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ABSTRACT

Beneficial microbes are applied to the soil and plant tissues directly or through seed inoculation, whereas soil application is
preferred when there is risk of inhibitors or antagonistic microbes on the plant tissues. Insufficient survival of the
microorganisms, hindrance in application of fungicides to the seeds and exposure to heat and sunlight in subsequent seed
storage in conventional inoculation methods force to explore appropriate and efficient bacterial application method. Seed
priming, where seeds are hydrated to activate metabolism without actual germination followed by drying, increases the
germination, stand establishment and stress tolerance in different crops. Seed priming with living bacterial inoculum is
termed as biopriming that involves the application of plant growth promoting rhizobacteria. It increases speed and
uniformity of germination; also ensures rapid, uniform and high establishment of crops; and hence improves harvest
quality and yield. Seed biopriming allows the bacteria to enter/adhere the seeds and also acclimatization of bacteria in the
prevalent conditions. This review focuses on methods used for biopriming, and also the role in improving crop productivity
and stress tolerance along with prospects of this technology. The comparison of methods being followed is also reviewed
proposing biopriming as a promising technique for application of beneficial microbes to the seeds.
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INTRODUCTION

Soil microbes since their discovery in late 18th century have
been used extensively in crop production. Advent of technol-
ogy allowed the researchers to study more about the microbial
populations, and Kloepper and Schroth (1978) first time used
the term plant growth promoting rhizobacteria (PGPR) explain-

ing them as bacteria which are closely related to rhizosphere.
Kloepper, Lifshitz and Zablotowicz (1989) also used the term rhi-
zobacteria. Functions and mechanisms of growth promotion by
these microbes have been discussed, and microorganisms have
been categorized in different classes (Hayat et al. 2010). Microbes
actively involved in crop production are generally termed as
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plant growth promoting bacteria (PGPB), whereas the bacteria
isolated from the root zone are termed as plant growth promot-
ing rhizobacteria (Kloepper and Schroth 1978). Major functions
of these beneficial microbes are supply of nutrients to crops,
stimulation of plant growth namely producing phytohormones,
biocontrol of phytopathogens, improving soil structure, bioaccu-
mulation of inorganic compounds and bioremediation of metal
contaminated soils (Brierley 1985; Davison 1988; Ehrilch 1990;
Middeldorp, Briglia and Salkinoja-Salonen 1990;Wilson and Lin-
dow 1993; Burd, Dixon and Glick 2000; Zaidi et al. 2006).

Interaction between beneficial soil microbes and plants de-
termines the plant health and soil fertility (Jeffries et al. 2003).
The concept of sustainable agriculture has given much impor-
tance to the use of rhizospheric bacteria to help plants easy
nutrient uptake and solubilization of fixed nutrients such as
phosphorus (Hayat et al. 2010). It is the need of the time to
reduce the agricultural inputs through combining beneficial
microorganisms for better and sustainable agriculture. Several
symbiotic such as Rhizobium spp. and Frankia spp. and asymbi-
otic bacteria such as Azotobacter, Azospirillum, Bacillus and Kleb-
siella spp. are used throughout the world to increase the crop
growth and yield (Staley and Drahos 1994). Bacteria inhabit-
ing plant rhizosphere are called PGPR which can promote the
growth and productivity of plants through various mechanisms
(Kloepper, Lifshitz and Zablotowicz 1989; Cleyet-Marcel et al.
2001). These rhizosphere inhabiting bacteria have also been cat-
egorized as nodule promoting rhizobacteria which is an impor-
tant interaction of microbes with plants and plant health pro-
moting rhizobacteria (Burr and Caesar 1984). PGPRs can also be
categorized based on their relationships i.e. symbiotic and free-
living soil inhabiting bacteria (Khan 2005). Gray and Smith (2005)
also classified intercellular PGPR (iPGPR) called symbiotic bacte-
ria and extracellular PGPR which are free-living bacteria. Rhizo-
bia are famous iPGPR as they produce nodules in leguminous
plants (Sriprang et al. 2003).

