN
j

ŷ ðjÞ
i;k � m̂ i;k

� �2

;

as well as higher-order moments can be estimated. According to the central limit theorem,
these estimators are approximately normally distributed for N� 1. The estimator of the mean,
m̂ i;k, possesses the variance

s2
m̂ i;k

¼ E m̂ i;k � miðtk; yÞ
� �2h i

¼ E
1

N

XN
j¼1

yðjÞi;k � miðtk; yÞ
 !2" #

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼ statistical uncertainty

þ E �2i;k;T

h i
|fflfflfflffl{zfflfflfflffl}

¼ technical noise

;

where the last reformulation exploits independence of yðjÞi;k and �
2
i;k;T. The first summand has the

value 1
N
Sii;k (see [17, 48]) and describe the statistical noise resulting from the finite number of

measured cells. As the sample size N grows, this variance contribution goes to zeros. In con-
trast, the second summand is the variance of the technical noise, s2

m̂ i;k ;T
, which is independent of

the sample size. This yields the overall variance

s2
m̂ i;k

¼ 1

N
Siiðtk; yÞ þ s2

m̂ i;k ;T
;

The estimator of the variance, Ŝ ii;k, possesses the variance

s2
Ŝ ii;k

¼ E Ŝ ii;k � Siiðtk; yÞ
� �2h i

¼ 1

N
Siiiiðtk; yÞ �

N � 3

N � 1
S2

iiðtk; yÞ
� �

;

which is independent of the technical noise. For a detailed derivation we refer the reader to the
supplement. Note that the estimates of mean and variance are potentially correlated if both are
computed from the same sample [48].
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The statistical description of population snapshot data also provides a framework for popu-
lation average data. Experimental techniques providing population average typically analyze
millions of single cells simultaneously. Accordingly, N is rather large, yielding the variance
s2
m̂ i;k

� s2
m̂ i;k ;T

.

Modeling of noise variance. The variance of mean and variance estimators, s2
m̂ i;k

and s2
Ŝ ii;k

depends on the statistical moments of the process and the variance of the technical noise. The
moments Sii(tk, θ) andSiiii(tk, θ) could be computed using higher-order MA and SSE. However,
this can be computationally intensive and subject to approximation errors. Instead, we used the

sample-based estimates of these statistical moments, Ŝ ii;k ¼ 1
N

PN
j ðŷðjÞ

i;k � m̂ i;kÞ2 and
Ŝiiii;k ¼ 1

N

PN
j ðŷðjÞ

i;k � m̂ i;kÞ4. These estimates are rather reliable (forN� 1) and are not influenced

by technical noise. Accordingly, the variance of the technical noise, s2
m̂ i;k ;T

, can either be obtained

by computing the statistics over multiple experimental replicates with large sample sizes (N� 1),
or by modeling them as a possibly parameter dependent function. For generality, we assume in
the following that the variances of the estimators are parameter dependent, s2

m̂ i;k
ðyÞ and s2

Ŝ ii;k
ðyÞ.

Parameter estimation
To infer the parameters of biochemical reaction networks we employ maximum likelihood and
Bayesian parameter estimation. Based upon the statistical model introduced above, the likeli-
hood function becomes

LðyÞ ¼
Y
i;k

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ps2

m̂ i;k
ðyÞ

q exp � 1

2

miðtk; yÞ � m̂ i;k

sm̂ i;k
ðyÞ

 !2 !
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

ð1Þ likelihood of measured means

�
Y
i;k

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ps2

Ŝ ii;k
ðyÞ

q exp � 1

2

Siiðtk; yÞ � Ŝ ii;k

sŜ ii;k
ðyÞ

 !2 !
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

ð2Þ likelihood of measured variances

:

The two contributions, (1) and (2), provide the likelihood of measured mean and measured
variance of the data, respectively. In the absence of information about the variance, part (2) is
set to one. To improve the numerical robustness and the convergence properties of optimizers,
instead of maximizing the likelihood, the negative log-likelihood

JðyÞ ¼ 1

2

X
k;i

log 2ps2
m̂ i;k
ðyÞ þ miðtk; yÞ � m̂ i;k

sm̂ i;k
ðyÞ

 !2 !

þ 1

2

X
k;i

log 2ps2
Ŝ ii;k

ðyÞ þ Siiðtk; yÞ � Ŝii;k

sŜ ii;k
ðyÞ

 !2 !

is minimized [42]. The corresponding minimization problem is

ŷ ¼ arg min
y2Y

JðyÞ ;

with plausible parameter domain Θ. The minimizer ŷ of J(θ) is the maximum likelihood esti-
mate. In practice, a further improvement is often achieved by optimizing the log-transformed
parameter ξ = log θ instead of θ [42].
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The optimization of the objective function has been implemented in MATLAB using our
in-house Parameter Estimation Toolbox (PESTO). PESTO uses a multi-start local optimization
scheme, an approach which has been shown to perform well for similar problems [42]. To
ensure a good coverage of the domain Θ [42], the starting points for the local solvers were gen-
erated using a latin hypercube sampling between the lower and upper bounds for the parame-
ters defined by Θ. In order to exploit gradient and curvature information in the local
optimization we made use of the trust-region-reflective algorithm [49, 50] implemented in the
MATLAB routine fmincon.m.

