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Blocking sense-strand activity improves potency,
safety and specificity of anti-hepatitis B virus
short hairpin RNA
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Abstract

Hepatitis B virus (HBV) is a promising target for therapies based on
RNA interference (RNAi) since it replicates via RNA transcripts that
are vulnerable to RNAi silencing. Clinical translation of RNAi tech-
nology, however, requires improvements in potency, specificity
and safety. To this end, we systematically compared different
strategies to express anti-HBV short hairpin RNA (shRNA) in a pre-
clinical immunocompetent hepatitis B mouse model. Using recom-
binant Adeno-associated virus (AAV) 8 vectors for delivery, we
either (i) embedded the shRNA in an artificial mi(cro)RNA under a
liver-specific promoter; (ii) co-expressed Argonaute-2, a rate-
limiting cellular factor whose saturation with excess RNAi triggers
can be toxic; or (iii) co-delivered a decoy (“TuD”) directed against
the shRNA sense strand to curb off-target gene regulation.
Remarkably, all three strategies minimised adverse side effects as
compared to a conventional shRNA vector that caused weight loss,
liver damage and dysregulation of > 100 hepatic genes. Impor-
tantly, the novel AAV8 vector co-expressing anti-HBV shRNA and
TuD outperformed all other strategies regarding efficiency and
persistence of HBV knock-down, thus showing substantial promise
for clinical translation.
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Introduction

Chronic hepatitis B caused by hepatitis B virus (HBV) infection

remains a major health burden that affects nearly 250 million

humans and causes an estimated 686,000 annual deaths from the

long-term consequences liver cirrhosis and hepatocellular carci-

noma (HCC) (MacLachlan et al, 2015; Schweitzer et al, 2015). This

is due to the limitations of standard-of-care antiviral therapy, includ-

ing that nucleos(t)ide analogs require daily and lifelong application,

which is costly, may elicit side effects such as kidney insufficiency

(Tenofovir and Entecavir) and can prompt the emergence of resis-

tant HBV mutants (Song et al, 2012). Moreover, current interven-

tions fail to eliminate the virus or to inhibit viral transcription and

translation, despite the ability of these drugs to control the genera-

tion of infectious HBV virions. However, the viral proteins crucially

determine viral persistence and pathogenesis. In particular, secreted

HBV surface (HBsAg) and e antigen (HBeAg) are proposed to be key

players in modulating the host immune response that impair its

ability to clear the virus (Protzer et al, 2012), and that very likely

contribute to development of HBV-associated HCC (Ringelhan et al,

2013). HBV X protein (HBx) can affect immune signalling and

contributes to HCC development (Levrero & Zucman-Rossi, 2016).

Furthermore, HBV core (HBc) and polymerase initiate the first step

of replication, encapsidation and reverse transcription of pre-

genomic HBV RNA.

A possible solution towards the development of new and more

effective HBV therapies is RNA interference (RNAi). Particularly

encouraging is that RNAi allows suppression of all viral transcripts

and proteins and may serve as a basis to restore immune responses.

This was first suggested a decade ago when it was reported that

expression of shRNAs (short hairpin RNAs, artificial triggers of

RNAi) can be harnessed for in vivo inhibition of HBV or hepatitis C
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virus (HCV) gene expression (McCaffrey et al, 2002, 2003). This

pioneering work was quickly followed by a series of in vitro and

in vivo studies in pre-clinical HBV models that verified the enor-

mous promise of RNAi therapeutics for HBV treatment (McCaffrey

et al, 2003; Carmona et al, 2006; Grimm et al, 2006, 2010; Giering

et al, 2008; Keck et al, 2009), and that culminated in a phase II

clinical evaluation of a polyconjugated siRNA in chronically HBV-

infected patients (www.arrowheadresearch.com/programs/ARC-

520). This inspiring translation from bench to bedside was fuelled

by several facts that make RNAi highly attractive and promising as

an antiviral modality. Firstly, the four major HBV transcripts share a

common 30 end which allows concurrent targeting of all viral

messenger (m)RNAs with a single RNAi molecule (Ebert et al,

2011). Secondly, HBV mRNAs are constantly transcribed from the

viral covalently closed circular DNA (cccDNA), the persistent HBV

form in the nucleus of infected hepatocytes. This renders HBV

highly vulnerable to a gene therapy approach using a vector that

permanently expresses an effective anti-HBV shRNA directed

against the 30 end of all HBV RNAs. One exciting option to deliver

shRNAs into the infected hepatocyte are recombinant Adeno-

associated viruses of serotype 8 (AAV8), non-pathogenic vectors that

mediate efficient and stable hepatic gene transfer in small and large

animals as well as in humans (Grimm et al, 2006; Chen et al, 2007,

2008; Giering et al, 2008; Nathwani et al, 2011). Increasing their

appeal for treatment of persistent HBV infection is our recent obser-

vation that the HBV X protein enhances nuclear AAV transport and

thus “helps” AAV transduction, indicating that the vector will prefer-

entially establish in HBV-infected hepatocytes (Hosel et al, 2014).

To fully realise the potential of AAV/RNAi vectors for HBV ther-

apy and to foster their clinical translation, it is now imperative to

overcome lingering safety concerns (Grimm et al, 2006; Grimm,

2011). These were initially triggered by observations with first-

generation vectors that mediated overly abundant shRNA expres-

sion, causing liver toxicity with elevated serum liver transaminases,

jaundice, weight loss, as well as histological and structural liver

alterations. In extreme cases, unrestricted shRNA over-expression

even resulted in organ failure and morbidity of treated mice (Grimm

et al, 2006). Additional findings in c-Myc-transgenic mice indicate

that shRNA over-expression can also accelerate tumorigenesis under

certain conditions (Beer et al, 2010). Notably, adverse effects from

shRNA over-expression were likewise observed in other species and

tissues beyond the mouse liver (Grimm, 2011).

Fortunately, we and others could identify possible mechanisms

underlying this RNAi toxicity, which now offers various avenues for

improvement (Fig 1A and B). One model suggests that ectopic RNAi

triggers overwhelm the endogenous mi(cro)RNA pathway, particu-

larly Exportin-5 and Argonaute-2 (Ago-2, key RISC component) and

thus perturb miRNA biogenesis and/or activity in a dose-dependent

manner (Grimm et al, 2006, 2010; Giering et al, 2008). Evidence is

that RNAi efficiency can be enhanced by Ago-2 co-expression

in vitro and in vivo (Diederichs et al, 2008; Grimm et al, 2010;

Borner et al, 2013). Moreover, the use of weaker shRNA promoters

(Giering et al, 2008; Grimm et al, 2010; Suhy et al, 2012) or shRNA

embedding in a natural miRNA context can reduce accumulation of

mature RNAi triggers and thus increase safety (Zeng et al, 2005;

McBride et al, 2008; Boudreau et al, 2009; Ely et al, 2009), albeit

even marginal shRNA expression can provoke phenotype and tran-

scriptome changes in mouse livers (Maczuga et al, 2014).

A second model implies that RNAi triggers perturb cell

homoeostasis through unwanted inhibition of “off-target” genes

with partial complementarity to one of the two arms of the double-

stranded RNAi molecule (Jackson et al, 2003; Scacheri et al, 2004;

Fedorov et al, 2006). As vector-encoded shRNAs are incompatible

with molecular or chemical modifications that may improve speci-

ficity (Grimm, 2009), the best remaining option is judicious selec-

tion of shRNAs with an inherent bias towards the antisense arm

that directs RISC to the target mRNA (Khvorova et al, 2003;

Reynolds et al, 2004; Gu et al, 2014; Liu et al, 2015). However,

latest data show that shRNA off-targeting can also originate from

binding of cellular RNA sequences by the sense strand, which is

identical to the target region (Clark et al, 2008; Wei et al, 2009;

Kwak & Tomari, 2012; Schurmann et al, 2013; Gu et al, 2014;

Mockenhaupt et al, 2015). To block this side effect, we recently

(Mockenhaupt et al, 2015) developed a novel bi-cistronic AAV

vector co-expressing a shRNA with a second RNA hairpin called

“tough decoy” or “TuD”. Originally devised by Haraguchi and

colleagues to silence cellular miRNAs (Haraguchi et al, 2009), we

found that TuDs can be repurposed to selectively bind and inacti-

vate shRNA sense strands, thereby improving RNAi specificity and

promising a crucial benefit for clinical RNAi therapies. In this study,

we systematically compared our new shRNA/TuD design side by

side to two other advanced shRNA expression strategies—Ago-2 co-

delivery and embedding in a miRNA scaffold—for HBV inhibition in

a transgenic mouse model of chronic HBV infection.

