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ABSTRACT   

Optoacoustic tomography can visualize optical contrast in tissues while capitalizing on the advantages of ultrasound, 
such as high spatial resolution and fast imaging capabilities. We report herein on a novel multi-spectral optoacoustic 
tomography system capable of resolving dynamic contrast at video rate and showcase its performance by monitoring 
kidney perfusion after injection of Indocyaningreen (ICG).  
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MSOTINTRODUCTION  
 
Multispectral optoacoustic tomography (MSOT) is a fast emerging imaging method with the capacity to examine non-
invasively structural, physiological and molecular tissue-features in-vivo [1]. The technology is based on the 
photoacoustic effect, which is the generation of acoustic waves due to thermoelastic expansion of tissue arising from 
transient temperature increases due to the absorption of nanosecond laser pulses and it combines versatile optical contrast 
with high scattering-free ultrasonic resolution and is suited for real-time operation.  
Optoacoustic imaging has natural sensitivity to haemoglobin being the major absorber of light in tissue. As a 
consequence, optoacoustic imaging has been employed in the past to resolve vascular contrast changes in superficial 
tissue [2] and the brain [3]. Later, with the development of multispectral optoacoustic tomography (MSOT), imaging of 
extrinsic contrast agents such as nanoparticles, fluochromes or other chromophoeres has also been showncased [4-7].  
The majority of current small animal optoacoustic imaging systems however utilize scanning configurations that are 
typically inappropriate for real-time deep tissue small animal imaging. Some of the existing systems scan a single 
transducer [6, 8-10] around the sample, yielding long acquisition times (minutes to hours). Control of animal 
physiological parameters, motion and anesthesia during these extended measurement periods can present a significant 
challenge for obtaining high quality images. Others systems use ultrasound transducer arrays from clinical systems [11, 
12] in order to  increase the imaging speed, however commercial arrays, optimized for clinical imaging, do not have the 
geometrical arrangement and broadband frequency characteristics that would make them appropriate for optoacoustic 
small animal imaging. Additional complications may arise from the use of water coupling, which requires the animal to 
be fully or partially submerged during the measurement. Dedicated small animal optoacoustic scanners, which utilize 
high number of detection elements, have also been developed [13, 14]. One of these approaches utilizes a 512 element 
ring-shaped focused ultrasound transducer array, custom made for small animal imaging, and was successfully applied 
for anatomical imaging of cerebral blood vessels as well as for imaging of cortical hemodynamics [3, 14]. However, 
none of these approaches has been so far shown suitable for whole-body small animal visualization in real-time.  
We report herein on a new concept for a multispectral optoacoustic tomography (MSOT) scanner for whole body small 
animal imaging. The scanner utilizes a highly-sensitive concave multielement ultrasound detector array for cross-
sectional optoacoustic image formation and optimizes light energy delivery to avoid the need for data averaging. 
The design further incorporates an acoustically and optically matched membrane, which allows practical in vivo imaging 
applications without direct contact between imaged animal and matching transmission medium (water).We characterize 
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Fig. 1 (a) Schematic representation of the MSOT system. A curved array of wideband and cylindrically focused ultrasound transducers 
enables parallel data acquisition. Optical fibres are used to homogeneously illuminate the object. A special animal holder with a 
transparent plastic membrane is used for animal positioning. (b) Picture of a mouse during a scan, showing the position of the mouse 
and illumination with respect to the array of focused ultrasound transducers. 