The gradient of the objective function with respect to parameter θl is given by

@J
@yl

¼
X
i;k

1

s2
m̂ i;k
ðyÞ 1� miðtk; yÞ � m̂ i;k

s2
m̂ i;k
ðyÞ

 !2 !
@s2

m̂ i;k

@yl







y

þ miðtk; yÞ � m̂ i;k

s2
m̂ i;k
ðyÞ

@mi

@yl






tk ;y

þ
X
i;k

1

s2
Ŝ ii;k

ðyÞ 1� Siðtk; yÞ � Ŝ ii;k

s2
m̂ i;k
ðyÞ

 !2 !
@s2

Ŝ i;k

@yl







y

þ Siiðtk; yÞ � Ŝ i;k

S2
m̂ i;k
ðyÞ

@Sii

@yl






tk ;y

;

in which @mi=@yl≔ðsml Þi and @Sii=@yl≔ðsSl Þi denote the sensitivity of mean and variance with
respect to the parameters. The governing equations for the sensitivities sml and s

S
l are derived by

differentiation of the evolution equations and subsequent reordering. For the 2MA the sensitiv-
ities are governed by:

@sml
@t

¼ @

@m
@m
@t

� �� �
sml þ

@

@S
@m
@t

� �� �
sSl þ

@

@yl

@m
@t

� �
;

@sSl
@t

¼ @

@m
@S
@t

� �� �
sml þ

@

@S
@S
@t

� �� �
sSl þ

@

@yl

@S
@t

� �
;

in which @μ/@t and @S/@t denote the right-hand side of the evolution equations for the 2MA.
For the EMRE the sensitivities are governed by:

@sFl
@t

¼ @

@F
@F
@t

� �� �
sFl þ @

@m
@F
@t

� �� �
sml þ

@
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@F
@t

� �� �
sSl þ

@

@yl

@F
@t

� �
;

@sml
@t

¼ @

@F
@m
@t

� �� �
sFl þ @

@m
@m
@t

� �� �
sml þ

@

@S
@m
@t

� �� �
sSl þ

@

@yl

@m
@t

� �
;

@sSl
@t

¼ @

@F
@S
@t

� �� �
sFl þ @

@m
@S
@t

� �� �
sml þ

@

@S
@S
@t

� �� �
sSl þ

@

@yl

@S
@t

� �
;

in which @sFl ¼ @F=@yl is the sensitivity of the solution of the reaction rate equation and @F/
@t, @μ/@t and @S/@t denote the right-hand side of the evolution equations for the EMRE. The
sensitivity equations for RRE, 3MA and IOS possess a similar structure as those for 2MA and
EMRE. In principle all the sensitivity equations can be obtained by rewriting the respective sys-
tems into systems of ODEs and using generic methods (see, e.g., [51]).

The gradient of the objective function was computed using forward sensitivity equations to
ensure robust and efficient evaluation [42]. In addition to gradient information, we supplied
fmincon.m with the Fisher-Information Matrix as approximation to the Hessian of the
objective function to accelerate the optimization. This approximation of the Hessian is equiva-
lent to the formulation in Levenberg-Marquardt [52] type optimization schemes. Parameter
and objective function tolerances were both set to 10−6. For every dataset, the multi-start
scheme was initialized at 50 initial values using a latin hypercube sampling. Convergence to a
local and supposedly global optimum was checked by ensuring that a minimum of 5 of the 50
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starts yielded the same minimal objective function value. If convergence was not observed, we
doubled the number of multi-starts until this criterion was met.

Uncertainty analysis
Experimental data of biochemical processes is often scarce and noise corrupted, resulting in
non-identifiabilities and parameter uncertainties. Parameter identifiability is typically assessed
using structural and practical identifiability analysis (see [41, 53] and references therein). Struc-
tural identifiability analysis provides information for the considered model topology and mea-
sured output, independent of a specific dataset. In contrast, practical identifiability and
uncertainty analysis provide information about the reliability of parameter estimates for a
given dataset. In this study we use profile likelihoods [54, 55] and Bayesian methods [56, 57] to
study practical identifiability and parameter uncertainties.

The profile likelihood of a parameter θi, denoted by PL(θi), is given by the likelihood maxi-
mized over the remaining parameters,

PLðyiÞ ¼ max
yj 6¼ i;y2Y

LðyÞ:

Accordingly, profile likelihoods can be computed by solving a set of constrained optimization
problems requiring repeated local optimization. In this study this task was carried out using
the toolbox PESTO. Frequentist confidence intervals can be computed by comparing the pro-

file likelihood PL(θi) to the likelihood LðŷÞ at the globally optimal parameter point ŷ [58]. As
the models considered here can contain structurally non-identifiable parameters, profile likeli-
hoods are the only viable frequentist technique for global uncertainty analysis [59].

Bayesian uncertainty analysis methods rely on Bayes’ theorem,

pðyjDÞ ¼ pðDjyÞpðyÞ
pðDÞ ;

in which p(θ), pðDjyÞð¼ LðyÞÞ, pðDÞ and pðyjDÞ denote prior probability, likelihood, evidence
and posterior distribution, respectively [56]. For determining Bayesian credibility intervals of
the parameters, we sampled from the posterior distribution using the efficient adaptive Markov
Chain Monte Carlo (MCMC) method delayed rejection adaptive metropolis [60]. From the
multivariate samples the respective univariate Bayesian confidence intervals were computed.
We collected a total of 105 samples after a burn-in period of 104. In accordance with the log-
transformed parameters used for optimization, a log-uniform prior over the parameter domain
Θ has been employed.

Model selection
For comparing competing model alternatives, we used Akaike’s Information Criterion (AIC),

AICl ¼ �2 logLðŷ lÞ þ 2ny;l :

The AIC of the l-th model depends on the maximum of the likelihood, ŷ l, and the number of esti-
mated parameters nθ, l. Therefore, the AIC accounts for the match of model and data as well as
for model complexity. The model with the lowest AIC value and index l� is selected. In order to
simplify the interpretation of individual AIC values, we employ Akaike weights [61] defined by

wAIC;l ¼
exp � 1

2
AICl � AICl�ð Þ� �P

l0 exp � 1
2
AICl0 � AICl�ð Þ� � :
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The AIC weight wAIC, l of the l-th model is related to its posterior probability [61].
Reliability of our results has been ensured by comparing these values to the Bayesian infor-

mation criterion (BIC) [62] and their corresponding BIC weights. As the number of parameters
of the different models (e.g., RRE, EMRE and 2MA) is very similar, the results of these model
selection criteria were comparable.