Podile and Kishore (2006) conclude several plant growth pro-
moting (PGP) mechanisms of PGPR such as modification and in-
creased branches in root hair, improvement in germination of
seeds, enhanced and faster nodule performance, increase in leaf
area per plant, release of certain phytohormones, augmented
nutrients and water uptake by plants, increased biomass of
the plants with more vigor growth and better carbohydrate ac-
cumulation which increases the growth of plant species. On
the other hand, Glick (2003) categorizes the bacterial assisted
plant growth in three different ways, including plant hormone
production (Dobbelaere, Vanderleyden and Okon 2003), bacte-
rial assisted better nutrient uptake by plants (Çakmakçi et al.
2006) and avoiding the diseases in plants through biological
control (Saravanakumar et al. 2008). Dey et al. (2004) suggest
the need of exploring other mechanisms of plant growth pro-
motion by PGPR apart from the list already studied. Listing all
the explored and investigated mechanisms of PGPR, following
can be included: (a) solubilization and mineralization of nutri-
ents notably phosphorus (Richardson 2001; Banerjee andYesmin
2002); (b) nitrogen fixation through symbiosis and asymbiosis
(Kennedy, Choudhury and Kecskés 2004); (c) release of certain
plant hormones such as gibberellic acid and cytokinins (Dey
et al. 2004), indole acetic acid (Patten and Glick 2002) and abscisic
acid (Dobbelaere, Vanderleyden and Okon 2003); (d) production
of 1-aminocyclopropane-1-carboxylate (ACC)-deaminase help-
ing to lower ethylene level in roots this increasing length and
vigor of roots (Li et al. 2000; Penrose and Glick 2001); (e) antag-
onism toward plant pathogens by producing substances such
as cyanides and antibiotics (Glick and Pasternak 2003); (f) in-

creasing the availability of nutrients specifically of iron through
chelating by producing siderophores (Glick and Pasternak 2003);
(g) tolerance against deveral abiotic stresses such as oxidative
(Stajner et al. 1995, 1997) and drought stress (Alvarez, Sueldo
and Barassi 1996); (h) water soluble vitamin production includ-
ing biotin, niacin, thiamine and riboflavin (Revillas et al. 2000);
(i) detoxification of heavy metals (Ma et al. 2011); (j) tolerance of
salinity (Tank and Saraf 2010); and (k) biological control of pests
and insects (Russo et al. 2008).

Several studies have documented beneficial effects of certain
rhizobial strains in improving growth of legumes as well as non-
legumes. Second, inoculation of rhizobium in consortium with
free-living rhizospheric bacteria has also given excellent results
in improving crop growth and productivity (Kishore, Pande and
Podile 2005; Tilak, Ranganayaki and Manoharachari 2006; Wani,
Khan and Zaidi 2007). These PGPRs can be used effectively to
meet the nutrient-deficient conditions and their use can be fa-
vorable to reduce the uses of chemical fertilizers and support
of environment friendly crop productivity (Herrera, Salamanka
and Barea 1993; Requena et al. 1997). The beneficial and plant
growth enhancing effects of PGPR are well reported and ex-
plained. PGPR inoculation has increased different crop yields in
normal and stress conditions. From the recent literature, PGPR
inoculation increased the stress resistance and production of
the crops, including tomato (Almaghrabi, Massoud and Abdel-
moneim 2013), lettuce (Kohler et al. 2009), wheat (Jaderlund et al.
2008; Chakraborty et al. 2013; Nadeem et al. 2013; Islam et al. 2014;
Kumar, Maurya and Raghuwanshi 2014), rice (Bal et al. 2013; Jha,
Saxena and Sharma 2013; Lavakush et al. 2014), soybean (Mas-
ciarelli, Llanes and Luna 2014), groundnut (Paulucci et al. 2015),
broad bean (Younesi and Moradi 2014), maize (Rojas-Tapias et al.
2012) and chickpea (Patel et al. 2012). The increase in yields and
other yield parameters can be different in different crops and en-
vironments and normally range from 25% to 65%. Local reviews
also indicate the growth promotion of crops by application of
PGPR includingwheat and barley (Ozturk, Caglar and Sahin 2003;
Salantur et al. 2005; Turan, Çakmak and Şahin 2013), sugar beet
(Sahin, Çakmakçi and Kantar 2004), strawberry (Esitken et al.
2010), apple (Aslantas, Cakmakci and Sahin 2007), grapes (Köse,
Güleryüz and Demirtaş 2005) and raspberry (Orhan et al. 2006).

