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ABSTRACT 

Multispectral optoacoustic (photoacoustic) tomography (MSOT) exploits the high resolutions provided by ultrasound 
imaging technology in combination with the more biologically relevant optical absorption contrast. Traces of molecules 
with different spectral absorption profiles, such as blood (oxy- and de-oxygenated) and biomarkers can be recovered 
using multiple wavelengths excitation and a set of methods described in this work. Three unmixing methods are 
examined for their performance in decomposing images into components in order to locate fluorescent contrast agents in 
deep tissue in mice. Following earlier works we find Independent Component Analysis (ICA), which relies on the strong 
criterion of statistical independence of components, as the most promising approach, being able to clearly identify 
concentrations that other approaches fail to see. The results are verified by cryosectioning and fluorescence imaging. 
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1. INTRODUCTION 
Opto-acoustic (or photoacoustic) imaging for microscopic applications began to evolve in the 80's1, 2. The application of 
the underlying effects for tomographic approaches has recently gained momentum in research as it offers ultrasound 
resolution with imaging depths given by near infrared laser penetration. The contrast in the images is generated mainly 
by intrinsic optical absorption3, 4. Usage of ultrasound detector arrays recently rendered mechanical movement of the 
detector unnecessary5, thus allowing for image generation at much higher speeds even enabling video rate imaging6. 

Utilizing the advantages of specific optical absorption contrast along different excitation wavelengths enables differential 
imaging of the bio-distribution of vasculature7, blood oxygen saturation8 and biomarkers9-12. Especially hemoglobin in 
blood still has a high optical absorption in the near infrared wavelengths with respect to other absorbers present in 
biological tissue – and thus generates a large photoacoustic signal. This renders larger vascular structures visible in the 
reconstructed photoacoustic images without any additional tools or methods. For contrast agents used in biological 
applications the concentration of absorbing molecules that biologically accumulate in targeted tissue (e.g. tumors) is 
lower, thus generating a weaker opto-acoustic signal that is usually not distinguishable from the background when 
inspecting the images with the bare eye alone. To a large extent this arises from the aforementioned high optical density 
of blood that accounts for large parts of the intrinsic contrast in the image and makes the use of advanced methods and 
tools necessary in order to visualize the spatial distribution of less optically dense substances. The acquisition of 
multispectral measurements and the use of blind spectral unmixing methods has improved the performance in optical 
biomedical imaging, mainly in fluorescence13-15 and, recently, in optoacoustic imaging16. Herein, we present the results 
from MSOT experiments imaging fluorochromes in deep tissue and examine the performance of three different spectral 
unmixing methods. 
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2. METHODS 
1.1 Experiment 

Image acquisition was performed using the setup previously described in Ref. 6. Illumination is provided by a  tunable 
wavelength OPO laser (Opotek, Inc. Carlsbad, CA)  that delivers 10 pulses per seconds with a duration of < 10 ns each. 
The generated opto-acoustic signals are detected by a 64-element ultrasonic transducer array with a center frequency of 5 
Mhz covering an angle of 172° (Imasonic SaS, Voray, France). Image reconstruction of all acquired single wavelength 
images is done using a model-based inversion algorithm17, where the signals were averaged over 25 acquisition cycles.  
The laser was tuned from 690  nm to 835 nm in steps of 5 nm, so a total number of 30 wavelengths were recorded in the 
measurements.  In order to verify the results achieved by the spectral unmixing the sample was imaged in a cryoslicing 
and epi-illumination imaging system18 that is able to visualize even small concentrations of fluorescent contrast agents in 
tissue. 

In order to compare the performance of the techniques detailed below, a solid inclusion was created in the esophagus of a 
number of dead CD1 mice. The inclusion is made up of agar and Cy7 (GE Healthcare) as a fluorescent dye that has a 
distinct absorption spectrum with a peak at 750nm (see absorption spectrum in Fig 4b). The concentration of the  
contrast agent was varied in order to study the performance of the unmixing with different concentrations. In order to 
create the inclusions in esophagus and stomach a tubing was inserted from the mouth and the agar based solution was 
injected to fill up all vacant space. The neck region was chosen as the imaging plane due to relatively small diameter and 
few highly absorbing structures in the tissue that possibly interfere with the signal of the inclusion. After imaging the 
mice with the MSOT system the location and nature of the inclusion was verified using the aforementioned cryoslicing 
tool that detects fluorescence in the desired locations. 