Model falsification
Model selection criteria provide information about the relative quality of competing models,
but not about their respective goodness-of-fit. The best model l� may still fail to adequately
describe the measured data. To assess whether a model fits the data appropriately, we consid-

ered the sum of squared residuals at the optimal parameter value ŷ [63],

w2ðŷÞ ¼
X
i;k

miðtk; ŷÞ � m̂ i;k

sm̂ i;k
ðŷÞ

 !2

|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
≔r2mi;k

þ
X
i;k

Siiðtk; ŷÞ � Ŝii;k

sŜ ii;k
ðŷÞ

 !2

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
≔r2

Sii;k

:

The sum of squared residuals is a standard goodness-of-fit statistic and is equal to�2 logLðŷÞ
put to a negative constant. As for adequate models the residuals rμi, k and rSii, k

should be nor-
mally distributed with unit variance, the sum of squared residuals should be drawn from a χ2-
distribution [64]. The number of degrees of freedom of the χ2 distribution is the number of
data points minus number of parameters. Accordingly, the χ2-test can be used for model rejec-
tion [65, 66].

Results
In the following, we will illustrate how MA and SSE can be used to infer the parameters of sto-
chastic biochemical processes. We will outline how the results can be interpreted and tested,
and which novel insights can be gained even when only population-average data is available.
For this purpose, we study an example for which experimental data is available and two exam-
ples for which artificial data was generated using stochastic simulations. The application to
experimental data should substantiate the relevance of the developed methods in real-world
application whereas the application to simulation examples allows for a more detailed analysis
of the method properties.

Application to experimental data: The JAK/STAT signaling pathway
To evaluate MA and SSE based inference in a real-world application, we study the dynamics of
the Janus family of kinases (JAK)-signal transducer and activator of transcription (STAT) sig-
naling pathway [67]. Constitutive activation of STATs is related to the malignancy of many
tumors [68]. Moreover, Erythropoietin (Epo), the upstream activation factor of the JAK/STAT
signaling pathway, is administered as therapeutic agent for treatment of cancer related anaemia
[69]. This is the case although several adverse effects such as increased tumour progression and
thromboembolic events have been attributed to Epo [69, 70].

The core module of the JAK/STAT signaling pathway is composed of the Erythropoietin
receptor (EpoR) and the transcription factor STAT5. Upon phosphorylation, the Epo receptor
induces phosphorylation of STAT5 via the JAK2 kinase. Phosphorylated STAT5 (pSTAT) can
dimerize and the pSTAT dimer can translocate to the nucleus to activate the transcription of
target genes. The dimer dissociates and is exported to the cytoplasm after some delay, which is
described by a sequence of intermediate states. The biochemical reaction network is depicted
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in Fig 3(a). A more detailed description of the employed mathematical model is provided in S1
Supporting Information Section 1.2.

The JAK/STAT signaling pathway is a well studied system [53, 67]. For inference, we use
Western Blot data for the phosphorylated Epo receptor (pEpoR), the cytoplasmic phosphory-
lated STAT (pSTAT), and the cytoplasmic STAT (tSTAT). These Western Blots average con-
centrations in thousands of cells, thereby provide information about the population mean but
not about cell-to-cell variability. Due to the large cell numbers, statistic uncertainty can be
ignored (1

N
Siiðtk; yÞ ¼ 0). The technical noise of each measured species was estimated as addi-

tional log-scaled parameters (s2
m̂pSTAT;k ;T

¼ 10y15 ,s2
m̂ tSTAT;k ;T

¼ 10y16 ,s2
m̂pEpoR;k ;T

¼ 10y17). The data

have been recorded by Swameye et al. [67] and are depicted by the black stars in Fig 3(b).
Mesoscopic description of the JAK/STAT signaling. A RRE model for the JAK/STAT

signaling pathway has been introduced by Swameye et al. [67] and analyzed/extended in subse-
quent publications [53, 71]. Microscopic and mesoscopic descriptions of the process have not
been studied yet. Thus, it remains unclear which role stochasticity plays in this process and
how valid the RRE description is. To address this, we derived 2MA and EMRE models for the
process (S1 Code). As the JAK/STAT pathway involves two compartments, the cytoplasm and
the nucleus, we applied a simple extension of the MA and SSE to multiple compartments (see
SI for details). The extension essentially leads to a rescaling of propensities for reactions that
transport chemical species between compartments and ensures the correctness of parameter
estimates of the associated kinetic rates.

The 2MA and EMREmodels are studied along with the well-known RREmodel by Raue et al.
[53]. All three descriptions possess 5 mechanistic parameters: 4 kinetic parameters (p1, . . ., p4);
and the initial concentration of STAT5 in the cytoplasm ([STAT]0). For all descriptions, the
pEpoR concentration is modeled as a time-dependent cubic spline function with 5 parameters.
Furthermore, 7 nuisance parameters are used, i.e. scaling factors, noise variances. The number of
state variables for RRE, EMRE and 2MA are 8, 52 and 44, respectively. As the dimerization reac-
tion possesses a nonlinear propensity, the predictions for the mean of the underlying stochastic
process differ between the models. Moreover, the phosphorylation of STAT5 depends on the
pEpoR concentration which, as the concentration is modeled as a spline function, gives rise to a
time-dependent propensity.