Bacterial inoculation to enhance the productivity of different
crops is being practiced since the discovery of beneficial effects
of these bacteria. The methods used for augmentation of the
beneficial bacteria include seed coating, pelleting, foliar appli-
cation and direct soil application where most commonly used is
inoculation. Everymethod has been used withmodifications ac-
cording to the requirements. However, inoculation is most com-
monly used because it is easy to use and is practiced since the
advent of this technique. Availability of sticking agent although
is a limitation in thismethod but is still themost trustedmethod
throughout the world. PGPR application through seed priming,
soaking the seeds for premeasured time in liquid bacterial sus-
pension, starts the physiological processes inside the seedwhile
radicle and plumule emergence is prevented (Anitha et al. 2013)
until the seed is sown. The start of physiological process inside
the seed enhances the abundance of PGPR in the spermosphere
(Taylor and Harman 1990). This proliferation of antagonist PGPR
inside the seeds is 10-fold than attacking pathogens which en-
ables the plant to survive those pathogens (Callan, Mathre and
Miller 1990) increasing the use of biopriming for biocontrol too.

Method of application contributes mainly to the survival ef-
ficiency of the bacteria in the soil and on the seeds. Most com-
mon methods developed and explored include seed treatment,
soil amendment and roots dipping in the bacterial suspensions
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before transplanting particularly in rice. Other uncommon
methods include foliar spray or application of bacteria through
drip irrigation (Podile and Kishore 2006). PGPR are applied to the
soil or seeds and/or to the plant parts when there is risk of in-
hibitors or antagonistic microbes on the plant tissues (Gindrat
1979). Diverse carrier materials have been tried and are being
used depending on their quality to keep the bacteria viable for
longer times as well as to reduce the desiccation chances along
with the adhesive ability to the plant parts (Chao and Alexander
1984; Elegba and Rennie 1984). Proper inoculation procedures are
followed as survival of bacterial cells depends mainly on the en-
vironmental conditions. Several carriers such as broth cultures,
agar cultures and powder carriers have been used (Strijdom and
Deschodt 1976; Thompson 1980), yet peat-based inoculants have
shown good results and have been used widely but there are is-
sues with peat-based inoculants such as exposure of peat based
inoculants to high temperatures or water scarcity, presence of
antagonist microorganisms and quality of peat strictly affects
the bacterial viability (Chao and Alexander 1984). Exposure of
the inoculated seed to sun causes the death of the bacterial cells
as well as its exposure to environment can lead to contamina-
tion. Therefore, peat-involving inoculants are not yet considered
as the best option as there can be pathogenic microbes causing
plant diseases.

Use of proper carrier strongly influences the survival and
colonization ability of the bacteria in the soil as well as in the
roots. Peat soil is most preferred carrier material being used for
inoculation of bacteria but its availability is a major limitation
(Boonkerd and Singleton 2002). Similarly, rice husk is also being
used in Asian countries. Trevors et al. (1992) found thatmixing of
bentonite clay in the carrier increased the survival of bacteria in
fine textured soils. A similar study also suggested that mixing of
1% bentonite clay in fresh grown or freeze-dried Rhizobium legu-
minosarum suspension enhanced the bacterial survivalmarkedly
when compared to no amendment (Heijnen, Hok-A-Hin and Van
Veen 1992). Heijnen, Hok-A-Hin and Van Elsas (1993) also re-
ported that fresh cells showed less survival ability and coloniza-
tion as compared to starved bacterial cells. Different soil amend-
ments and chemical polymers have also been tried to entrap the
bacteria in the carrier material, but a more promising report is
use of barley straw which increased the survival of bacteria and
also improved the root colonizing ability of the strains (Stephens
1994). Inoculation techniques are yet to be explored as there is
scarce information available regarding the delivery and appli-
cation of bacteria to the soil or the seeds. However, it is quite
clear that population of the bacteria in soil is mainly dependent
on initial stack of inoculums on the seed (Milus and Rothrock
1993). Hebbar et al. (1992) stated that application of more inocu-
lums per seed can increase the efficiency but results are not al-
ways steady. Bacteria need to compete with other microbes to
colonize so it can be concluded that introduced bacteria should
be competitive enough to efficiently compete and colonize the
roots.

