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ABSTRACT   

Obtaining quantified optoacoustic reconstructions is an important and longstanding challenge, mainly caused by the 
complex heterogeneous structure of biological tissues as well as the lack of accurate and robust reconstruction 
algorithms. The recently introduced model-based inversion approaches were shown to eliminate some of reconstruction 
artifacts associated with the commonly used back-projection schemes, while providing an excellent platform for 
obtaining quantified maps of optical energy deposition in experimental configurations of various complexity. In this 
work, we introduce a weighted model-based approach, capable of overcoming reconstruction challenges caused by per-
projection variations of object’s illumination and other partial illumination effects. The universal weighting procedure is 
equally shown to reduce reconstruction artifacts associated with other experimental imperfections, such as non-uniform 
transducer sensitivity fields. Significant improvements in image fidelity and quantification are showcased both 
numerically and experimentally on tissue phantoms. 
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1. INTRODUCTION  
Optoacoustic tomography (OAT) is a fast evolving non-invasive imaging method for high resolution mapping of optical 
absorption in tissues 1-4. The imaging is performed by illuminating the object or region of interest with a short high-
power laser pulses, thus creating an instantaneous temperature elevation and thermal expansion within it. The resulting 
broadband ultrasonic waves (typically in the 0.1–10 MHz range) carry information on the underlining optical absorption 
coefficient variations, local light fluence, and thermoelastic properties of the object. By tomographically collecting 
optoacoustic responses around the object and using optoacoustic inversion algorithms 2, 5-7 one can reconstruct an image 
representing local laser energy deposition within the object.  
 
In contrast to conventional ultrasound imaging, attaining relatively low contrast between different soft tissues, 
optoacoustic tomography visualizes the optical contrast, which is significantly richer in distinguishing different tissues 
and biomarkers, including oxygenated and deoxygenated forms of hemoglobin or endogenously or extrinsically 
administered absorbers. Additionally, due to weak scattering of ultrasonic waves in biological tissues, the resolution is 
similar to that achieved with ultra-sonography i.e. it can reach 20- 200 microns depending on the penetration depth and 
corresponding frequency spectrum used. By combining therefore optical contrast with ultrasonic diffraction-limited 
resolution optoacoustics holds a great promise for future biomedical applications. Besides intrinsic measurements of 
morphology and disease-related vascular changes 8-10, various contrast media approaches have been also developed for 
enhancement of detection sensitivity and specificity of the method, including dyes 11, light-absorbing nano-particles 12, 
and chromogenic substrates 13. More recently, by applying illumination at several optical wavelengths, multispectral 
optoacoustic tomography (MSOT) was able to resolve distribution of fluorescent molecular agents 14 and fluorescent 
proteins 15 with both high sensitivity and spatial resolution in optically opaque organisms and tissues. 
 
OAT reconstructions are usually very sensitive to various instrumentation and configuration-related parameters, such as 
the shape of object’s illumination, transducer layout, its frequency response and sensitivity fields, as well as laser source 
stability. Many approximated inversion schemes, including the commonly used back-projection algorithms 7, are not 
suitable for accurately describing the optoacoustic tomographic problem. If these deviations become substantial, 
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unquantified or generally erroneous reconstructions may arise. It was shown that variety of configuration-related 
parameters could be taken into account when using exact model-based reconstruction schemes 16 . With the recent 
introduction of numerically efficient interpolated-model-matrix inversion (IMMI) 5, these methods are no longer afflicted 
with long computation times.   
 
When considering the effects of object illumination, optoacoustic image quality and quantification abilities normally 
depend on homogeneity and uniformity of excitation light distribution. This is especially important in cases of varying 
illumination, e.g. when the imaged object is rotated with respect to both illumination and ultrasound detection elements 
17. In an ideal optoacoustic tomography scenario, the imaged region shall be illuminated as uniformly as possible, which 
can be achieved by e.g. expanding the laser beam to an appropriate width to cover the entire object. However, this 
solution is only suitable if the laser power is strong enough so that an appropriate signal-to-noise (SNR) ratio can be 
attained after beam widening. Yet, even if the laser power is too weak for these optimal illumination conditions, the 
object can still be imaged by partially illuminating it. Overall, in many realistic imaging cases, where large parts of the 
object are not accessible for light or its geometry is not suitable for uniform illumination, a sub-optimal partial 
illumination arrangement is the only method to actually perform optoacoustic imaging at the expense of reduced 
tomographic quality of the data. Similar issues are arising regarding the sensitivity fields of the transducers used for 
optoacoustic detection. These are generally not homogenous and have strong dependence not only on the distance from 
the detector but also on the detection angle 18.  
 