Results

Design of different RNAi triggers for direct in vitro and
in vivo comparison

Figure 1C provides a schematic overview of the four distinct RNAi

expression strategies that were tested in this study. As miRNA scaf-

fold for embedding of the anti-HBV shRNA (strategy [ii]), we

selected miR-122 based on its high and specific expression in the

liver (Landgraf et al, 2007). The final construct was designed to ful-

fil two requirements (Fig EV1A top): (i) the antisense strand is in

the 50 position, to mimic the miR-122 structure; and (ii) the first

position of the predicted pre-miRNA (processed pri-miRNA) is a

uridine, to recapitulate the thermodynamic stability of the first

bulge of pre-miR-122. In contrast, rules for a construct expressing a

conventional anti-HBV shRNA (Figs 1Ci and EV1A bottom) were (i)

the sense strand is in the 50 arm to facilitate neutralisation by a co-

expressed TuD (Mockenhaupt et al, 2015); and (ii) this strand

starts with guanine, to allow precise transcription from RNA

polymerase III promoters. For shRNA expression, we used the H1

promoter based on our experience that it yields safer and more

stable RNAi in mouse livers than the stronger U6 promoter (Grimm

et al, 2010).

To select anti-HBV shRNAs that could be modified according to

these rules, we focused on the X region of the HBV genome which

enables simultaneous targeting of all viral transcripts (Ebert et al,

2011) (Appendix Fig S1A and B). We identified four shRNA candi-

dates (Fig EV1B) and measured their efficacy in an HBV cell culture

model (Fig 2). From this pre-screen, we chose shHBV7 for all

further studies as it consistently gave best results, including 99%
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knock-down of secreted HBsAg (measured by a quantitative HBsAg

chemiluminescent microparticle immunoassay [CMIA], Fig 2A), as

well as robust knock-down of secreted HBeAg and HBV DNA, and

of intracellular pre-genomic HBV RNA (3.5-kb transcript), total HBV

RNA and HBV DNA (Fig 2A–D). Notably, the used HBeAg test

(Fig 2A) does not measure true concentrations, but a signal-to-

control ratio (S/CO) which follows a sigmoid curve. This leads to

underestimates at high concentrations and, vice versa, to overesti-

mates at low concentrations. Accordingly, the HBeAg reductions are

likely even more pronounced and in the high range measured with

the quantitative HBsAg test. Moreover, an additional benefit of

shHBV7 is that its target sequence is largely conserved across all

HBV genotypes (Appendix Fig S1C).

We next embedded this lead shRNA into the pre-miR-122

scaffold, following the scheme in Fig EV1C. Therefore, we added

two uridines to the 30 end of the miR-122/HBV7 (from hereon called

miHBV7) antisense strand to match the conventional shRNA

[expected to carry a 30 overhang of up to three uridines, typical for

shRNAs expressed from RNA polymerase III promoters (Cullen,

2006)] (Fig EV1C top). Moreover, we designed a partially comple-

mentary sense strand mimicking the mismatches and bulges in

genuine miR-122 and finally added 50 and 30 flanking sequences

from miR-122 to complete the miHBV7 scaffold (Fig EV1C bottom).

The entire sequence was then cloned into an AAV vector and

expressed from the liver-specific RNA polymerase II transthyretin

promoter (TTR) (Wu et al, 2008).

This promoter was also used to co-express Ago-2 together with

H1 promoter-driven shHBV7 (Fig 1Ciii). The large size of the

bi-cistronic shRNA/Ago-2 construct required cloning into a

traditional AAV vector which packages as single-stranded DNA.
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Figure 1. Mechanisms that can cause RNAi toxicity and strategies to overcome them.

A Three possible mechanisms explaining toxicity after over-expression of conventional shRNAs (see text for details). Orange, shRNA sense strand; blue, shRNA antisense
strand.

B Improved shRNA expression strategies to circumvent the mechanisms in panel (A).
C Four principal vector designs compared in this study. Symbols on the left indicate the AAV vector backbone; numbers denote serotype origin of the ITRs (inverted

terminal repeats, serving as AAV DNA packaging signals; asterisk indicates a deletion in the AAV4 ITR creating the self-complementary [sc]AAV genotype). Six thymines
(6xT) serve as termination signal for H1/U6 promoters; bGH, bovine growth hormone polyadenylation signal; TTR, transthyretin promoter.

ª 2016 The Authors EMBO Molecular Medicine

Thomas Michler et al Blocking shRNA sense strand improves anti-HBV RNAi EMBO Molecular Medicine

3

Published online: July 29, 2016 



Conversely, the other two cassettes—H1-shHBV7 or TTR-miHBV7—

were assembled in a self-complementary (sc)AAV-2/4 vector

genome (Grimm et al, 2006). These differences are irrelevant for

transfection experiments in cell culture but essential in vivo where

scAAV vectors express more rapidly and robustly (Grimm et al,

2006; McCarty, 2008).

TuD inclusion to reduce shRNA off-targeting and improve
RNAi efficiency

Next, we engineered a TuD RNA hairpin to specifically bind and

neutralise the shHBV7 sense strand (Fig 1Civ). Based on our

recently elucidated rules (Mockenhaupt et al, 2015), we cloned two

perfect binding sites for the shHBV7 sense strand and expressed the

resulting TuDHBV7 from a U6 promoter. The U6-TuD was then

inserted downstream of the H1-shHBV7 cassette in the scAAV vector

backbone (Appendix Fig S2). To assess shHBV7 sense versus anti-

sense-strand activity and TuD functionality, we co-transfected cells

with the shHBV7/TuDHBV7 plasmid and dual-luciferase reporters

carrying a perfect binding site for either shHBV7 sense or antisense

strand in the 30 untranslated region (UTR) of Renilla luciferase

(Fig 3A). Negative controls included (i) an irrelevant shRNA against

human alpha-1-antitrypsin (sha1AT), (ii) a TuD against the sense

strand of sha1AT and (iii) a luciferase reporter without shRNA

binding sites.

Expression of shHBV7 substantially inhibited the antisense-

strand reporter, irrespective of which TuD was co-expressed

(Fig 3B, shHBV7 group). The sense-strand reporter was also

suppressed by > 65% in the presence of the control TuD, solidifying

our recent data that both shRNA strands are frequently active
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Figure 2. Pre-selection of anti-HBV short hairpin RNAs.

A Huh7 cells were co-transfected with shRNAs fulfilling all requirements for incorporation into the expression strategies from Fig 1C and the HBV expression plasmid
pCH-HBV1.3, and HBeAg and HBsAg were quantified in the supernatant 48 h later. An empty AAV vector plasmid was used as control. Another negative control was
mock-transfected cells.

B The same experiment was repeated with plasmid pCH-9-3091, which contains a 1.1-fold over-length HBV genome. HBV DNA in supernatant was measured at day
four via PCR, using primers that preferentially amplify HBV rcDNA rather than the 1.1-fold over-length HBV sequence contained in the plasmid.

C RT-qPCR results from cell lysates (same experiment as in panel A) with primers specific for the 3.5-kb HBV transcripts (consisting of pre-genomic [pg] RNA and the
pre-core transcript; left), or with primers that detect all HBV transcripts (right).