Variety of methods have been used and studied by re-
searchers for producing better inoculumswhich can survive bet-
ter in the soil. The simplest strategy as explained by Paau (1989),
local strains should be selected which are competent, adapted
and dominant in a particular geographical area, and then mu-
tant from the parent strain having more nitrogen fixing and
competitive ability should be used in that particular area. This
method or strategy is also used in preparation of microbial pes-
ticides (Watrud et al. 1985) wheremutation has been used. Effec-
tiveness of the inoculum in the soil depends on the conditions
after the release in the soil and if the conditions are optimum,

inoculum will survive better. Several laboratory microcosm and
field studies have been conducted on bacterial survival potential
in soil (van Elsas and Heijnen 1990). Presence of microniches in
the soil enables the bacteria to survive after their application to
soil otherwise reduction in bacterial number has been observed
(van Elsas et al. 1986; Heijnen et al. 1988; Postma, Scheffers and
van Dijken 1988; van Elsas and Heijnen 1990). Other factors af-
fecting the bacterial survival in the soil include certain abiotic
factors including soil temperature and moisture, nutrient pres-
ence and pH of the soil (Garcı́a et al. 2010). Several studies have
documented the effects of biotic and abiotic factors on survival
of bacteria in soil (Bashan et al. 1995; Bashan and Vazquez 2000;
Oliveira et al. 2004). Environmental factors affect the survival of
bacteria in the soil, as an example fluorescent pseudomonad
strain survived 10-fold better in sandy loam soil as compared
to clay loam (Bahme and Schroth 1987; Pathma, Kennedy and
Sakthivel 2011). Amending the soil with bentonite mineral in-
creased the bacterial survival in loamy sand soil (Heijnen et al.
1988) through protection against protozoa (van Elsas and Heij-
nen 1990). It can be concluded that both biotic and abiotic fac-
tors affect bacterial survival and root colonization by bacteria in
the soil (Campbell and Ephgrave 1983; Postma, Hok-A-Hin and
Van Veen 1990). Most of studies indicate bottlenecks in various
techniques of bacterial application either to the soil or to the
plant tissues. Among differentmethods being used for introduc-
ing beneficial bacteria include seed coating and covering, root
dipping, foliar application, direct soil application and seed In-
oculation which have various merits and demerits reviewed in
Table 1.

Seed coating and covering is a general term where liquids or
suspending solids are applied to the seed coat, prospectively to
cover it homogenously. This method requires use of adhesives
to ensure proper coating of the seed which hinder the further
application of pesticides to the seeds (Bardin and Huang 2003).
Bacterial survival and nitrogen fixation was reduced when pel-
leting of the molybdenum was carried out along with bacterial
inoculation and 99% bacteria were dead after 4 days (Burton
and Curley 1966). Campo, Araujo and Hungria (2009) has also
reported the drawback of applying micronutrient to seeds and
inoculants together. Seed coating also hinders the gaseous ex-
change to the leguminous seeds which causes reduction in ni-
trogen fixation (Duarte et al. 2004), along with problems such as
reducing the number of bacteria on the seeds due to desicca-
tion. This technique is usually used for application of biocontrol
agents (Paulitz, Zhou and Rankin 1992).

Dipping the roots in bacterial suspension has been used for
biocontrol, and very few evidences can be found. Srinivasan et al.
(2009) applied this technique and found that it is possible op-
tion in controlling Fusarium wilt of tomato. Munif, Hallmann and
Sikora (2013) studied the effect of endophytic bacteria against
Meloidogyne incognita using root dipping technique and found
less number of galls on treated plants. Another report is from
Esitken et al. (2010), who used root dipping along with foliar ap-
plication and have reported significant increases in yield param-
eters of strawberry. Root dipping however needs prepared plant
nursery which is not very economical in most of the crops.

Foliar application is not widely practice by the researchers or
the farmers for the augmentation of these significant bacteria to
the plants. However, in some cases such as biocontrol of fungus,
this application has been used (Obradovic et al. 2004). Another
research group has applied the PGPR through both root dipping
and foliar application and have concluded that it increased the
yield and yield parameters of fruits such as strawberry (Esitken
et al. 2010), apricot (Esitken et al. 2002), sweet cherry (Esitken et al.
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Table 1. Advantages and disadvantages of different application methods.