Herein we present a weighted model-based reconstruction algorithm, which is based on integrating an approximated 
light-fluence model in the optoacoustic forward model by weighting the elements in the model matrix. Our main focus 
here is on light-related reconstruction effects, however, the proposed method can equally be used in other scenarios, e.g. 
for spatially dependant sensitivity which varies for different positions of the acoustic detector. Improvements in the 
image fidelity and quantification are demonstrated based on both numerical simulations and experiments using realistic 
tissue-mimicking phantoms and mice. 
 

2. BACKGROUND 
It has been previously shown that model-based reconstruction approach can be readily generalized to include linear 
effects that characterize the optoacoustic imaging system. Specifically, in Ref 5 the frequency response of the detector 
was taken into account by assuming it did not vary significantly within the imaged region. Thus, in that generalization, 
the sensitivity of the detector to each point in the imaged object was assumed to be the same. While this first order 
approximation yielded good initial results, in many scenarios the spatial variations in object’s illumination and detection 
sensitivity are too large to be neglected, thus requiring additional modeling. 
 
A typical example of imaging configuration, in which modeling the spatially-dependant sensitivity is crucial, occurs 
when the illumination differs for each projection 19 (Fig. 1a). While uniform illumination is considered to be the best 
theoretical choice, it might not be practical due to technical constraints. For instance, if the laser power is not sufficiently 
strong, expanding the beam to allow uniform illumination of the imaged object will decrease the beam's intensity, readily 
resulting in lower SNR, reduced image quality or significantly prolonged reconstruction times due to signal averaging. 
Since in many practical cases not all of the generated optoacoustic fields are detected simultaneously, the SNR can be 
significantly improved by illuminating only the parts of the object that are best detected in each particular projection of 
the imaging geometry. 
 
Similar considerations apply to the ultrasonic detection part. Spatial dependence is a common attribute of conventional 
acoustic transducers used for optoacoustic detection. Generally, the dependence is not only upon the distance from the 
detector but also on the detection angle 18. This dependence can be mitigated by placing the transducer farther from the 
sample, however, such a solution comes on the expense of SNR. Thus, similarly to the case of non-uniform illumination, 
there is a tradeoff between uniform sensitivity and maximum sensitivity, which might result in a limited view acoustic 
detection scenario (Fig. 1b). 
 
In some cases, incomplete tomographic data is obtained due to both partial illumination and limited-view or focused 
acoustic detection. A typical example is the dark-field photoacoustic microscopy (PAM) 20 where both illumination and 
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sound detection are confined to a relatively small focal region, which is also translated along the object’s surface in order 
to capture three-dimensional image data (Fig. 1c). 
 

 

Figure 1: Optoacoustic imaging configurations with partial or variable tomographic data. (a) Circular scanning with narrow laser beam 
and a rotating object. Illumination and detector are static; (b) Circular scanning with ultrasonic detector having limited angular view. 
The imaged object and illumination are static; (c) Optoacoustic microscopy (B-mode) imaging with confocal illumination-detection 
geometry and linear translation. 
 
An additional spatially-dependent effect is acoustic attenuation. Because acoustic attenuation depends on the distance of 
the source from the detector, its effect may be different for different regions in the imaged specimen. This effect may 
become significant in imaging relatively large animal such as mice and when imaging fatty tissue, which has a relatively 
high attenuation coefficient 21. 
 

3. THEORY 
The optoacoustic effect involves the creation of acoustic waves in an optically opaque medium originating from 
instantaneous thermal expansion induced by the absorption of short light pulses in the medium 3. Optoacoustic 
tomography (OAT) maps the optical absorption of tissue by illuminating its surface and measuring the emitted 
optoacoustic responses in a tomographic setup. Typical light pulses used in OAT have durations below 10ns, which 
fulfill both thermal and stress confinement condition thus are sufficiently short to be approximated by a temporal delta 
function. In this case, under the assumption of an acoustically homogeneous medium, the pressure field distribution at 
any given location and time can be expressed via Poisson-type integral 5  
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where c and Γ  are velocity of sound and Grüneisen parameter of tissue, Hr  represents spatial distribution of the 
absorbed energy within the imaged object. The integration in Eq. 1 is performed over a sphere in the three-dimensional 
case and over a circle in the two-dimensional case, both having a radius of ctrrR =−= ' .  
 