1.2 Unmixing 

In order to spectrally unmix and decompose the reconstructed optoacoustic images into image components that identify 
the biodistribution of substances that give spectral contrast, three different approaches were examined and are described 
below. Generally speaking, the term unmixing means finding a solution for the unknown right hand side of the equation  

,M WS=  

where M is the measured data m×n array that consists of measurements at m different wavelengths, each containing a 
total of n pixels. The number of sources or components the acquired images are to be split into is c and usually equals m. 
Components are characterized by their distinct absorption spectrum across the measured wavelengths in the weighting 
m×c matrix W, and their spatial distribution in the c×n matrix S. In order to maintain algebraic correctness the residual 
error is to be minimized so that the original data can be re-mixed using the resulting matrices. 

Spectral fitting is a simple and straightforward approach to pursue spectral unmixing using a set of measured absorption 
spectra of components contained in the measured sample. The spectra in W are inverted by means of the Moore-Penrose 
inverse19, 20 and multiplied from the right with the measurements in M to extract the sources S. A number of other, more 
complex algorithms for matrix factorization and multivariate data analysis have been suggested in literature21-23.  

Other approaches do not use any a-priori knowledge and are thus referred to as “Blind Source Separation”. Instead of 
known spectra they use constraints that are implied in the measured data to enable splitting information into two parts 
that in this case contain spectra and component information. Two of the most promising methods in this field are 
Principal Component Analysis (PCA)23 and Independent Component Analysis (ICA)22, where both apply statistical 
constraints to the separation of the measured datasets.  

PCA on the one hand decomposes data into components that are statistically uncorrelated and thus orthogonal. This can 
be mathematically computed either by a singular value decomposition or an eigenvalue decomposition of the covariance 
matrix of the data. Implementations of the algorithm are available for all common computational tools. Components are 
sorted according to their eigen value (or singular value respectively), which is equivalent to the variance that is 
represented by the component. Components with smaller variance are ranked lowest and mostly contain noise and can 
thus often be neglected, additionally promoting PCA as a simple means of noise or dimension reduction in signal 
preprocessing before the actual step of unmixing. 
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ICA on the other hand pursues a similar approach based on statistical independence rather than the weaker criterion of 
uncorrelatedness, thus usually providing more accurate separation results. We use the FastICA algorithm24 in the 
MATLAB implementation provided on the homepage of the authors. According to the central limit theorem25 a mixture 
of signals is always more gaussian than the individual signals, so separating measurement data trying to maximize the 
non-Gaussianity using kurtosis gives a set of statistically independent source components. Because a way to measure the 
importance of the component is not available with the results from ICA, the components will appear in random order. As 
this can make evaluation of results tedious and time consuming with an increasing number of wavelengths, an initial 
guess of the spectral profiles of components expected to be contained in the sample can be supplied to the algorithm to 
influence the sorting of components.  

3. RESULTS AND DISCUSSION 
Representative reconstructed images of the mouse with an inclusion with contrast agent concentration of 1cm-1 O.D. are 
displayed in Fig. 1a–c. The signal change due to variable absorption of the inclusion across wavelengths is very small 
and it is not visible after having applied contrast adjustment and thresholding to the images. This inability demonstrates 
the necessity of spectral unmixing techniques that are nevertheless able to reveal the contrast agent distribution. Other 
concentrations of fluorescent dye in the inclusion show similar behaviour in terms of the unmixing and are omitted in the 
discussion. Presence and location of fluorescence of the dye are clearly identified in the cryosection RGB and 
fluorescent images (Fig. 2a-b). A fluorescent straw was being added as a reference to quantify the fluorescent signal in 
the sample. 