Method Advantages Disadvantages Reference

Career-based inoculation Easy availability
Easy to prepare
Lower cost

Contamination of the inoculants
by unwanted microbes from
career such as peat
No uniformity on the career
Short-term storage ability

Brockwell (1977); Brockwell, Gault
and Chase (1977); Bezdicek et al.
(1978); Gault, Chase and Brockwell
(1982); Bashan, Levanony and
Ziv-Vecht (1987); Brockwell,
Holliday and Pilka (1988); Rice and
Olsen (1988); Kosanke et al. (1992);
Smith (1992); Bashan (1998)

Seed coating and covering Easier to apply
No specific machinery needed
Practiced by farmers in case of
pesticide application to seeds

Application of pesticides to the
seeds
Sticking agents harmful to bacteria
Flexibility in seeding is less

Brockwell (1977); Brockwell,
Holliday and Pilka (1988); Bashan
and Levanony (1990); Bashan and
Carrillo (1996); Bashan and
Holguin (1997); Bashan (1998)

Pelleting Easy to apply
Favored by farmers
Flexibility in seeding and
application
Lime pellets can be used for acid
soils

Survival of bacteria is hindered
due to lower moisture levels
Special machinery needed to
prepare thus increases cost

Brockwell (1977); Bezdicek et al.
(1978); Bordeleau and Prevost
(1981); Bashan and Levanony
(1990); Bashan (1998)

Direct soil application Injection in the root zone is
possible
Easy and simple

Exposure to the sun
Desiccation problems
Needs more volume

Brockwell (1977); Bordeleau and
Prevost (1981); Bashan and
Levanony (1990); Bashan (1998)

Root dipping Nursery required
Simple and easy

Large amount of liquid media and
bacterial cells needed
Contamination from environment
quite normal

Brockwell (1977); Bordeleau and
Prevost (1981); Bashan and
Levanony (1990); Bashan (1998)

2006) and apple (Pirlak et al. 2007). Sudhakar et al. (2000) also in-
vestigated the effect of foliar application of Azotobacter, Azospir-
illum and Beijerinckia on mulberry and have reported positive ef-
fects.

Application of the inoculum directly to the soil is favored
when there is threat of presence of antagonisticmicrobes or pes-
ticides on the plant tissues (Gindrat 1979). Presence of inhibitory
compounds on the plant tissues also inhibits plant part inocu-
lation. Soil application needs large amount of inoculants which
contradicts with the economics of the farming. Solid inoculants
are easy but if there are liquid inoculants, it needs special care
from the transportation and after the application to the field.

Application of beneficial bacteria to the seeds is generally
called as inoculation. It is the most common method been
used since the beneficial bacteria have been studied and discov-
ered. Seed inoculation involves use of carrier material for bet-
ter transportation and application, use of adhesives to ensure
the sticking of bacteria to the seeds and sometimes other ma-
terials avoiding desiccation of the inoculum (Elegba and Ren-
nie 1984). Peat-based inoculants are most common and exten-
sively used since the discovery of rhizobium for leguminous
crops. Peat being easily available and a cheap source is sterilized
and milled so used as carrier for most of the inoculation ma-
terial (Walker, Rossall and Asher 2004). Most favored and com-
monly usedmethod of inoculation includes application of adhe-
sive agents on the seeds followed by inoculum spreading under
shade (Vincent, Thompson and Donovan 1962). Among the ad-
hesive agents, most commonly used are Arabic gum, sugar solu-
tion, methylcellulose, polyvinylpyrollidone, caseinate salts and
polyvinylacetate (Deaker, Roughly and Kennedy 2004). Inocula-
tion usually produces favorable results with rhizobia; however,
their development limit has been reached (Burton 1976; Thomp-

son 1980). As discussed above, extreme environmental factors
such as high temperatures decrease the viable cell count in the
inoculum (Chao and Alexander 1984). Apart from this, it has sev-
eral drawbacks depending on the nature and type of peat and
issues of peat availability in different countries (Bashan et al.
2002). Polymer-based inoculants can be used over peat-based
inoculants but they are expensive and need more biotechni-
cal handling (Fages 1992). As far as polymer-based inoculants
are concerned, they are also being opposed as they are haz-
ardous to environment (Cassidy, Lee and Trevors 1996). Merits
and demerits of different application methods are described in
Table 1.

MECHANISMS INVOLVED IN SEED
COLONIZATION

Efficient colonization supports better functioning of plant bene-
ficial bacteria (Compant, Clément and Sessitsch 2010). Diverse
endophytic bacteria which spend part of their life inside the
plant tissue without causing any disease (Döbereiner 1992); col-
onize different parts of plants without causing any damage
(Bacon and Hinton 2006; Ali et al. 2014) and similar to phyto-
pathogens, they enter the plants through various mechanisms.
Entry through wounded plant parts (Agarwhal and Shende
1987), stomatal openings (Roos and Hattingh 1983), lenticels
(Scot et al. 1996), germinating radicles (Gagné et al. 1987) and
root cracks (Sørensen and Sessitsch 2006) includes different col-
onization processes where root cracks entry helps root inocula-
tion by bacteria (Ali et al. 2014).