Efficient multi-start local optimization makes parameter inference feasible. As param-
eter estimation for RRE was reported to be challenging [53, 55], we evaluated multi-start local
optimization for 2MA, EMRE and RRE using a large number of multi-starts (1000). Similar
to previous studies we used the trust-region-reflective method in the MATLAB routine
fmincon.m. To demonstrate the importance of accurate gradient calculation we compared
results obtained using forward sensitivity equations and finite difference approximations.
Forward sensitivities were computed using CVODES while finite differences were evaluated
with a step-size of 10−4. The results are illustrated in Fig 3(b)–3(f).

Optimization using finite differences does not work reliably for the three considered
descriptions. This can be attributed to poor accuracy in gradient computations. In regions
where the objective function gradient entries are small, for instance close to the optimum,
approximation errors caused by numerical integration of the ODE models can dominate over
actual entries and thus lead to poor search directions. This can lead to premature termination
of the optimization, if the objective function is locally ascending in the chosen search direction.
The lowest objective function value achieved for finite differences is greater than the value
obtained using forward sensitivities (Fig 3(a)). Moreover, no plateaus are observed [42]. This is
the case for the RRE as well as 2MA and EMRE model. Using forward sensitivity equations we
observed reproducible optimization results, substantiating that the global optimum is found. In

Inference for Stochastic Chemical Kinetics

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1005030 July 22, 2016 12 / 28



Fig 3. Parameter inference using EMRE and 2MA for JAK/STAT signaling pathway. (a) Schematic of JAK/STAT signaling
pathway including biochemical reactions (!), biochemical species (gray elements) and observed outputs (blue boxes). Elements
introduced to capture the delayed export of pSTAT from the nucleus are indicates as light gray. For subplots (b)-(e): RRE (blue),
EMRE (green) and 2MA (red). (b) Experimental data (�), fitted mean (—) and estimated 2σ interval of the measurement noise (- -).
(c) Objective function values for the best 100 (out of 1000) multi-starts obtained using forward sensitivity analysis (FSE, *) and finite
differences (FD, °) for gradient calculation. Local optimization for RRE, EMRE and 2MA used the same initial parameter values. (d)
Zoom-in of the 40 best multi-starts. (e) Median (+) and 80% percentile interval of computation time per local optimizer run. (f)
Estimate of initial STAT concentration. Vertical lines mark the maximum likelihood estimates and the horizontal bars represent the
confidence(CIPL)/credibility(CIM) intervals corresponding to different significance levels (80%, 90%, 95% and 99%) computed using
profile likelihoods/MCMC samples. The reference value with 95% confidence intervals [71] is depicted by a black line and gray bar
respectively.

doi:10.1371/journal.pcbi.1005030.g003
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addition to the superior convergence rate, the median computation times for one local optimi-
zation were consistently more than 10-fold faster using forward sensitivity analysis compared
to finite differences (Fig 3(e)). This finding supports previous findings for ODE models [42]
and underlines the importance of employing forward sensitivities as an efficient and robust
gradient computation scheme.

A comparison across models revealed that the fitting results for RRE and 2MA are visually
indistinguishable, while the EMRE differ slightly from both (Fig 3(b)). Furthermore, optimiza-
tion of the RRE was indeed computationally most efficient (Fig 3(e)). The computation times
for EMRE and 2MA were however only slightly higher. Interestingly, the minimal objective
function value was more frequently reached for the EMRE and MA compared to RRE (Fig 3
(d)). This indicates a larger region of attraction, reducing the number of required multi-starts
and the convergence of alternative global optimization methods. Our results verify the practical
feasibility of parameter inference using mesoscopic descriptions and potentially simpler objec-
tive function landscape.

Mesoscopic descriptions improve data exploitation. Optimization yielded the maximum
likelihood estimates for the parameters of the biochemical process. Due to limited and noise
corrupted data, these maximum likelihood estimates are often unreliable. We evaluated the
uncertainty of the parameters obtained using RRE, EMRE and 2MA via profile likelihood cal-
culation and Markov chain Monte-Carlo sampling. Profile likelihoods and marginal densities
are provided in Figure B in S1 Supporting Information.

Profiles and marginals indicate identifiability of the four kinetic parameters p1-p4. Confi-
dence intervals for these parameters are finite and agree for RRE, EMRE and 2MA. The initial
STAT concentration, [STAT]0, has been shown to be structurally non-identifiable when using
RRE [53]. This implied that independent of the amount of measurement data, the initial
STAT concentration cannot be inferred using the RRE. Accordingly, the RRE yielded flat pro-
files for the initial STAT concentration. This was different for EMRE and 2MA. For EMRE,
the lower bound of the 99% confidence and credibility intervals computed using profiles and
marginals is 8 	 10−3 nM for the initial STAT concentration. For 2MA, we found lower bounds
of 2 	 10−2 nM and 1 	 10−1 nM using profiles and marginals, respectively. This lower bound
could only be derived as the reaction propensities are nonlinear and the reaction volumes as
well as molecule numbers are finite. In this case the dynamics of the population mean are
affected by fluctuations, which are controlled by initial concentrations. This dependency
established structural identifiability and enabled us to exploit features of the data that could
not be used by the RRE.

This finding is in line with results reported in the literature, which suggested that stochasti-
city can be exploited to improve the identifiability of parameters [18, 40, 72, 73]. Yet, previous
analysis relied on using the process mean and variance for inference. The latter is only available
for single-cell measurements. We demonstrated that stochasticity can be exploited even if only
the process mean is available for inference. This renders stochastic inference attractive even if
single-cell data is not available.