2.2 Image reconstruction 

For the crossectional image reconstruction we employ the interpolated matrix model inversion (IMMI) method [15]  
which uses an accurate semi-analytical forward model in matrix form    
 
      Mzp =         (1)  
 
where the photoacoustic signals p and the image values z are written as column vectors  and the matrix M describing the 
geometry of the imaging system. For inversion of the forward model, we utilized the iterative LSQR algorithm [16], 
stopping after 50 iterations.  
Further, it has to be noted that the reconstructed images z do not represent a map of the absorber distribution in tissue but 
rather a map of the energy deposition, which is the product of local light fluence )(rU r

 within tissue and the 

corresponding absorption coefficient )(rµa
r

.  Since the photon fluence is heaviliy attenuated as a function of depth, 
structures deep within the tissue may appear weaker than the same structures close to the animal’s surface. Several 
techniques have been proposed to correct for this inhomogeneous illumination artifacts, including iterative approaches 
[17] and sparse signal decomposition [18]. In this work we use an analytical normalization [19]   
 

    )()( 0 rkIrUnorm =       (2) 

with a modified Bessel function 0I of the first kind. r  stands for the distance from the center of the object in the 
imaging plane and k for the order.  
 
 
2.3 Spectral unmixing 

Optoacoustic imaging is sensitive to optical absorber contrast. While some highly-concentrated intrinsic chromophores, 
such as hemoglobin or melanin, can be easily detected in single wavelength images, it becomes challenging to resolve 
other substances, such as in particular extrinsically administered optical contrast agents over hemoglobin and overall 
tissue background absorption. In this case multispectral unmixing techniques can improve the image contrast to specific 
chromphores that attain distinct spectra. Assuming that each pixel in a single wavelength optoacoustic image represents a 
combined contribution of the probe with the known molar extinction coefficient pa but unknown concentration pc and     

a set of known background absorbers with known spectra ma  and the unknown concentrations mc (m=1…M), one can 
define system of linear equations, which takes the form  

       Nncacaµ
M

m
mnmpnpna ,...,1   ,)()()(

1

=+= ∑
=

λλλ       (3) 

where   represents one of the N discrete excitation wavelengths. Using the measured absorption and the known spectra, 
this system of equations can be resolved with linear regression methods in order to reconstruct the probe’s 
biodistribution on a per pixel basis [1][5]. The approach works best when the reporter agents or a substance of interest 
have a distinct spectral signature over tissue background absorption, as shown for instance in Fig. 4.  
 
 
2.4 Spatial resolution 

The spatial resolution of the system in the imaging plane (in-plane resolution) is limited by the bandwidth and size of the 
ultrasound detection element. The resolution perpendicular to it (axial resolution) is determined by the width of the focal 
zone. To measure the spatial resolution experimentally, a 50µm large black microsphere (Cospheric, Santa Barbara, CA, 
USA) embedded in a small transparent agar cylinder and glued onto the tip of an optical fibre was scanned along a radial 
line in 1mm steps and in 100µm perpendicular to it. The optoacoustic signals were averaged 10 times to improve the 
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4. CONCLUSION 
We have developed a novel optoacoustic imaging scanner capable of real-time small animal imaging in-vivo. The system 
features optimized light energy delivery to avoid the need of data averaging for cross-sectional real-time imaging and 
provides three dimensional data sets by animal translation along its vertical axis. Further it can acquire optoacoustic data 
at multiple wavelengths for visualization of structural, functional and molecular contrast with MSOT. 
The spatial resolution of the system was measured and yielded in the image center up to 150µm in-plane and up to 
800µm in elevation. In the periphery however, there is a degradation of the in-plane resolution which due to the spatial 
impulse response of the finite size detector element. This issue however can be compensated by adequate modeling of 
the transducers and is under current research.      
Small animal imaging performance was also demonstrated by resolving in real-time mouse anatomy and kidney 
perfusion using ICG, an exogenously introduced blood-pool agent. Images produced were congruent with corresponding 
photographs of the mouse anatomy, based on cryoslices obtained from the same animal imaged with MSOT. Spectral 
unmixing further demonstrated the ability of the system to visualize externally administered contrast based on its unique 
spectral signature without using background measurements made prior to the probe administration.  
In conclusion, the system combines the abilities to image morphological, molecular and functional information in small 
animals, in and easy to handle and reproducible way and therefore becomes a promising tool for biomedical research. 
In the future the system will be used to image other organs and body parts.   
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