Bacteria after soil application tend to colonize rhizosphere
(Gamalero et al. 2003) followed by adherence to root surfaces and
finally to the rhizodermis making a string of bacteria (Hansen
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et al. 1997). Bacteria form biofilms or microcolonies on the rhi-
zodermal cells where the colonization occurs (Benizri, Baudoin
and Guckert 2001). Rhizosphere colonization is linked to photo-
synthates translocation to roots and exudation (Lugtenberg and
Dekkers 1999; Bais et al. 2006) along with root mucilage (Knee
et al. 2001). These exudates include diverse kind of organic acids,
amino acids and carbohydrates which serve as food for most of
bacteria inhabiting rhizosphere (Walker et al. 2003). This chemo-
taxis helps bacteria in multiplication along with colonization
(Lugtenberg and Kamilova 2009) but when limited results in re-
duced root colonization (deWeert et al. 2002). Concentration and
composition of root exudates also influences colonizationwhere
colonization occurs on different levels proportional to concen-
tration of exudates (Gamalero et al. 2004). Soil characteristics
and nutrient availability have also been reported as factors in-
fluencing colonization (Kraffczyk, Trolldenier and Beringer 1984;
Paterson and Sim 2000). Plant pathogenic infection also affects
the root colonization processes, e.g. plant released malic acid
to attract bacteria against the infection of pathogen where the
bacteria protected the roots of the plants by creating biofilm
(Rudrappa et al. 2008).

Plant beneficial bacteria also have to compete with the lo-
cal bacteria and other soil organisms in the root zone for colo-
nization (Walker et al. 2003) and under severe competitive condi-
tions, PGPB also secrete siderophores and lytic enzymes to limit
growth of plant pathogens (Compant, Clément and Sessitsch
2010), metabolites (Haas and Défago 2005), and they also release
certain antibiotic compounds for better colonization (van Loon
and Bakker 2005). Production of several other compounds such
as amino acids, vitamins, enzymes and polysaccharides has
also been reported enhancing root colonization (Vesper 1987; de
Weger et al. 1989; Simons et al. 1997; Dekkers et al. 1998; Camacho
et al. 2002). Physically, flagella of the bacteria help them making
contact with exudates (Turnbull et al. 2001) but are not always
important for root colonization (Scher et al. 1988). Quorum sens-
ing based on cell density is also involved in colonization of rhizo-
sphere and rhizoplane (Soto, Sanjuán and Olivares 2006), which
might be linked to enhancing competitive ability of PGPB (Com-
pant, Clément and Sessitsch 2010).

Legumes show symbiosis with members of Rhizobiaceae
family and this symbiosis needs exchange of resources (Gior-
dano andHirsch 2004; Ahemad and Kibret 2014). Endophytic col-
onization needs penetration of bacteria inside the plant tissues
which then show the PGP traits (Hallmann and Berg 2006). Nodu-
lating bacteria have evolved certain processes of entry like intro-
duction through cortex and lateral root fissures and intercellular
cracks forming specialized organs called nodules by penetrat-
ing in the roots through utilizing flavonoids and nod genes from
such microbes (Garg and Geetanjali 2007; Compant, Clément
and Sessitsch 2010). This type of colonization involves physi-
cal (Böhm, Hurek and Reinhold-Hurek 2007) and further chemi-
cal mechanisms including cell-wall-degrading enzyme produc-
tion (Lodewyckx et al. 2002). Most of the Rhizobium species have
been found to produce indole acetic acid (Ahemad and Khan
2012), which is essential for process of nodule formation through
cell division and differentiation along with vascular tissue for-
mation (Ahemad and Kibret 2014). Thus, higher auxin levels in
legume plants are responsible for nodule formation (Spaepen,
Vanderleyden and Remans 2007; Glick 2012) and symbiotic re-
lationships. The PGPR showing non-symbiotic interaction with
plants often contribute very small amount of nitrogen (Glick
2012). Diazotrophs being free-living nitrogen-fixing soil bacte-
ria show non-obligate relationship with the non-legumionous
plants (Glick et al. 1999).