Literature validates lower bound for previously structurally non-identifiable parame-
ter. To verify the lower bound for the initial STAT concentration derived using EMRE and
2MA, we screened additional literature. We found that Bachmann et al. [71] determined a
STAT concentration of 80 nM under similar experimental conditions. This value is within the
confidence/credibility bounds for both, EMRE and 2MA. While Bachman et al. [71] considered
a different cell types, their results provide a partial confirmation of our finding.

In summary, the study of the JAK/STAT signaling pathway using EMRE and 2MA demon-
strated the applicability of mesoscopic descriptions to real-world data. Using multi-start local
optimization with accurate gradients, model parameters can be inferred from experimental
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data. Frequentist and Bayesian uncertainty analysis revealed that MA and SSE can provide
additional insights, even if merely population-average data are available.

Application to artificial data: Trimerization and enzymatic degradation
To assess the properties and potential of inference using mesoscopic descriptions (MA and
SSE) in more detail, we study two processes: trimerization and enzymatic degradation. The use
of artificial data enabled us to: (i) assess the estimation error introduced by macroscopic and
mesoscopic descriptions; (ii) deduce a rule-of-thumb for the a priori selection of modeling
approaches; and (iii) develop methods for the a posteriori selection and verification of model-
ing approaches.

Model description and artificial data generation. In the remainder, we study the trimeri-
zation process and the enzymatic degradation process depicted in Fig 4(a) and 4(b). The icons
for the models introduced in Fig 4(a) and 4(b) will be used in the following figures to indicate
the model in the respective study.

The trimerization process describes the bursty synthesis of monomers and their subsequent
dimerization and trimerization [44]. Relevant biological applications of this model include

Fig 4. Reaction networks for comprehensive in silico evaluation of mesoscopic andmacroscopic approaches. (a) Schematic of the trimerization
process. (b) Schematic of the enzymatic degradation process. Arrows indicate reactions with the corresponding rate and reaction index next to them.
Observed states are outlined and labeled in blue. A gray arrow represents the direction of information flow.

doi:10.1371/journal.pcbi.1005030.g004
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receptor clustering and heat-shock factor trimerization [74, 75]. The trimerization process con-
sists of 6 reactions and possesses 7 parameters (6 kinetic parameters and the reaction volume).
Two reactions are bimolecular and hence have nonlinear propensities. Monomer, dimer and
trimer concentrations are assumed to be measurable.

The enzymatic degradation process is an extension of the well-known two-stage model of
gene expression [39, 76] and it has previously been studied in [77]. The enzymatic degradation
process describes transcription and translation as well as enzymatic degradation of the gene
product. It comprises several models of gene expression as special cases, e.g. [78–80]. The pro-
cess consists of 6 reactions and possesses 8 parameters (6 kinetic parameters, the initial concen-
tration of the enzyme and the reaction volume). The reaction resulting in the formation of the
protein-enzyme complex is bimolecular and hence its propensity is nonlinear. The measured
outputs are the mRNA, protein and complex concentrations.

A detailed mathematical description of trimerization and enzymatic degradation process is
provided in S1 Supporting Information, Section 1.2.

For trimerization and enzymatic degradation process artificial data are generated using the
SSA [21] with the parameter values in (Table B,D in S1 Supporting Information). A range of
volumes O is considered to facilitate a comprehensive analysis of stochastic effects on estima-
tion accuracy and to assess the regimes of validity for the different approximations. We consid-
ered realistic sample sizes in the range of Nk = 101−104, which are accessible by recent single-
cell technologies [81]. The results of the parameter inference of the trimerization and the enzy-
matic degradation process, which are depicted schematically in Fig 4, are presented in the
following.

Approximate descriptions result in estimation errors. Macroscopic and mesoscopic
descriptions provide only approximate estimates of the statistical moments of microscopic
processes. These approximation errors may result in erroneous parameter estimates. This
happens, for instance, when the approximation error can be partially or completely compen-
sated by changing the parameter values, as we have illustrated in Fig 5 for the trimerization
process. For small volumes, we find pronounced differences between the mean of the stochas-
tic process determined using SSA and the means predicted by the RRE, EMRE and 2MA (Fig
5(a)). We regarded the mean of the SSA runs as artificial data and optimized parameters of
RRE, EMRE and 2MA using the aforementioned multi-start local optimization with accurate
gradients. The optimized trajectories for RRE, EMRE and 2MA agree well with the mean of
the SSA runs as shown in Fig 5(b). This agreement is achieved for parameter values deviating
from the true parameter values used for the stochastic simulation. The objective function
landscapes of the individual models shown in Fig 5(c) indicate that the optimum of the objec-
tive function does generally not coincide with the true parameters. This pattern is reproduc-
ible and is caused by the error of the approximation methods resulting in erroneous, biased
parameter estimates.

Mesoscopic descriptions improve the estimation accuracy at intermediate volumes. As
the estimation error is caused by the approximation error of the statistical moments on which
the inference is based, a relation between the magnitude of the approximation error and the
estimation error is to be expected. Since mesoscopic descriptions (EMRE,2MA) tend to have
smaller approximation errors than macroscopic descriptions (RRE) [23, 29, 36], the former
are expected to lead to smaller estimation errors as we have have demonstrated in Fig 5(c).
We will now give a verification of these arguments. To assess the estimation error we gener-
ated 100 artificial datasets, each containing 105 cells for different volumes, and evaluated the
estimation accuracy of the parameter estimation. The workflow is illustrated in Figure C in S1
Supporting Information. For the inference we used MA and the SSE truncated to various
orders:
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• data = {mean}! inference using RRE, EMRE and 2MA.

• data = {mean,variance}! inference using LNA, IOS and 3MA.