Inverting the relation in Eq. 1 can yield Hr(r) within the imaged object from the acoustic fields measured at a discrete set 
of points {rk}. The inversion can be performed using analytical solutions, such as back-projection algorithms, or model-
based solutions, which are based on direct numerical solutions to Eq. 1. In Ref. 5, Eq. 1 was solved by applying linear 
interpolation to Hr(r) and performing the integral analytically. This leads to a discretization of Eq. 1, given by the 
following matrix relation  
 

zp kk M= ,                             (2) 
 
Where pk is a column vector representing the acoustic fields measured at a position (projection) kr (k=1…K), for a set of 

times }{ it  (i=1…I): ),( ik
k
i trpp = ; z is a column vector representing the values of the optoacoustic image on the 

grid )( jj rHz =  (j=1:…J); and Mk is the acoustic forward-model matrix for a detector at kr . 
 
The set of K matrix equations given in Eq. 2, can be written as a single matrix equation by stacking the vectors and 
matrices. This leads to the following matrix relation: 
 

zp M= ,                     (3) 
 

where  tt
k

tt pppp ],...,,[ 21= and tt
k

tt ],...,,[ 21 MMMM = , where t denotes the transpose operation. 
 
In order to obtain the optoacoustic image, Eq. 3 needs to be inverted. Two common methods are the Moore-Penrose 
pseudo-inverse 22 and the LSQR (least squares QR decomposition) algorithm 23 .The pseudo-inverse of M is given by 
 
    1( ) ,H H+ −=M M M M                                  (4) 

 
After the pseudo-inverse is calculated, the reconstructed optoacoustic image can then be readily obtained: 
 

pz +=M ,          (5) 
 
The main advantage of using the pseudo-inverse is that it needs to be calculated for a given system only once. Thus, if 
the pseudo-inverse is pre-calculated, the inversion can be performed in real time.  
 
LSQR is an iterative algorithm for solving linear equations 23. Analytically, LSQR is identical to the conjugate gradient 
method. However, numerically LSQR was found to be more stable. The main advantage of LSQR is its high efficiency 
in the case of sparse matrices. In addition, the operation performed in LSQR require saving only the non-zero elements 
of the matrix in memory, thus mitigating memory requirements. Since the model matrix M is sparse 5, LSQR is an 
extremely efficient method for inverting Eq. 3 when the number of grid points is high.  
 
The function Hr(r) represents the total amount of optical energy transferred to the imaged object from a single light pulse 
at a point r, and is given by  
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where  μa(r) is the absorption coefficient and U (r)  is the light fluence. To model the light fluence, we assumed diffusion 
approximation to light transport equation 24, i.e.  
 

0( ) ( ) ( ) ( )aD r U r r U r qμ−∇ ∇ + =
r r r r

,     (7) 
 

where D = 1/[3(μs’+μa)] is the spatially dependent diffusion coefficient of the medium, U is the light intensity, μa is the 
optical absorption coefficient, μs’ is the reduced scattering coefficient and q0 is the source term. When the exterior 
medium is non-scattering, the behavior of U (r) on the interface is given by the Robin boundary condition 25: 
 

( ) ( ) ( ) Ω∂∈=⋅∇⋅+ rrUrDrU rrrr 0ˆ2 n      (8) 
 
where ∂Ω  is the boundary of the object and n̂  is a unit vector normal to ∂Ω  and pointing outwards. Clearly, for 
heterogeneous media, solutions for Eq. (8) can only be obtained numerically. In our work, we used a finite volume 
method (FVM) solution approach 26. 
 
When the spatially-dependant sensitivity of the detection is known, it can be incorporated into the model matrix of IMMI 
by weighting its elements. Denoting the weight function by Wk(r), the weighted model-matrix elements are given by 
 

( )k k k
ij j ijW rΜ = Μ

( (
,                           (9) 

 
where  are the location of the grid points. The matrices kΜ

(
 (k=1…K) can be used to construct the total weighted 

matrix 1 2[ , ,..., ]KΜ = Μ Μ Μ
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. The forward matrix M from Eq. (4) is then replaced with the weighted matrix Μ
(

  
and inverted by using either the Moore-Penrose pseudo-inverse equation (Eq. 4) or the LSQR algorithm. 
 