HOST SPECIFICITY IN PGPR APPLICATIONS

Host specificity depends on particular bacterial strains to non-
specific traits of host plant or non-specific bacterial strains to
particular traits of the host plants, but evolution has played
its role in preferential interaction between host and bacterial
strains (Drogue et al. 2013). Bacterial association with particu-
lar hosts involves interaction and recognition process (Benizri,
Baudoin and Guckert 2001). The recognition process involves
root exudates concentration and composition where composi-
tion of root exudates depends on the cultivars, stress condition
and plant growth stage (Haichar et al. 2008). In other studies,
claiming no particular host specificity found in Azospirillum in-
dicated that chemotaxis was however strain specific, and the
bacteria showed preference toward exudates of their isolated
host (Bacilio-Jimenéz et al. 2003; Pedraza et al. 2010). Chemi-
cal signals from the plants as root exudates serve as attrac-
tants to microbes (Doty 2011). Host specificity can be influenced
by chemotaxis and metabolic activities can be its determinant
and provision of nutrients by the host plant also plays impor-
tant role in specifying bacteria to the plants (Reinhold, Hurek
and Fendrik 1985; Buyer, Roberts and Russek-Cohen 2002; Reis,
dos Santos Teixeira and Pedraza 2011). Plant genetic makeup is
important in determining microbiome associations with roots
and rhizosphere (Bulgarelli et al. 2015). In detailed study regard-
ing genome wide study in Arabidopsis-Pseudomonas, it was ob-
served and concluded that plants genetics is the core element
of benefiting from PGPR and identification of genes responsible
for host specificity is needed (Wintermans, Bakker and Pieterse
2016). Several genes responsible for chemotaxis, flagella forma-
tion, transportation and metabolic pathways are involved in
root colonization which complete recognition and chemotaxis
(Compant, Clément and Sessitsch 2010). Studies regarding host
specificity and microbial presence in the plant roots have been
made easy through use of next-generation sequencing tech-
niques in recent years (Bai et al. 2015), but yet extensive research
in this area is lacking. Nitrogen-fixing bacteria can be applied to
unrelated plants (Doty 2011), and application of such bacteria
in non-leguminous plants enhanced growth and productivity
(Bhattacharjee, Singh and Mukhopadhyay 2008). Different PGPR
can promote the growth and productivity of diverse crops de-
pending on genetics of the host and exudates released, and
also ability of beneficial bacteria to compete and colonize rhi-
zosphere and roots (Vessey 2003).

Keeping in mind the prospects of biopriming, this review fo-
cuses on (i) the comparison of past bacterial application meth-
ods with their drawbacks, (ii) suggesting the technique bioprim-
ing as a promisingmethod for bacterial application in increasing
stress resistance and crop productivity.

BIOPRIMING

Since the advent of seed priming, a lot of work has been done on
this aspect of seed treatment and is now common inmost of the
areas for delayed sowing and to obtain vigorous plant growth. As
defined byMcDonald (1999), seed priming is soaking the seeds in
any solution containing our required priming agent followed by
redrying the seedswhich result into start of germination process
except the radicle emergence. Among different priming tech-
niques, hydration using any biological compound is termed as
biopriming (Ashraf and Foolad 2005). Seed priming creates ideal
conditions for the bacterial inoculation and colonization in the
seed (McQuilken, Rhodes and Halmer 1998). Soaking the seeds
in the bacterial suspension for precalculated period of time to
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Table 2. Role of biopriming in different PGP activities.

Strains under study Crop PGP activities Reference

Azotobacter chroococcum, A.
lipoferum

Barley Increase in 1000-grain weight, dry matter
accumulation, grain yield, biological yield
and harvest index

Mirshekari et al. (2012)

Pseudomonas spp. Safflower Increased number of branches, heads per
plant, diameter of head, grain number
per head, grains per plant, 1000 grain
weight, oil content and grain yield

Sharifi (2012)

Azotobacter chroococcum
Azospirillum lipoferum, A.
chroococcum A. lipoferum

Maize Grain yield, crop growth rate and dry
matter accumulation

Sharifi (2011)

Azotobacter and Azospirillum
spp.