Medians and 80% symmetric percentile intervals of the squared estimation error,

error2 ¼kytrue � ŷk2
2;

were calculated and the results are shown in Fig 6 for both processes.
In accordance with our hypothesis, we found that mesoscopic descriptions using higher-

order SSEs and MAs tend to yield a lower estimation error compared to macroscopic descrip-
tions, here RRE and LNA. The difference between meso- and macroscopic descriptions is most
pronounced for intermediate volumes (101 μm3 − 103 μm3). As expected, for large volumes—
where micro-, meso- and macroscopic descriptions agree—all descriptions resulted in small
estimation errors. For small volumes, meso- and macroscopic descriptions depart from the
underlying process resulting in large estimation errors which render results meaningless. For
the enzymatic degradation process, higher-order MAs and SSEs sometimes yield higher esti-
mation errors than low-order MAs and SSEs. This might come surprising, but the approxima-
tion order is only informative about the approximation error in the large volume limit and

Fig 5. Approximation error introduces estimation error. (a) Mean monomer concentration in the trimerization
process forΩ = 6μm3 computed from 105 SSA trajectory realizations (black line). Approximate mean monomer
concentrations obtained using RRE, EMRE and 2MA (colored lines). (b) Mean monomer concentration for RRE,
EMRE and 2MA obtained after parameter estimation using the SSAmean as artificial dataset. (c) True (black ×)
and optimized parameter values (colored ×) for RRE, EMRE and 2MA. Contour lines of objective function are
colored. The opacity increases with increasing likelihood values.

doi:10.1371/journal.pcbi.1005030.g005
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does not allow conclusions for low volume regimes. Accordingly, the superiority of higher-
order approximations cannot be expected in low volume regimes.

In the medium- to high-volume regime we would expect an approximation order of O−1 for
RNA/LNA and O−2 for EMRE/IOS. Accordingly, in the absence of measurement noise, the
convergence order of the mean squared error should be (O−1)2 and (O−2)2 respectively. In fact,
the observed convergence rates agree with these theoretical rates which are indicated by dashed
gray lines in Fig 6. In the medium- to high-volume regime, the convergence rates are domi-
nated by the bias fraction of the mean squared error. However, for high volume regimes we
observe a convergence rate of approximately O−1 for EMRE/IOS. In this regime, the conver-
gence rate of the mean squared error is dominated by the variance of the parameter estimator.
Thus the convergence rate can be expected to be proportional to the variances of sample means
and variances s2

m̂ i;k
and s2

Ŝ ii;k
. For the considered setting the convergence rate seems to be domi-

nated by s2
m̂ i;k

¼ 1
N
Sii, which scales, according to the LNA, as 1

N
O�1. We expect that for higher

volumes, the convergence rate of RRE/LNA will also be limited by the estimation variance and

thus attune to 1
N
O�1. The decomposition of the mean squared error for the two models is pro-

vided in Figure E in S1 Supporting Information. Furthermore, this theoretical limit suggest
that an increase in the number of measured cells N should result in a shift of this variance limit
to lower values.

For the simulation examples, including variance information did not yield any consistent
reduction of the estimation error. This might come as a surprise as a previous study suggested
that the variance carries considerable amounts of information which when included can even
render previously non-identifiable parameters identifiable [39]. However, for the simulation
examples we considered a data-rich setting where all parameters are well identifiable and the
estimation error is mainly due to the approximation error of the description. In less data-rich
situations and in the presence of technical noise, we expect that including variance information
could also reduce the estimation error.

SSE and MAmethods achieved similar estimation accuracies for the trimerization and enzy-
matic degradation processes. However, optimization using SSE turned out to be

Fig 6. Quantification of volume dependence of estimation error.Medians (thick line) and symmetric 80% percentile based confidence intervals (thin
lines) of the errors for two representative parameters of (a) the trimerization process and (b) enzymatic degradation process. Results for different meso- and
macroscopic models are color-coded and panels show datasets computed from 105 single-cell measurements: (left) data = {mean}; and (right) data =
{mean,variance}. The estimated convergence order for the intermediate and high-volume regimes is indicated as gray dotted lines.

doi:10.1371/journal.pcbi.1005030.g006
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computationally more efficient than MA, as robust numerical integration of the respective dif-
ferential equations was less problematic, see Figure D in S1 Supporting Information. In the fol-
lowing we present the results for RRE, LNA, EMRE and IOS while the results for 2MA and
3MA are reported in Figure F-I in S1 Supporting Information.

Mesoscopic descriptions are beneficial for the analysis of high-throughput single-cell
data. As we have seen in the previous section, the sample size influences the estimation of
mean and variance, we studied its impact on the accuracy of inference with different models.
We determined the estimation errors for RRE, LNA, EMRE and IOS using 100 artificial data
sets of different sample sizes and volumes. This detailed analysis confirmed that RRE and LNA
generally yield larger estimation errors than EMRE and IOS. Interestingly, the regime of vol-
umes for which this is consistently observed increases with sample size as we show in Fig 7(a)
and 7(b, green area). In Fig 7(c) and 7(d) we verify that this relation holds not only on average
but also for individual datasets resulting in lower estimation errors. As expected, this is the case
for intermediate to large volumes. Only for small volumes, the approximation was unsatisfac-
tory and RRE and LNA were occasionally favored over EMRE and IOS methods.