D Southern blot analysis of lysates obtained 72 h post-transfection of HepG2 cells treated with the same plasmids as in panel (A).

Data information: Diagrams in panels (A–C) show mean values and SEM (all experiments were performed in triplicates). Significance was calculated using one-way
ANOVA with Tukey’s multiple comparison correction. S/CO, signal-to-control ratio; rcDNA, relaxed circular DNA; dlDNA, duplex-linear DNA, double-stranded linear DNA;
n.s., non-significant; *P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001. See Appendix Table S1 for exact n- and P-values.
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(Mockenhaupt et al, 2015). Importantly, this unwanted sense-strand

activity was completely abolished upon co-expression of TuDHBV7

(Fig 3B, shHBV7 group). All controls behaved as expected, since

expression of the shHBV7-sensitive luciferase reporter was neither

inhibited by the irrelevant shRNA nor by the two TuDs (which exert

no inherent RNAi activity).

We next aimed to verify these results in an in vivo model of

chronic hepatitis B. For this, we used an HBV-transgenic mouse

strain HBV1.3.32, which carries a chromosomally integrated 1.3-fold

over-length HBV genome (Guidotti et al, 1995). This viral DNA

expresses all HBV transcripts and antigens, and it is replication-

competent and produces infectious wild-type HBV genotype D. We

packaged the various constructs encoding only shRNA or shRNA

plus TuD (Fig 3C, indicated at the bottom) into AAV8 capsids and

intravenously injected 1 × 1011 particles per mouse. Remarkably,

the dual vector co-expressing shHBV7 and TuDHBV7 not only effi-

ciently suppressed HBV but outperformed the two vectors express-

ing shHBV7 alone, or co-encoding shHBV7 and the control TuD, as

evidenced by significantly greater reductions of serum HBsAg and

HBeAg (Fig 3C, green bars). The difference was particularly

pronounced at the earliest time point (5 days) post-injection, show-

ing that the shRNA7/TuD construct is also faster at inhibiting HBV

in vivo. The control shRNA only had a minor effect on HBsAg

expression (black/grey bars) and neither HBsAg nor HBeAg were

significantly altered upon co-expression of either TuD, arguing

against a general influence of TuDs on HBV expression.

We subsequently compared all four vector variants from Fig 1C

side by side in the HBV cell culture model for their effects on HBV

proteins, DNA and RNA (Fig 4). Despite the high inherent activity

of the shHBV7 shRNA, we observed a trend towards further

improvement through Ago-2 co-expression at least for the secreted

parameters (best notable for HBV DNA in the supernatant, whose

knock-down was increased from 57.3 to 73.5%). This is in line with

the rate-limiting nature of Ago-2 described by us and others

(Diederichs et al, 2008; Grimm et al, 2010; Borner et al, 2013). The

TTR-miHBV7 construct was typically less efficient than the other
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Figure 3. Improvement of shHBV7 specificity and efficiency by co-expression of a TuD against the sense strand.
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strategies but still achieved substantial anti-HBV RNAi. Southern

blot analysis revealed a robust reduction of intracellular HBV DNA

by all four vectors, with the miHBV7 vector again showing the least

pronounced effect (Fig 4D). Congruent with the in vivo experiment

in Fig 3C, there was a trend towards better HBV inhibition with the

TuD co-expressing vector as compared to the shHBV7-only

construct, most noticeable in the HBV RNA analyses (Fig 4C).

Long-term in vivo side-by-side comparison of all four strategies

We next extended the in vivo analysis of the shHBV7 versus

shHBV7/TuDHBV7 vectors to 3 months and included the Ago-2

co-expression and miRNA embedding strategies to directly compare

their efficiency and safety. All vector variants were intravenously

injected into HBV-transgenic mice at 1 × 1011 particles per animal

(Fig 5A). Congruent with our short-term in vivo analysis (Fig 3C,

also confirmed in Fig 6A), the shRNA-only vector potently knocked

down HBV, culminating in 97% serum HBsAg reduction at 4 weeks

post-injection (Fig 5B, purple; corresponding HBV DNA and RNA

data are shown in Fig EV2). However, this vector also induced toxi-

city as evidenced by a retarded gain in body weight of the treated

animals (compared to all other shHBV7 expression strategies,

Fig 5C) and elevated ALT levels at 1–4 weeks post-injection

(Fig 5D). This coincided with a reduction of liver mass in individual
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Figure 4. In vitro comparison of different RNAi triggers.

A Huh7 cells were co-transfected with the HBV expression plasmid pCH-HBV1.3 and the four principal constructs examined in this study, or with an empty AAV
expression plasmid that served as negative control. Another negative control was mock-transfected cells. HBeAg and HBsAg were quantified in the supernatant 48 h
later.

B Measurement of HBV DNA in cell culture supernatants 4 days after co-transfection of Huh7 cells with the plasmid encoding the 1.1-fold over-length HBV sequence
(pCH-9-3091) and the same RNAi expression plasmids as in panel (A). PCR was performed using primers that discriminate between HBV rcDNA and the 1.1-fold
over-length HBV sequence contained in the plasmid.

C RT-qPCR results using primers specific for the 3.5-kb HBV transcript (including pre-genomic RNA and the pre-core transcript; left), or primers that detect all HBV
transcripts (right).

D Southern blot analysis of lysates obtained 72 h post-transfection of HepG2 cells with the same plasmids as described in panel (A).

Data information: Diagrams in panels (A–C) show mean values and SEM (all experiments were performed in triplicates). Significance was calculated using one-way
ANOVA with Tukey’s multiple comparison correction. S/CO, signal-to-control ratio; n.s., non-significant; rcDNA, relaxed circular DNA; dlDNA, duplex-linear DNA; *P < 0.05;
**P < 0.01; ***P < 0.001; ****P < 0.0001. See Appendix Table S1 for exact n- and P-values.
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mice treated with the shHBV7-only vector on day 15 (measured in

the separate experiment shown in Fig EV3, purple). The same side

effects—reduced body weight and ALT elevation—were also

observed with an unrelated control shRNA (Fig 5C and D, black),

reaffirming reports (Grimm et al, 2006; Beer et al, 2010) that even

low levels of shRNA are not fully devoid of detectable side effects.

A

B

D

shHBV7/TuDHBV7

shHBV7

shHBV7/Ago2

miHBV7

shα1AT

50

100

150

200

250

A
LT

 (U
/l)

***

0

5

10

15
50

100
150
200

R
el

. H
B

sA
g 

(%
)

***

***

*

**

****

* **

***

*
* *

*

95

100

105

110

****
********

n.s.

scAAV

scAAV

scAAV

ssAAV

scAAV

H1

H1

H1

H1

U6

TTR Ago2

TTR

R
el

. b
od

y 
w

ei
gh

t (
%

)

C

Days 0 7 14 21 28 56 84

Days 0 7 14 21 28 56 847049423510 173

Days 7 14 21 28 56 84

1x1011

particles 
i.v.

HBV1.3.32

E

sh
H

B
7/

Tu
D

H
B

V
7

sh
H

B
V

7
sh

H
B

V
7/

A
go

2
m

iH
B

V
7

M
oc

k
sh

α1
AT

HE

Figure 5. Long-term analysis of different anti-HBV AAV vectors in HBV-transgenic mice.

A Schemes of the five different vectors used for the in vivo comparison. ss, single-stranded; sc, self-complementary; i.v., intravenously.
B–D Determination of anti-HBV efficacy and safety by measuring HBsAg in the serum of treated mice (B), their body weight (C) and serum ALT levels (D).
E Haematoxylin/Eosin (HE) stains of livers harvested on day 84. Scale bar at bottom right represents 100 lm.