In the case in which the illumination changes as a function of the position of the acoustic detector 19 (Fig. 1a), the 
weighting function can be numerically calculated. The optoacoustic image for the k-th position of the detector 
(projection) is given by 
 

Hk (r)=µa(r)Uk(r),                            (10) 
 
The optoacoustic image for each value of k can be presented as a function of the image in the case of uniform 
illumination: 
 

Hk (r)=H(r)Wk(r),                            (11) 
 
where the weight function Wk(r) is given by Wk (r)= Uk(r)/ U(r). In order to calculate Wk(r), the light diffusion equation 
needs to be calculated twice: once for uniform illumination and once for the specific illumination pattern of the k-th 
projection. While the exact fluence pattern can only be calculated if the absorption and scattering coefficients are known, 
it can be approximated by using typical values for these coefficients. The approximation can be subsequently improved 
by using the reconstructed optoacoustic image to get a better estimate for the absorption coefficient and calculate Wk(r) 
in iterations 24. 

4. NUMERICAL EXPERIMENTS 
In this section we numerically demonstrate the proposed reconstruction algorithm for the partial illumination 

configuration, shown in Fig. 1a. All the inversion algorithms were implemented in Matlab (Mathworks Inc., Natick, 
MA), and executed on an Intel® Core™2 Quad Processor CPU operating at 2.67GHz with 4 Gbyte of RAM. All the 
model-based reconstructions were obtained using LSQR for inversion.  
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We numerically tested our correction algorithm for a round tissue-mimicking phantom containing two square 

inclusions with higher absorption compared to the background. The bulk of the phantom was assigned an absorption 
coefficient of µa=0.2cm-1, whereas the top and bottom insertions had absorption coefficients of 0.6 cm-1, and 0.4 cm-1, 
respectively. The scattering coefficient was chosen to be constant and had the value of 10 cm-1. Figures 2a and 2b show 
the reconstructions obtained using standard IMMI 5 and the back-projection algorithm 7 assuming constant and uniform 
surface illumination and circular detection geometry with 180 projections. As expected, the model-based approach 
achieves an almost exact reconstruction, whereas the back-projection algorithm suffers from negative artifacts and does 
not correctly capture the effect of light attenuation, making the image non-quantitative.  

 

 

Figure 2: Reconstructions of numerical tissue-mimicking phantom for the homogeneous illumination case with (a) 
model-based (b) light propagation model used in the simulated partial illumination case for weighting and 
correction; (c) standard model-based reconstruction with partial illumination; (d) image corrected for partial 
illumination using the weighted model-based approach. 

 
The non-uniform illumination was simulated using two beams coming at angles of 20° and 200° relative to the 

detector, and having widths of 0.75cm and 1 cm, respectively (Fig. 1a). We simulated the light beams and detector to 
encircle the imaged object with 2° increments to acquire a full optoacoustic tomographic data set.  Figure 2b shows the 
light fluence for the projection in which the detector is positioned as in Fig. 1a (3 o'clock orientation). Clearly, over half 
the phantom's boundary is not illuminated. The reconstructions obtained using standard IMMI is shown in Fig. 2c, 
respectively. The accuracy of the model-based reconstruction significantly deteriorates as compared to Fig. 2a with loss 
of contrast and blurring artifacts.  

 
In order to correct for the non-uniform illumination, the fluence ought to be approximated for both the non-uniform 

and uniform illumination geometries. Since the exact map of optical absorption distribution is not a priori known in 
optoacoustic experiments, the light diffusion equation was solved for a phantom with estimated background absorption 
and scattering coefficients: µa=0.2cm-1, µs’=10cm-1. The illumination profile, which can be measured experimentally, 
was modeled exactly according to the one used to generate the optoacoustic data. The approximated fluences were used 
to calculate weight function Wk(r), which was incorporated into the model using Eqs. 9-11. The reconstruction obtained 
using weighted IMMI is shown in Fig. 2d. Despite the rough estimation of the optical properties used for modeling of 
light propagation, the corrected image shows a significant improvement in the reconstruction quality, which is 
comparable to the one obtained for uniform illumination (Fig. 2a).      
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5. EXPERIMENTAL VALIDATION 
In addition to the numerical demonstration, we have experimentally verified performance of the weighted inversion 

method on tissue mimicking phantoms. The measurements were performed in a tomographic continuous acquisition 
scanner 19. Briefly, a tunable optical parametric oscillator laser (MOPO-710, Spectra-Physics, Mountain View, CA, 
USA), providing < 8 nsec duration pulses with 15 Hz repetition frequency in the visible spectrum (450–680 nm), was 
used in order to illuminate the sample under investigation. In all our experiments, we used a wavelength 650 nm which 
yielded an average power of approximately 450 mW. In ideal illumination conditions, the laser’s beam was expanded to 
about 2 cm and split into two beams, thus creating a nearly uniform light pattern around the object. Subsequently, the 
beam size was reduced with focusing lenses to 0.8 cm in order to simulate the partial illumination scenario (Fig. 1a). A 
cylindrically focused transducer (Model V382, Panametrics-NDT, Waltam, MA), was used to record the optoacoustic 
signals emitted by the sample within the imaging plane. For collection of the signals over 360° projections, the samples 
were rotated on a stage while the transducer was placed at its focal distance of 38.1 mm from the center of rotation.  
 