Depending on the experimental devices, the number of single-cell recordings ranges from
tens to hundreds of thousands measured cells. High-content single-cell methods, such as

Fig 7. Quantification of sample size dependence of estimation error. (a,b) Ratio of the absolute estimation errors. Green indicates a lower estimation
error for EMRE and IOS while blue indicates a lower estimation error for RRE and LNA. (c,d) Frequency for lower estimation error for EMRE and IOS
compared to RRE and LNA. The color indicates the fraction of datasets for which EMRE and IOS yields a lower estimation error than RRE and LNA.

doi:10.1371/journal.pcbi.1005030.g007
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single-cell RNAseq and single-cell time-lapse microscopy, are mostly used to study tens to hun-
dreds of cells [82, 83]. High-throughput single-cell methods, flow and mass cytometry, enable
the assessment of thousands of cells but provide merely a smaller number of features [84]. Intu-
itively, the high-throughput single-cell methods reduce the sampling error as many cells are
recorded and can therefore be well characterized by moments. Hence higher-order SSEs are
particularly valuable for the analysis of high-throughput single-cell data. This simple rule-of-
thumb for the a priori selection of the modeling approach is also corroborated by our findings
for MA Figure F,G in S1 Supporting Information.

Model selection pinpoints regimes in which mesoscopic descriptions yield improved
approximation accuracy. Our results suggest that meso- and macroscopic descriptions are
only appropriate for inference in certain volume and sample size regimes. In practice, the
boundaries of these regimes remain unknown. To identify the most appropriate description in
a certain regime a posteriori, we propose the use of model selection methods.

We employed AIC to select the most appropriate among a set of candidate models given by
the macro- and mesoscopic descriptions of the processes. Fig 8 depicts the AIC weights—inter-
pretable as posterior probabilities—of EMRE and IOS for different volumes and sample sizes.
We find that EMRE and IOS are favored over RRE and LNA everywhere except in two regimes
that provide additional insights:

Fig 8. Analysis of model selection and rejection criteria. (a) and (b) Median AIC weight for EMRE and IOS at respective estimated parameters. A green
color indicates that the EMRE and IOS description is more probable and a blue color indicates the RRE and LNA description is more probable. (c) and (d)
area in which the models can on average be rejected based on a chi-square test to confidence level 0.01. The coloring indicates the method to which the
area corresponds.

doi:10.1371/journal.pcbi.1005030.g008
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• Regime I is classified by large volumes and low sample sizes. The AICs of RRE and EMRE as
well as LNA and IOS are comparable—AIC weights close to 0.5—as the models fit the limited
data fairly well. If the statistical power of the data is however increased by increasing the sam-
ple size, EMRE and IOS are favored as descriptions provided by RRE and LNA are no longer
sufficiently accurate. This indicates that the statistical power is simply not sufficient to reveal
the small differences in between EMRE/IOS and RRE/LNA.

• Regime II appears only for the inference of the enzymatic degradation model using data for
mean and variance. For volumes below 10 μm3, LNA is favored over IOS. The reason for this
is that the LNA leads to a physically meaningful description, i.e. positive variances for all vol-
umes, whereas the IOS leads to positive variances (which correct the LNA) for large enough
volumes but can potentially give rise to negative variances for small enough volumes. The lat-
ter is possible since terms in the SSE beyond the LNA, i.e., those involving third- and higher-
order derivatives, do not lead to a Fokker-Planck description which can imply negative values
of the approximated probability density function [37, 85]). Hence the LNA becomes favor-
able over the IOS for small volumes.

Accordingly, model selection favors the macroscopic description over the mesoscopic one
either when the statistical power is too limited to reject them (Regime I) or when they are
indeed more accurate (Regime II). Otherwise, mesoscopic descriptions based on higher-order
SSEs or MAs (Figure H,I in S1 Supporting Information) are selected.

The selection also resembles the results for the estimation error in Fig 7(a) and 7(b). The
critical volume for which the AIC weights depart from unity coincides with the upper bound of
the intermediate regime in which mesoscopic description provide lower estimation errors. Fur-
thermore, in Regime II IOS yields large estimation errors. In summary, this suggests that
model selection can be used (i) to decide whether a mesoscopic or a macroscopic description is
appropriate and (ii) to improve the quality of parameter estimates.

Model rejection criteria can reveal the necessity of a microscopic description. The supe-
riority of a model according to model selection criteria does not imply that the favored model
accurately represents the data. Specific applications may indeed require microscopic descrip-
tions to model experimental data. To check this, simulation and parameter estimation using
microscopic descriptions could be performed. While efficient algorithms have been developed,
such procedure is often time-consuming. We therefore considered model rejection to assess
the necessity of microscopic modeling without performing the microscopic analysis.

We computed the goodness-of-fit and employed a χ2-test with a confidence level of 0.01 for
model rejection. Fig 8(c) and 8(d) illustrates the regimes in which the meso-/macroscopic
descriptions have been rejected for at least 50% of the artificial datasets. We find that regions in
which higher-order SSEs are rejected are mostly contained in regions for which lower-order
SSEs are rejected.

As sample size increases higher-order SSEs and MAs are rejected for increasingly larger vol-
umes. This is plausible as the improved statistical power allows us to resolve smaller differences
between microscopic and the corresponding meso-/macroscopic descriptions. The statistical
power is determined by the number of samples and the statistical moments of the samples. If
the difference between approximative descriptions and the process is large, a small sample size
is sufficient to rule out a model, while a large number of samples is required to detect smaller
differences. As the difference between approximative descriptions and the process is volume-
dependent and process-specific, the regions in which the approximative description can be
rejected might possess a complex shape. For the enzymatic degradation model we find for
instance that for low sample sizes the RRE can merely be rejected for an intermediate volume
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regime but not for small or large volumes. The dependence on the number of samples supports
also the finding that for the analysis of high-throughput data accurate models need to be
employed.

The proposed approach based on model rejection reveals the need for a more accurate
description without performing the corresponding analysis. Accordingly, macroscopic models
such as RRE and LNA can be used to perform the initial analysis. Only if these models are
rejected using the χ2-test, mesoscopic descriptions need to be employed. In the same way also
the necessity of microscopic descriptions can be assessed without actually performing the cor-
responding time-consuming analysis.