Data information: Diagrams show mean values and SEM from 5 to 6 mice per group. Significance in panel (B) was calculated using Student t-test, and in panels (C and
D) using one-way ANOVA, comparing each group to the vector expressing only shHBV7. n.s., non-significant; *P < 0.05; **P < 0.01; ***P < 0.001. See Appendix Table S1
for exact n- and P-values.
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Important to note is that the observed toxicity was overall mild, as

shown by the absence of significant histological changes at late (day

84, Fig 5E) or early time points (day 15, Fig EV4) post-AAV injec-

tion. Together, this underscores that even presumably optimised

conditions—weak shRNA promoter and moderate vector dose—

cannot fully overcome low-level acute toxicity from traditional

shRNA vectors and that additional improvements are needed.

Remarkably, co-expression of Ago-2, embedding of shHBV7 in

a miRNA context as well as co-expression of TuDHBV7 were all

able to rescue these side effects. Treated mice gained body weight

(Fig 5C), showed no elevation of ALT activity (Fig 5D) and no

reduction of liver mass at day 15, identical to control animals

treated with a non-coding AAV (Fig EV3). This also verified that

toxicity from the shRNA-only vector was exclusively due to the

shRNA expression and not to any other vector component. The

safety improvements over the shRNA-only vector tended to be best

in mice where the shRNA was expressed from the miR-122 scaf-

fold and under the liver-specific TTR promoter, in line with reports

that miRNA embedding reduces in vivo RNAi toxicity (Ely et al,

2008, 2009; McBride et al, 2008; Boudreau et al, 2009) (Figs 5C

and D, and EV3). However, the differences to the Ago-2 or TuD

co-expression strategies were not statistically significant. Moreover,

of all configurations, the TTR-miHBV7 vector was least efficient at

inhibiting HBV (Fig 5B), consistent with our cell culture data

(Fig 4).

Interestingly, efficient long-term HBV inhibition was obtained

with the vector co-expressing Ago-2 from the liver-specific TTR

promoter, to a degree matching the conventional shRNA-only

construct (Fig 5B). Considering that the Ago-2 vector was a single-

stranded AAV which expresses more slowly and less potently than

scAAV genomes that were used for the shRNA-only vector, this is

remarkable and validates our previous finding that Ago-2 co-

delivery boosts shRNA potency in mouse livers (Grimm et al, 2010;

Borner et al, 2013). In addition, over-expressing Ago-2 relieved toxi-

city as compared to mice receiving only the shRNA, as evidenced by

weight gains and normal ALT levels in the shHBV7/Ago-2 cohort

(Fig 5C and D).

Noteworthy, the strongest and most persistent HBV knock-down

was achieved with the bi-cistronic vector co-expressing shHBV7 and

the sense-strand TuD, which inhibited HBsAg by 98.5% and signifi-

cantly outperformed all other constructs at early and late time points

(Fig 5B, green). As observed for Ago-2 co-expression and miRNA

strategies, the shHBV/TuDHBV7 vector was able to alleviate in vivo

RNAi toxicity as documented by measurements of body weights

(Fig 5C), serum transaminases (Fig 5D) and liver masses (Fig EV3).

Furthermore, histological analysis of livers neither revealed signifi-

cant changes in liver microarchitecture nor liver damage when

compared to a mock control (Fig 5E). This superior antiviral effi-

cacy combined with an excellent safety profile prompted us to select

the shHBV/TuDHBV7 vector as our prime candidate.

Analysis of global gene expression in vector-treated mice

Next, we assessed whether expression of the shRNA alone had

influenced liver gene expression in treated animals, and whether

the results differed after TuD co-delivery. To this end, we again

injected HBV-transgenic mice with the same vectors used in Fig 5

and this time also included an empty AAV vector as control. As in

our previous experiment, the shHBV7/TuDHBV7 vector was faster

and more efficient at suppressing HBV than all other vectors,

achieving HBsAg reductions of 96.7% 15 days after injection (com-

pared to 93.5% in the shHBV7-only group) (Fig 6A, same animals

as in Fig EV3). We harvested all livers at this time point (day 15)

and profiled more than 26,000 genes of four animals per treatment

group. As shown in Fig 6B, expression of shHBV7 alone had caused

significant dysregulation of 126 genes (67 down- and 59 up-

regulated) compared to control animals. Amongst the 67 down-

regulated genes, we could analyse the sequences of 51 (Fig 6C;

Appendix Tables S2 and S3). Interestingly, 41 (80.4%) of these

carried a shHBV7 sense-strand seed match (nt 2–7), representing a

statistically significant enrichment (compared to the background

frequency; two-sided chi-square test, P < 0.05). Twenty-two of the

51 genes (43.1%) had an antisense-strand seed match (21 carried

both). Only 9 of the 67 down-regulated genes lacked a seed match

for either of the two shHBV7 strands. Amongst the 59 up-regulated

genes, a sense-strand seed match was found in 66.0% and an anti-

sense-strand seed match in 32.0%. Both numbers reflect the back-

ground frequency of all genes on the microarray chip (sense:

65.8%; antisense 31.2%), suggesting no specific correlation

between shHBV7 and the up-regulated genes.

Remarkably, this perturbation of gene expression was relieved in

all three cohorts treated with the improved shRNA vectors, as

evidenced by only one (shHBV7/TuD) or no (shHBV7/Ago-2 or

miHBV7) significantly dysregulated genes (Fig 6B). Overall, this

transcriptome pattern correlated well with the toxicity data (Fig 5C

and D) and liver weight measurements (Fig EV3), where the

shHBV7 group was likewise the only noticeable outlier.

We then performed the reverse analysis, that is instead of identi-

fying genes in each vector group that were significantly dysregu-

lated, we first categorised all genes based on the presence of

shHBV7 seed matches (for each shRNA strand) and subsequently

compared their degree of alteration. For this, we focused on the

30UTR sequences which we could retrieve for nearly 19,000 genes.

Interestingly, we found approximately five times more shHBV7

sense- than antisense-strand seed matches (1,933 versus 388;

Appendix Table S2). As expected, we observed no changes in genes

lacking shHBV7 seed-strand seed matches in their 30UTRs, when

comparing the different experimental groups to the empty vector

control (Fig 6D top). Also as predicted, genes harbouring antisense-

strand seed matches were suppressed across all groups to a similar

extent, indicating that all vector configurations can mediate anti-

sense-strand-mediated off-targeting (Fig 6D bottom). Of note, genes

carrying sense-strand seed matches were suppressed in all groups

with the sole exception of animals that had co-expressed the shRNA

sense-strand TuD, which significantly differed from all other groups

(Fig 6D middle).

Finally, we directly compared gene expression between shHBV7-

and shHBV7/TuDHBV7-treated animals. We used the cumulative

distribution function (CDF, see Materials and Methods) to investi-

gate whether genes with shHBV7 seed matches in their 30UTR were

differentially influenced by TuDHBV7 co-expression compared to

genes without the respective seed match. Remarkably, CDF analysis

showed that genes with a 30UTR shHBV7 sense-strand seed match

were significantly (P < 0.05, two-sided, two-sample Welch’s t-test)

more up-regulated by TuDHBV7 co-expression than genes without

this match (Fig EV5). No such correlation was observed for genes
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Figure 6. Short-term in vivo study to analyse shHBV7 off-target activity.

A HBV-transgenic mice (five in mock group, six in all others) were injected intravenously with 1 × 1011 particles of the shown AAV8 vectors, and HBsAg was measured
from serum at various time points post-injection. Fifteen days post-treatment, mRNA expression in livers was analysed using microarrays. Significance was calculated
using Student t-test.

B Genes significantly dysregulated compared to mock treated animals (false discovery rate < 0.25; compared to mock).
C Transcripts of genes significantly up- or down-regulated by shHBV7 were analysed for the presence of shHBV7 sense or antisense 2- to 7-nt seed matches and

compared to the background frequency within all genes on the microarray. Significance was calculated using chi-square test with Yates’ correction.
D All genes on the microarray were grouped according to the presence of 30UTR shHBV7 sense or antisense seed matches. Shown is their relative expression compared

to the empty vector. Significance was calculated using Mann–Whitney test.