To showcase reconstruction improvements attained by the weighted model-based inversion, two phantoms were 
constructed. Both phantoms were cylindrically shaped and had a diameter of 16 mm, background absorption coefficient 
of μa′ = 0.2 cm-1  and reduced scattering coefficient of μs′ = 10cm−1. The first one was used as an imaging target while the 
second phantom served for calibration of light deposition pattern on the surface of the imaged objects. For this, a thin 
carbon stick was embedded at the phantom’s surface. By rotating the phantom, magnitudes of optoacoustic responses 
from the stick were recorded over 360o.  
 
The tomographic optoacoustic data were collected over 360 degrees with increments of 3 degrees. All the 
reconstructions were performed using 100×100 grid, which corresponded to pixel size of approximately 160 μm. The 
images of the phantom were first reconstructed for the full illumination case with laser beams covering the entire width 
of the phantom, as shown in Fig. 3a. The average values of the experimentally reconstructed absorption coefficient in the 
two insertions were 0.32 cm-1 and 0.41 cm-1. Subsequently, the beam size was reduced to approximately 0.8 cm and the 
image reconstructed by the standard model-based inversion assuming uniform illumination (Fig. 3b). As expected, due to 
incorrect illumination assumptions and similarly to the numeric simulations, one can observe surface blurring effects 
while the other structures in the phantom’s center are barely visible. To correct for these artifacts, we have used the 
illumination maps previously obtained with the calibration phantom.  Eqs. 7-8 were utilized in order to build a weighted 
matrix for each projection, which was subsequently applied for obtaining the weighted forward model. The run time for 
constructing and inverting the model matrix was approximately 30 minutes for the given experimental setup. We used a 
sparse representation of the matrices and solved the inversion by using LSQR. The sparse matrix occupied 
approximately 1.5 GB of memory. The results of the weighted reconstruction are presented in Fig. 3c and clearly show 
that the method was able to correct for image artifacts introduced by the sub-optimal partial illumination. The average 
values of the reconstructed absorption coefficient in the two insertions were in this case 0.326 cm-1 and 0.42 cm-1.  
To demonstrate the stability of the algorithm we built the weights using different estimations of background absorption. 
The algorithm is stable for variations of +/- 0.1 cm-1 between the real background absorption and the one assumed in the 
model.   
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Figure 3. Model-based reconstruction for the a) Fully illuminated phantom; b) Variable partial illumination; c) 
Including weighting correction;  

 
Apparently, the uniform illumination experiment attained a slightly better quantification as compared to the weighted 
model-based correction algorithm. The relatively small discrepancies can be attributed to inaccuracies in characterization 
of the beam and building the model. Clearly, the diffusion equation can only serve as an approximation to the realistic 
fluence distribution while possible inaccuracies in the positioning of the calibration phantom relatively to the 
reconstructed phantom could introduce additional errors. Nevertheless, the algorithm was shown to significantly improve 
overall image quality and quantification compared to the uncorrected image.  
 

6. CONCLUSION 
In this work, we presented a weighted version of the model-based inversion method for quantified optoacoustic 
tomography reconstructions. The algorithm is intended for correction of image artifacts associated with sub-optimal 
partial illumination and non-uniform acoustic detection fields. 

 
The advanced semi-analytical model-based inversion scheme was successfully tested and compared to the unweighted 
model based reconstruction on both numerical and experimental data. For the simulated data, the weighted model based 
reconstruction and original image were almost identical. In contrast, similar correction using back-projection 
reconstruction is so far not possible thus quantification remains challenging due to intrinsic inaccuracies of the method in 
the form of negative values and erroneous accentuation of fast absorption variations in the image. For the numerical 
phantoms, the weighted model-based inversion was able to correct the blurring and smearing effects so that the shape 
and absorption values in the inclusions were nearly the same compared to the homogeneously illuminated phantoms. The 
corrected images in the experimental case showed deviations of below 10% from the real absorption values in the 
phantom.  
 
The results attained by the proposed reconstruction method emphasize the advantages of the semi-analytical model-based 
inversion scheme over other commonly-used reconstruction methods for OAT. The methodology provides therefore a 
more generalized tomographic framework and serves as a robust method for quantitative optoacoustic image 
reconstruction.  
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