In summary, the study of trimerization and enzymatic degradation model clearly revealed
that higher-order SSEs and MAs are generally more reliable. The increased computational
complexity is tractable and the investment becomes worthwhile for high-throughput data in
particular. Further improvement could be achieved by combining model selection criteria and
rejection criteria.

Discussion
Many biological processes exhibit stochastic fluctuations which are relevant for cells and
organisms [1–3]. Quantitative mechanistic models facilitate an understanding of the relevance
of these fluctuations to dynamics over various length scales. Despite significant progress, the
parameterization of such quantitative mechanistic models remains challenging. In this work,
we implemented sophisticated parameter estimation and uncertainty analysis methods relying
on mesoscopic descriptions of stochastic processes, namely higher-order SSEs and MAs.

We verified the developed methods using simulation examples. We found that for interme-
diate and large volumes, for which inference using microscopic descriptions is computationally
already demanding, our approximate methods provides reliable estimation results. The com-
putation time required for optimization was a fraction of the computation time required for
the stochastic simulation of the stochastic process (c.f. Figure A in S1 Supporting Information).
Compared to estimation methods using macroscopic descriptions, such as RRE or LNA [40], a
significantly decreased estimation error is observed for intermediate volumes. This intermedi-
ate regime increases with the number of single-cell measurements. Our parameter estimation
methods using higher-order SSEs and MAs are therefore especially suited for the data-driven
modeling of high-throughout data, such as flow and mass cytometry data.

As the unnecessary study of meso-/microscopic descriptions can be time-consuming, we
also considered model rejection approaches. We found that the application of such methods
can guide model refinement. The methods cannot however distinguish between inappropriate-
ness arising from meso- and microscopic descriptions due to an inaccurate knowledge of the
biochemical reaction network as both result in a disagreement of model and data. In addition,
for applications with multiple candidate models it is not guaranteed that model selection
results obtained for macroscopic descriptions will be reproduced for the corresponding meso-
scopic or microscopic descriptions. Thus model selection and model rejection methods should
always be combined. If the microscopic description of all candidate models were rejected using
the χ2-test, the set of candidates would not contain a model which accurately represents the
data and should be extended.

Beyond the study of artificial data, we employed the proposed methods to study experimen-
tal data for the JAK/STAT signaling pathway. This revealed that mesoscopic modeling can also
provide additional insights if merely population-average data are available. For processes with
non-linear reaction propensities, the mean encodes information about the volume and the
molecular numbers, respectively [29, 36]. This enabled the estimation of a lower bound for the
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initial STAT concentration, a parameter, which is structurally non-identifiable when macro-
scopic descriptions are employed. To assess the lower bound we implemented profile likeli-
hood calculations and MCMCmethods for higher-order SSEs and MAs. MCMCmethods for
MAs had already been proposed [10], the combination of Bayesian and frequentist methodol-
ogy is however known to provide more robust results [55, 86]. The derived lower bound for the
STAT concentration could be confirmed with literature data. The insight could be obtained for
a well-studied system and pinpoints the great potential of mesoscopic descriptions for data-
driven modeling.

However, the use of mesoscopic descriptions also has certain drawbacks. It is for instance
not completely clear how practical and structural identifiability of the stochastic process
(described by the CME) and the approximative descriptions are related [18]. Furthermore, as
higher-order SSEs and MAs are merely approximations to data generating processes, the
resulting estimators are inconsistent. Hence, parameter estimates and confidence intervals can
be erroneous. In principle, this problem can be addressed using ideas developed in the fields of
model reduction [87, 88] or probabilistic numerical simulations [89, 90]. These methods
require upper bounds for the approximation error or the error distribution of vector field
approximation, respectively. Approximations for both might be obtained by using a sequence
of higher-order expansions. A rigorous treatment would yet require exact bounds, as available
for the FSP [22].

In this study we employed higher-order SSEs and MAs to approximate the moments of the
stochastic process for inference. A further improvement could be achieved by using hybrid
approaches, such as the method of conditional moments [91] or the conditional system size
expansion [92]. These approaches exploit a microscopic description of low-copy number spe-
cies and a mesoscopic description for medium- to high-copy number species. Complementa-
rily, higher-order SSEs and MAs could be used to enhance the accuracy of ODE constrained
mixture modeling [93]. This modeling and analysis method accounts for the subpopulation
structure but relies on simple macroscopic descriptions for the subpopulation dynamics. The
use of macroscopic descriptions could result in a reduction of the number of parameters and
an improved data exploitation.

Until now, the stochasticity of biological systems is often disregarded as its analysis is com-
putationally demanding. The emergence of measurement techniques such as single-cell fluo-
rescent microscopy [83, 94], flow and mass cytometry [84], single-cell qPCR [95] and single-
cell RNA-seq [82] renders the consideration of stochastic effects a necessity [96, 97]. The pre-
sented methods are computationally efficient and scalable. This will facilitate the quantitative
mechanistic modeling of complex cellular process es and the exploitation of cell-to-cell vari-
ability for biological discovery.

Supporting Information
S1 Supporting Information. Supplementary notes regarding modeling and computational
analysis. This document provides a detailed description of the biochemical reaction networks
and their parameters, system size expansion and moment approximation, as well as the param-
eter estimation and the uncertainty analysis results.
(PDF)

S1 Code. MATLAB code used for inference using SSE and MA. This zip-file contains the
MATLAB code for the simulation and application example presented in the paper. We provide
implementations of all models, parameter estimation and uncertainty analysis to allow every-
body to reproduce the results.
(ZIP)
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