Data information: Diagrams in panels (A and D) show mean values and SEM n.s., non-significant; *P < 0.05; **P < 0.01. See Appendix Table S1 for exact n- and
P-values.
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harbouring (or not) a 30UTR shHBV7 antisense-strand seed match

(not shown), indicating that the TuD had specifically rescued genes

with a sense-strand seed match, as hoped for.

Discussion

The aim of our study was to evaluate the potential of a novel RNAi

expression strategy that we have recently established in cultured

cells (Mockenhaupt et al, 2015)—co-expression of shRNA together

with an inhibitor of its sense-strand activity—for therapeutic

suppression of HBV in livers of adult HBV-transgenic mice. Our key

findings were (i) that the dual shRNA/TuD AAV vector gave robust

and long-term in vivo HBV inhibition without detectable toxicity

and (ii) that it overall outperformed three alternative RNAi expres-

sion strategies including conventional shRNA, together implying its

great promise as a clinically applicable new anti-HBV modality

(summarised in Table 1).

To develop this novel vector, we built on the prior identification

of challenges for the translation of antiviral RNAi strategies. One

major issue is concern about the specificity of gene inhibition and

competition with the endogenous miRNA machinery (Grimm et al,

2006; Diederichs et al, 2008; Khan et al, 2009; Grimm, 2011).

Although these effects are shRNA dose-dependent, it is imprudent to

reduce vector amounts as it implies a risk of missing HBV-infected

cells and/or of achieving inadequate knock-downs. Indeed, when

we used a dose of 5 × 1010 AAV particles, liver transduction and

inhibition of HBV replication in HBV-transgenic mice were below

50% (not shown). A twofold increase to 1 × 1011 boosted anti-HBV

potency to over 90%, but this subtle change also induced toxicity,

congruent with data with other shRNAs delivered at the same AAV8

dose in mice (Grimm et al, 2006; Maczuga et al, 2014) and

illustrating the difficulties in striking the balance between potency

and safety when targeting HBV in vivo.

A second challenge with HBV and other viruses is their exis-

tence as different genotypes and their propensity for mutational

escape under therapy. This creates a pressure to target regions that

not only permit potent and specific RNAi but are also highly

conserved, to ensure broad and persistent efficacy. There are two

possible solutions which are both inherently problematic. One is

rational selection of new shRNAs that are potent and conserved;

yet, this may collide with the desire to also reduce off-target or

saturation liabilities. An example is shHBV7 whose target is

preserved and which is effective, but not safe when expressed

alone. Alternatively, users may already have a pre-validated and

robust shRNA, but this may again be suboptimal with respect to

safety. Both scenarios thus necessitate de novo design and screen-

ing of additional shRNAs, as current state-of-the-art technologies

offer no means to directly optimise the safety of an existing RNAi

hairpin.

This problem is also not solved by one of the three

approaches that we evaluated here, shRNA embedding in an

artificial miRNA context, as it likewise requires redesigning

available shRNAs. Still, congruent with prior work (McBride et al,

2008; Boudreau et al, 2009), miHBV7 was one of our safest

vectors. Furthermore, it is the only strategy of the three allowing

RNAi expression from RNA polymerase II promoters which

provides opportunities for spatio-temporal control, as exemplified

here with the liver-specific TTR promoter. However, the miHBV7

vector was less efficient than the conventional shRNA or the

other two expression strategies (Ago-2 or TuD), confirming

in vivo data with similar constructs (Boudreau et al, 2008; Ely

et al, 2008) and further illustrating the competition between

potency and safety.

Table 1. Overview over evaluated AAV-based RNAi expression strategies.

Vector scAAV8-H1-shHBV7 scAAV8-H1-shHBV7-U6-TuDHBV7 ssAAV8-H1-shHBV7-TTR-Ago2 scAAV8-TTR-miHBV7

AAV genome Self-complementary Self-complementary Single-stranded Self-complementary

Liver-specific expression No No No/Yesa Yes

HBsAg knock-down (%)

Maximumb 97.0 98.5 95.5 93.2

Week 12b 94.8 97.7 94.6 90.8

ALT elevatedc Yes No No No

Body weight improvedd N/A Yes Yes Yes

Liver mass reducede Yes No No No

Dysregulated genesf

(relative to mock;
adj. P < 0.25)

126 1 0 0

shRNA off-target activity Sense and antisense Antisense Sense and antisense Sense and antisense

Shown in the columns are the four RNAi expression strategies that were studied and compared here: (i) shRNA alone, (ii) shRNA plus TuD, (iii) shRNA plus Ago-2
and (iv) shRNA in a miRNA context (from left to right). Rows summarise key features and findings from their evaluation in cells and mice in this study. N/A, not
applicable.
aThe shRNA was under the control of the ubiquitous H1 promoter, whereas Ago-2 was expressed from the liver-specific TTR promoter.
bData in Fig 5B.
cData in Fig 5D.
dA “Yes” indicates a relative improvement of body weight as compared to the shHBV7-only group (data in Fig 5C).
eData in Fig EV3.
fData in Fig 6B.
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In this regard, a major advantage of the other two approaches—

Ago-2 or TuD co-expression—is that both are fully compatible with

existing or new shRNAs. For the TuD strategy, the only requirement

is that the shRNA follows our simple design rules (Mockenhaupt

et al, 2015). Both approaches thus typically permit to boost shRNA

potency and safety without a need to redesign the RNAi trigger.

Intriguingly, despite their different modes of action, both strategies

similarly improved shRNA toxicity. In the case of Ago-2 over-

expression, a likely explanation is that more RISC complexes

became available for shHBV7 and endogenous miRNAs, thus allevi-

ating a central bottleneck in the RNAi pathway (Diederichs et al,

2008; Grimm et al, 2010; Cuccato et al, 2011; Borner et al, 2013).

Importantly, deliberate Ago-2 co-expression from a shRNA-encoding

AAV vector as a means to improve anti-HBV RNAi in vivo was never

reported before.

The same is true for our original strategy that we tested here,

for the first time, in cellular and murine HBV models, that is coun-

teraction of shRNA sense-strand activity with TuDs. One key asset

is that its only prerequisite is location of the shRNA sense strand

in the 50 arm (Mockenhaupt et al, 2015), which is typical for

published shRNAs and a default in most shRNA design algorithms.

Further remarkable is that this strategy combines high efficiency

with low toxicity, yielding the fastest, strongest and most persis-

tent in vivo HBV knock-down in all our comparisons. Our present

and recent data (Mockenhaupt et al, 2015) collectively suggest that

these benefits reflect a synergism of direct and indirect effects.

One indirect consequence of shRNA sense-strand inhibition could

be that it frees RISC for loading of the desired antisense strand

and subsequent target mRNA degradation, which can explain the

better anti-HBV efficiency. Support comes from Jin et al who sepa-

rately expressed the two strands of a siRNA and noted that a rela-

tive reduction of sense strands increased RISC loading with the

intended antisense strand (Jin et al, 2012). The additional RISC

could also be utilised by cellular miRNAs which would in turn

mitigate competition with the exogenous shRNAs and hence allevi-

ate toxicity caused by saturation of the RNAi pathway. This would

further contribute to long-term in vivo RNAi safety and potency,

akin to the effect of Ago-2 over-expression (see above) and also

consistent with our mouse data.

Furthermore, a direct consequence of TuD co-expression that

should additionally boost shRNA safety may be partial reversal of

adverse off-targeting by the shRNA sense strand. This is implied by

our cell culture data where the TuD strongly inhibited shHBV7

sense-strand activity towards a cognate reporter, consistent with our

recent independent in vitro observations with other AAV/TuD

vectors (Mockenhaupt et al, 2015). The new in vivo data further

support this conclusion, as the group of genes harbouring shHBV7

sense-strand seed matches in their 30UTR were suppressed by all

RNAi constructs except for the shHBV7/TuDHBV7 vector. Our

notion that genes with antisense-strand seed matches were

suppressed to a fivefold higher extent can be explained by a dilution

effect from high target abundance (Arvey et al, 2010), considering

that shHBV7 sense-strand seed matches were five times more

frequent in the entire gene pool in the mouse liver. Further evidence

for TuD-mediated in vivo prevention of sense-strand off-targeting

comes from our direct comparison of gene expression between

shHBV7- and shHBV7/TuDHBV7-treated animals using CDF, show-

ing that genes with 30UTR sense-strand seed matches were

significantly more up-regulated by TuDHBV7 than genes without.