 

 

Figure 1. a-c) Representative optoacoustic tomographic reconstructions of the mouse torso  at 700nm, 750nm and 800nm 
respectively, the inclusion is invisible to the bare eye. Contrast enhancement and thresholding are applied to the images 

 

   
Figure 2. a) RGB Image of Cryosection b) Fluorescence Image of Cryosection  
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Although spectral fitting proved to be a viable approach for more superficial applications in earlier works16, it failed  to 
recover a clear image of the inclusion (see Fig. 3a) in deep tissue using the Cy7 spectrum measured by the spectrometer 
(see Fig. 2a; peak absorption µa = 2.3 cm-1, 1 cm-1 O.D). The main reason is spectral variation of light attenuation in 
tissue that render the spectral profile of light fluence in deep tissue practically unknown. As a result, the spectral 
variation of optoacoustic signals does not match with the known absorption spectrum of the fluorochromes used in 
spectral fitting. Furthermore the strong background absorbers dominate against the comparatively small signal created by 
the fluorophore in the inclusion and makes it difficult to obtain a clear picture just using means of matrix inversion. 

 

 
Figure 3. a) Unmixed Images using Spectral Fitting b) PCA and c) ICA. 

Processing with PCA produces more promising component images, one of which contains the inclusion. This is possible 
because the uncorrelatedness is still given at increasing depth and enables separation without prior knowledge of what 
absorbers are present in the sample. The comparatively poor contrast is due to the fact that the signal generated by the 
inclusion is not clearly separated from other signals created by strong surface absorbers. For the same reason the 
corresponding spectrum resulting from the PCA decomposition is not decisive and thus does not provide a mean to 
identify the desired component by recognizing its spectral behaviour. Identifying the desired component (see Fig 3b) by 
looking at the component images was possible in this case, but the spatial distribution is expected to be unknown in 
many applications. Even though PCA decomposes a set of cross-wavelength images into the same amount of 
components, in general only few of the components actually contain recognizable structures, whilst the others only 
contain noise and artifacts.   

Finally, unmixing with ICA delivers best performance with the inclusion being well isolated (Fig. 3c). The superior 
performance is caused by the fact that the underlying criterion of statistical independence of the components is stronger 
than the uncorrelatedness criterion used by PCA and thus results in superior separation abilities. This creates a larger 
variety of non-noise components with more decisive spectra. It can be observed in Fig. 4b that the spectrum recovered by 
ICA (dotted line) has a shifted absorption peak compared to the spectrometer measurements (solid line). This blue-shift 
is attributed to the spectrally dependent drop of light fluence in deep tissue. In ex-vivo tissue the dominant absorber is 
de-oxygenated hemoglobin (absorption spectrum depicted in Figure 4a) whose local absorption peak at 760nm reduces 
illumination intensity in the deep location of the inclusion and so shifts the peak of the discovered component. For the 
fact that the used implementation is based on an iterative algorithm the measured spectrometer absorption spectrum can 
be supplied to the algorithm as an initial guess despite the occurrence of the blue-shift and the algorithm still converges 
to the correct solution and the true deep tissue spectrum depicted in Fig 4b. Using the initial guess allows for a more 
automated detection of certain absorbers, without the need to visually inspect many components to identify the relevant 
ones. 

PCA Spectral Fitting ICA

ca b
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Figure 4. a) Hemoglobin Absorption b) Cy7 Absorption as measured in the spectrometer and as recovered by ICA. 

 

4. CONCLUSION 
Optoacoustic tomography is emerging as a high resolution deep tissue biomedical imaging method and especially 
multispectral acquisitions can serve to identify the biodistribution of various absorbers. Post-processing of the data 
requires a robust spectral unmixing algorithm and blind unmixing with ICA is shown to perform best, boosting the 
detection sensitivity of MSOT beyond the limits of differential or fitting-based unmixing methods. The main advantage 
lies in the ability to separate measurement data without a-priori knowledge about the sources present in the sample. Still, 
if knowledge is available, the process can be simplified by supplying spectra of absorbers known to be present in the 
sample as an initial guess and thus guiding the algorithm. 
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