Finally, reduced toxicity and off-target activity are further reflected

by the 126 dysregulated genes in our shHBV7-only mouse cohort,

versus one or none in all other groups including TuD-treated

animals. The number of 126 presumed off-targets is highly reminis-

cent of results by Maczuga et al (2014) who described 106 dysregu-

lated genes in mice treated with an AAV/shRNA vector, indicating

this may be a typical range in vivo. Still, for reasons explained in

detail in the Appendix Supplementary Discussion, one should exert

caution when interpreting such complex in vivo data and assigning

genes as direct off-targets.

In conclusion, we have identified a new AAV-based RNAi expres-

sion strategy that provides better in vivo potency, specificity and

safety of HBV inhibition than traditional shRNA vectors, making it

an interesting candidate for continued development towards clinical

application. Particularly encouraging is the exceptional overall

safety profile of AAV vectors in humans that was observed in over

100 clinical trials thus far, including numerous applications of dif-

ferent viral serotypes in the liver (Manno et al, 2006; Nathwani

et al, 2011, 2014; D’Avola et al, 2016). In line with this, the first

gene therapy product approved in the Western hemisphere, Glybera,

is based on recombinant AAV vectors of serotype 1 (Salmon et al,

2014). Also important to note is that a recent report of a possible

association of AAV with liver cancer (Nault et al, 2015) is irrelevant

for the use of AAV vectors, since the specific viral sequences that

were found to be integrated in the cancerous tissue are absent in

AAV vectors. Moreover, the data and conclusions in this report have

come under intense scrutiny within the gene therapy community

(Berns et al, 2015; Buning & Schmidt, 2015). Further encouraging

with respect to clinical translation of our strategy is that the vector

doses we applied here in mice—1 × 1011 particles per animal, corre-

sponding to 5 × 1012 particles per kg—are well within the range of

doses that have already been used for liver gene transfer in humans,

such as 2 × 1012, 3 × 1012 or 1.8 × 1013 AAV particles per kg

(Nathwani et al, 2011, 2014; D’Avola et al, 2016; High & Anguela,

2016). Notably, these trials have also provided clear evidence that a

single AAV vector dose can suffice to mediate stable transgene

expression in the human liver for at least 4 years, in the absence of

severe adverse events (High & Anguela, 2016). In addition, we can

readily foresee that required vector doses in humans will further

drop as an increasing number of superior—more efficient and more

specific—AAV capsids are molecularly evolved in liver cells and

may enter the clinic, such as AAV-DJ (Grimm et al, 2008) or AAV-

LK03 (Lisowski et al, 2014). Of note, such synthetic AAV capsids

can also be selected for low cross-reactivity with neutralising anti-

bodies against natural AAV serotypes, thus permitting vector re-

administration in case the effect of a single dose may wane (Grimm &

Zolotukhin, 2015).

Concurrently, we are optimistic that stable over-expression of

Ago-2 or of TuDs should be well tolerated in humans. Their safety

is implied by the sum of data in the present work and in previous

literature, including reports by us and others that Ago-2 can be

persistently expressed in mammalian cells and mouse livers, with-

out inducing abnormalities or gross pathologies (Diederichs et al,

2008; Grimm et al, 2010; Borner et al, 2013). Likewise, we found

no evidence in the current study for adverse in vivo effects despite

a 3-month over-expression of Ago-2, based on normal ALT levels,

gains in body weight as expected as well as normal liver histology.
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While we are similarly hopeful that TuD expression will be toler-

ated and safe in humans, we wish to point out that TuDs, in prin-

ciple, may interfere with nuclear export of cellular miRNAs. This

is because of their hairpin structure with a 30 overhang, which

makes them substrates for the nucleocytoplasmic transporter

Exportin-5 (Bak et al, 2013) that is also used by miRNAs. It is

further possible that long-term and high-level expression of Ago-2

may eventually dysregulate the processing and/or activity of

endogenous Ago-2-dependent small RNAs. We thus consider it

mandatory for follow-up work to thoroughly investigate the poten-

tial sequelae of persistent Ago-2/TuD expression, including global

small RNA profiling in treated mouse livers, as further important

pre-clinical steps towards the clinical evaluation of our novel

concepts in HBV patients. This future work should also comprise a

transfer of our vectors and strategies to alternative animal models,

such as the hepadnavirus-infected woodchuck or mice with

“humanised” livers, that will allow to study the impact of our

vectors on HBV cccDNA persistence and ideally also on HBV-

specific immunity and carcinogenesis.

Finally of note, the high versatility and easy customisation for

any shRNA of interest renders our concept highly intriguing not

only for improvement of HBV therapeutics. Instead, our recent cell

culture data already imply its great potential to also enhance vector-

based RNAi strategies against HCV (Mockenhaupt et al, 2015), and

we can readily envision similar uses to advance treatment options

for numerous other infectious or genetic diseases of the liver and

further organs.

Materials and Methods

Plasmids

The plasmids expressing shRNAs shHBV4 to 7 that were used in the

cell culture studies were cloned by direct insertion of the respective

shRNA-encoding oligonucleotides (Appendix Table S5) into a self-

complementary AAV vector plasmid previously reported by us

(Grimm et al, 2006), containing an H1 promoter followed by two

BbsI sites for oligonucleotide insertion as well as an RSV promoter-

driven gfp reporter. For in vivo studies, we eliminated this reporter

cassette to avoid artefacts from promoter interference and possible

toxicities from the expressed GFP protein. We therefore replaced the

RSV promoter in one of our existing plasmids (encoding a 19-mer

shRNA against human alpha-1-antitrypsin, a1AT) (Grimm et al,

2006) with a SV40 polyadenylation signal that we PCR-amplified

from the psiCheck2 vector (Promega, Mannheim, Germany) and

cloned using SalI/BamHI sites, resulting in plasmid pBS-H1-sha1AT.
Next, we exchanged the H1-sha1AT cassette with a PCR-amplified

H1-shHBV7 fragment using AscI/XhoI sites, to obtain an anti-HBV

shRNA vector lacking the RSV-gfp reporter. An empty control vector

not encoding any transcript was generated by replacing the

H1-sha1AT cassette with the bovine growth hormone polyadenyla-

tion (bGH/polyA) signal, likewise via AscI/XhoI digestion.

The single-stranded AAV vector plasmid pSSV9-H1-shHBV7-TTR-

Ago2 was produced in two steps, by (i) exchanging the CMV

promoter in our previously published vector (Grimm et al, 2010)

with a PCR-amplified TTR promoter fragment (via SpeI/SacI) and by

(ii) inserting the PCR-amplified H1-shHBV7 cassette (via AscI/XhoI).

The pri-miHBV7-encoding fragment was produced by overlap-exten-

sion PCR, using primers a/b and c/d (Appendix Table S5) in two

separate PCRs and by performing a third PCR using primers a/d and

a mixture of the products from the first two PCRs. The final product

was then inserted behind the TTR promoter in a double-stranded

AAV vector plasmid using NheI/XhoI sites.

TuDs were produced by running a PCR with the respective

oligonucleotides (without further template) and insertion of the PCR

product into an empty U6-TuD expression vector (Mockenhaupt

et al, 2015) using unique BsmBI sites. The H1-shRNA expression

cassette was exchanged with H1-sha1AT/shHBV7 using AscI and

XhoI. For in vitro validation of TuDHBV7, oligonucleotides contain-

ing binding sites (Appendix Table S5) for the shHBV7 sense or anti-

sense strand were inserted into the psiCheck2 plasmid using

XhoI/NotI sites in the 30UTR of the Renilla reporter. Plasmids pCH-

HBV1.3 and pCH-9-3091 used in the HBV cell culture studies both

express HBV wild-type genotype D. Plasmid pCH-HBV1.3 contains a

1.3-fold over-length HBV genome, whereas the one in pCH-9-3091 is

1.1-fold over-length.

Cell culture experiments

All cell culture experiments except those conducted for subsequent

Southern blot analyses (see below) were performed with Huh7 cells.

Mycoplasma contamination was excluded for all cell lines. Huh7

cells were grown in DMEM medium supplemented with 10% foetal

bovine serum, 50 U/ml penicillin/streptomycin, 2 mM L-glutamine,

1% sodium pyruvate and 1% MEM non-essential amino acids (all

Life Technologies, Carlsbad, CA, USA) and kept at 37°C in humidi-

fied incubators at 5% CO2. For the shRNA selection and comparison

of different shRNA expression strategies, Huh7 cells were grown in

24-well plates and co-transfected (three wells per group) with pCH-

HBV1.3 and the shRNA expression plasmid using Fugene HD

(Promega, Mannheim, Germany). Instead of pCH-HBV1.3, plasmid

pCH-9-3091 was used in experiments aimed at measuring HBV DNA

in the cell culture supernatant (Figs 2B and 4B). For the Southern

blot experiments in Figs 2D and 4D, HepG2 cells grown in 6-well

cell culture dishes were transfected with the same protocol. One day

after transfection, the cells were washed with PBS, supplied with

fresh media containing 2.5% DMSO and harvested after additional

72 h. For the shRNA screen, 183 ng of both HBV- and shRNA-

expressing plasmids was co-transfected per well. For a fair compar-

ison of the different shHBV7 expression strategies, the transfected

DNA amount was adjusted to the molecular weight of the respective

plasmid in order to deliver equal numbers. After 48 h, supernatants

were collected and centrifuged at 5,000 g for 5 min, before HBV

antigen levels were determined using the HBsAg quantitative test

and the HBeAg test on Architect (Abbott Laboratories, Abbott Park,

Illinois, USA). To analyse HBV DNA in supernatant, a DNA digest

was performed to remove plasmid DNA by adding 20 U/ml DNase I

(Roche Diagnostics, Mannheim, Germany). After incubation at 37°C

for 2 h, the reaction was stopped by adding EDTA to a final concen-

tration of 8 mM before nucleic acid was extracted as described

below.

For in vitro validation of TuDHBV7, activities of the shHBV7

sense and antisense strands were measured using the dual-luciferase

reporter psiCheck2 (Promega) engineered to contain binding sites

for one of the two shRNA strands. Therefore, Huh7 cells grown in
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96-well plates were co-transfected with 10 ng of psiCheck2 and

100 ng of the plasmids expressing shRNA and TuD. Cells were

harvested 48 h after transfection into lysis buffer supplied in the

Dual-Glo luciferase kit according to the manufacturer’s protocol

(Promega), and Renilla and Firefly luciferase activities were quanti-

fied using a GloMax96 microplate luminometer (Promega). Relative

knock-downs were determined by using the group co-transfected

with the luciferase reporter without binding site and the sha1AT/
TuDa1AT plasmid as reference.

AAV vector production

AAV vectors were produced using a standard protocol involving

triple transfection of 293T cells with equal amounts of an AAV8

helper plasmid (encoding AAV2 rep and AAV8 cap genes), an AAV

vector plasmid (encoding the transgene[s]) and an adenoviral helper

construct (Grimm, 2002). The AAV vector plasmids were either

based on an optimised self-complementary AAV vector genome that

we reported before (Grimm et al, 2006) or, for co-expression of

shHBV7 and Ago-2, the conventional pSSV9 construct whose pack-

aging results in single-stranded DNA-containing AAV particles

(Samulski et al, 1987). Vectors were produced as described previ-

ously (Borner et al, 2013) and purified using a caesium chloride

ultracentrifugation gradient. Briefly, after removal of high molecular

weight impurities (addition of 1/39 volume of 1 M CaCl2, incubation

for 1 h on ice, centrifugation at 10,000 g for 15 min and transfer of

supernatant) and PEG precipitation of AAVs (addition of 1/4 volume

of 40% PEG8000/2.5 M NaCl, overnight incubation on ice and

centrifugation at 2,500 g and 4°C for 30 min), the AAV-containing

pellet was resuspended in 10 ml Na-Hepes resuspension buffer

(50 mM HEPES, 0.15 M NaCl, 25 mM EDTA). After adding 13.2 g

caesium chloride and adjusting the optical density (refractive index,

RI) to 1.3710 using a refractometer, ultracentrifugation was

performed for 22 h at 208,000 g (Type Ti 70 rotor, Optima L 90 K

ultracentrifuge; both Beckman Coulter, Krefeld, Germany) and 21°C.

Fractions with RIs of 1.3711–1.3766 were collected and dialysed

against phosphate-buffered saline (overnight at 4°C, four times

exchange of PBS) using a Slide-A-Lyzer G2 dialysis cassette with a

20K molecular weight cut-off (Thermo Fisher Scientific Inc., Rock-

ford, IL, USA). AAV vectors were quantified by TaqMan PCR on a

Rotor-Gene 6000 (Qiagen, Hilden, Germany) using the Sensimix II

Probe kit Mastermix (Bioline, London, UK). All reactions were

performed in triplicates in a 10 ll final volume. To ensure equal

quantification of AAV vectors using eGFP and TTR primers

(Appendix Table S5), the same plasmid standard as well as the same

AAV positive control (each containing the eGFP and TTR

sequences) was used in both assays.

Mouse experiments

HBV-transgenic mice used in this study (HBV1.3.32) express replica-

tion-competent wild-type HBV genotype D (Guidotti et al, 1995).

Animals were maintained according to the guidelines of local

authorities (Government of Upper Bavaria, Germany), and all exper-

iments were approved by them. AAV vectors or 0.9% saline for the

mock controls were injected intravenously into the tail vein, and

blood was collected via retroorbital or facial vein bleeding. Upon

termination of the experiment, mice were euthanised using carbon

dioxide, and blood and organs were dissected for further analysis.

Blood was centrifuged at 5,000 g for 10 min, and serum ALT

activity was measured in a 1:4 dilution in PBS using the Reflotron

GPT/ALT test (Roche Diagnostics). HBsAg was measured in a 1:30

dilution in PBS using the HBsAg quantitative test on Architect and

HBeAg in a 1:20 dilution in PBS using the HBe 2.0 test on Axsym

(both from Abbott Laboratories). For pathohistological analysis,

sections (2 lm) of livers (fixed in 4% paraformaldehyde and

paraffin-embedded) were stained with haematoxylin/eosin. For

analysis, slides were scanned using a SCN 400 slide scanner (Leica).

Animal inclusion criteria and cohort assignments

Only male mice from 2 to 4 months of age were used in this study.

Statistical advice was obtained in which the study was defined as

exploratory orientation study, and six animals per group were

deemed sufficient in order to gain reliable estimates of quantitative

effect sizes. Animals were bled 1 day before treatment and allocated

into groups with equal HBsAg, HBeAg, age and body weight. Treat-

ment groups were not blinded.

Nucleic acid extraction, PCR and Southern blot analysis

RNA from cultured cells was extracted with the MN Nucleo Spin

RNA kit (Macherey Nagel, Duren, Germany), and cDNA synthesised

with the Superscript III kit (Thermo Fisher Scientific). HBV

transcripts were amplified with primers specific for only the 3.5-kb

transcripts, or with primers binding to the common 30 end of all

HBV transcripts (Yan et al, 2012). Beta-2-microglobulin (B2M) was

used as reference gene for cell culture experiments. To measure

HBV DNA in cell culture supernatants, DNA was extracted from

400 ll supernatant using the Abbott mSample Preparation System

DNA on the M24SP machine (both Abbott). The PCR was

performed with primers “HBV rcDNA selective” which preferen-

tially amplify the HBV rcDNA rather than the 1.1-fold over-length

HBV genome in the pCH-9-3091 plasmid. All PCRs were performed

on a LightCycler 480 (Roche Diagnostics) using the primers and

PCR conditions shown in Appendix Table S5. For the Southern blot

analyses, cells were lysed and treated with DNase I and RNase A

for 3 h at 37°C. Cytoplasmic capsids were precipitated with

polyethylene glycol (PEG8000) and digested using sodium dodecyl

sulphate and proteinase K. After 3-h incubation at 37°C, capsid-

associated DNA was purified by phenol–chloroform extraction,

followed by ethanol precipitation. Viral DNA was separated on a

1.3% agarose gel, transferred to a nylon membrane and UV cross-

linked. The membrane was then hybridised with digoxigenin-

labelled HBV-specific probe at 65°C overnight, and HBV DNA was

visualised using the DIG Luminescent Detection kit according to the

manufacturer’s instructions (Roche).

Transcriptome analysis

Isolated liver pieces were conserved in RNAlater (Qiagen) and then

lysed using TissueLyser LT (Qiagen), before whole RNA was

extracted using the miRNeasy kit including on-column DNA digest

with the RNase-Free DNase set (both Qiagen). After assessing the

RNA quality using a Bioanalyzer 2100 (Agilent, Santa Clara, CA,

USA), cDNA was generated from four mice per treatment group
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using the Ambion WT Expression kit (Life Technologies, Carlsbad,

CA, USA). The cDNAs were fragmented and labelled with the Affy-

metrix GeneChip WT Terminal Labeling Kit before running them on

GeneChip Mouse Gene 2.0 St Arrays (Affymetrix, Santa Clara, CA,

USA).

Statistical analyses

Microarray data were analysed in the “R” software environment

(http://cran.r-project.org) using the Limma (Smyth, 2005) and the

oligo package (Carvalho & Irizarry, 2010) from Bioconductor

(http://bioconductor.org). Raw expression measurements have

been quantile-normalised and background-corrected using the RMA

background correction. A fixed-effects linear model was fit for each

individual gene to estimate pairwise expression differences. Using

a principal component analysis and pairwise Pearson correlation

coefficients for quality control of overall performance of the arrays,

four samples were found to show different expression levels than

the remaining arrays. Thus, they were excluded from further analy-

sis as outlined in the metadata table of the Gene Expression

Omnibus database file (accession number is given below). Empiri-

cal Bayes approach was used to moderate the standard errors of

the normalised log2 fold changes. Two-sided moderated paired

t-statistics and log-odds of differential expression (B statistics) as

well as raw and adjusted P-values (false discovery rate) controlled

by Benjamini–Hochberg were computed to identify differentially

expressed genes. The absolute log2 fold change > 1 and a corrected

P-value smaller than the testing level (alpha) of 0.25 were defined

as significantly differentially expressed genes. The microarray data

are available in the Gene Expression Omnibus database (GEO

accession number GSE72335; http://www.ncbi.nlm.nih.gov/geo/

query/acc.cgi?acc=GSE72335).

Data of mouse and cell culture experiments were tested with

D’Agostino-Pearson omnibus test for Gaussian distribution. If data

were not normally distributed, Mann–Whitney test was used to test

for significant differences. F-test was used to test whether variances

of groups were similar. If variances were found to differ signifi-

cantly, t-test with Welch0s correction was used.

Seed match analysis

30UTR and whole transcript sequences of all genes represented on

the microarray for which an Ensembl ID was available were

downloaded from www.ensembl.org/biomart and screened for

2- to 7-nt seed matches of the shHBV7 sense and antisense strand.

In cases where several variants per gene existed, the transcript with

the highest number of seed matches was chosen. Genes with several

seed matches were counted only once, and genes which were repre-

sented on the array more than once were excluded from the analysis

to prevent bias. To compare relative gene expression of genes

depending on 30UTR shHBV7 seed matches (Fig 6D), gene expres-

sion was normalised to all genes for which a 30UTR seed match

analysis was available. Statistical analysis was performed with

unpaired t-test using Welch’s correction if applicable. We computed

the cumulative distribution function (CDF) to directly compare gene

expression depending on the presence of shHBV7 seed matches

between shHBV7 and shHBV/TuDHBV7 treated animals. For this,

the relative expression of genes with a 30UTR seed match was tested

for significant difference against the relative expression of genes

without a seed match. A two-sample, two-sided Welch’s t-test was

used and an alpha level of 0.05.

Pathway analysis

Pathway enrichment of the genes identified to be significant was

obtained by querying the DAVID database (Jiao et al, 2012) for GO

BP/5, GO BP/FAT and KEGG, Reactome, BBID, BioCarta and

Panther pathway annotation using the R-package RDAVIDWebSer-

vice (Fresno & Fernandez, 2013). If identical annotation terms were

returned for GO BP/5 and GO BP/FAT, only the one with the lowest

EASE P-value was retained (Appendix Table S4).

Target conservation

To analyse conservation of targeted HBV regions, reverse comple-

ments of shRNA antisense strands were aligned with representative

The paper explained

Problem
Hepatitis B virus (HBV) is a notorious human pathogen that is present
in roughly 250 million humans and is responsible for 686,000 annual
deaths. The success of this virus is due to the limitations of standard-
of-care antiviral therapy, including the need for daily and lifelong
application, high costs, failure to eliminate the virus or to inhibit
expression of HBV antigens, as well as risks of side effects and of
emergence of resistant HBV mutants. A possible solution is RNA inter-
ference (RNAi), a powerful tool for targeted mRNA silencing that can
be directed against cellular or foreign sequences involved in human
diseases including viral transcripts. To this end, however, clinical
translation of RNAi technologies urgently requires further improve-
ments in in vivo efficiency, specificity and safety.

Results
In this paper, we systematically evaluated three different strategies
for expression of anti-HBV short hairpin RNA (shRNA, an RNAi trigger),
using recombinant Adeno-associated virus 8 (AAV8) vectors for delivery
to livers of adult immunocompetent HBV-transgenic mice. Briefly, we
(i) embedded the shRNA in a microRNA scaffold under a liver-specific
promoter; (ii) co-expressed Argonaute-2, a rate-limiting RNAi factor; or
(iii) co-delivered a decoy (“TuD”) against the shRNA sense strand, to
alleviate off-target gene regulation. Notably, while a conventional
shRNA vector caused in vivo toxicity including weight loss, liver
damage and dysregulation of > 100 genes in the liver, the three other
strategies minimised all these adverse side effects. Best results were
obtained with the new AAV8 vector co-expressing anti-HBV shRNA
and TuD which gave the most robust and most persistent HBV knock-
down (> 98% HBsAg suppression for at least 12 weeks).

Impact
We have identified a new AAV-based RNAi expression strategy that
provides better in vivo potency, specificity and safety of HBV inhibition
than traditional shRNA vectors or than two alternative approaches.
Importantly, because our concept is highly versatile and easy to
customise, it is not restricted to HBV but instead also promising and
interesting for a large variety of other human diseases that are
vulnerable to RNAi. For instance, we have recently demonstrated its
potential to likewise enhance vector-based RNAi strategies against
hepatitis C virus, and we can readily envision its future development
towards many other clinical applications for infectious or genetic
diseases of the liver and further human tissues.
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sequences of all HBV genotypes derived from the HBV regulatory

sequence database HBV RegDB (http://hbvregdb.otago.ac.nz)

(Panjaworayan et al, 2007) using Mega version 6.06 for Mac (Tamura

et al, 2013). The phylogenetic tree of HBV sequences in Appendix Fig

S1C was generated using the neighbour-joining method in Mega.

Expanded View for this article is available online.
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