Maize Increase in grain yield, plant height,
number of kernels per ear and number of
grains per ear row

Sharifi and Khavazi (2011)

Pseudomonas fluorescens Sunflower Shoot height, root length and seedling
weight

Moeinzadeh et al. (2010)

Clonostachys rosea, P.
chlororaphis, P. fluorescens, T.
harzianum, T. viride

Carrot and onion Increase in emergence and yield Bennett, Mead and Whipps (2009)

allow the bacterial imbibition into the seed is known as bioprim-
ing (Abuamsha, Salman and Ehlers 2011). Reddy (2013) explained
bioprimingmore in biocontrol aspect as application of beneficial
bacterial inoculum to the seeds and their hydration to protect
seeds against disease control. This soaking of seeds in bacte-
rial suspension initiates the physiological processes in the seed
where plumule and radicle emergence is prevented (Anitha et al.
2013), until the seeds have temperature and oxygen after being
sown. PGPR keep on multiplying in the seed and proliferate in
the spermosphere (Taylor andHarman 1990) even before sowing.
Seed biopriming is being focused as it ensures the entrance of
endophytic bacteria into the sides along with avoiding the effect
of high temperature. Biopriming treatment is potentially able
to promote quick and even germination as well as better plant
growth (Moeinzadeh et al. 2010). Biopriming with rhizospheric
bacteria has been reported in crops such as carrot (Jensen
et al. 2002), sweet corn (Callan, Mathre andMiller 1990, 1991) and
tomato (Harman and Taylor 1988; Legro and Satter 1995; War-
ren and Bennett 1999). In case of efficacy and survival of bio-
logical agents, priming has been reported beneficial and been
reported to enhance the plant growth and yield (Harman, Tay-
lor and Stasz 1989; Callan, Mathre and Miller 1990, 1991; Warren
and Bennett 1999). Germination and enhanced seedling estab-
lishment is obtained through seed priming with PGPR (Anitha
et al. 2013). Bio-osmopriming can significantly enhance the uni-
formity of the germination and plant growth traits when asso-
ciated with bacterial coating (Bennett 1998). Uniformity in ger-
mination and better stand establishment options when consid-
ered, biopriming is favored method. Biopriming has been prac-
ticed and explained by different researchers (Callan, Mathre
and Miller 1991; Bennett, Mead and Whipps 2009; Moeinzadeh
et al. 2010; Chakraborty et al. 2011; Sharifi 2011, 2012; Sharifi and
Khavazi 2011; Gururani et al. 2012; Mirshekari et al. 2012) in sev-
eral ways, but still is an ambiguous approach which needs to be
explored and discussed.

There are different methods used explaining biopriming
varying in the temperature and time duration of soaking the
seeds (Miché and Balandreau 2001; Gholami, Shahsavani and
Nezarat 2009; Abuamsha, Salman and Ehlers 2011; Sharifi and
Khavazi 2011; Sharifi, Khavazi andGholipouri 2011; Carrozzi et al.
2012; Firuzsalari, Mirshekari and Khochebagh 2012; Saber et al.

2012; Kasim et al. 2013; Reddy 2013). Some of the researchers
have also surface disinfected the seeds before soaking into
the bacterial suspension (Sharifi, Khavazi and Gholipouri 2011;
Firuzsalari, Mirshekari and Khochebagh 2012; Saber et al. 2012;
Reddy 2013).

BIOPRIMING AND CROP PRODUCTIVITY

Biopriming contributes to various PGP activities which has been
studied by researchers as reviewed in Table 2. Saber et al. (2012)
used the technique biopriming with a commercial biofertil-
izer having different bacterial species including Bacillus lentus,
B. subtilis, Pseudomonas fluorescens, P. putida and Azospirillum spp.
They observed increase in several agromorphological traits of
wheat plants. In addition, they also postulate that require-
ment of nitrogen and phosphorus was decreased in bioprimed
plants as compared to control plants. Stem and total seedling
fresh weight was increased with the priming of PGPR in maize
seedlings in a laboratory experiment (Gholami, Shahsavani and
Nezarat 2009). Barley seed priming with a consortium of Azoto-
bacter chroococcum andAzospirillum lipoferum in combinationwith
80 kg ha–1 urea and 60 kg ha−1 P2O5 significantly increased the
yield attributes such as thousand grain weight, dry matter ac-
cumulation, biological yield, grain yield and harvest index (Mir-
shekari et al. 2012). In maize, different Azotobacter and Azospiril-
lum strainswere used for biopriming of the seeds, and the results
showed that biopriming significantly increased the crop growth
rate, dry matter accumulation and grain yield (Sharifi 2011). Dif-
ferent bacterial strains were also investigated for biopriming
in safflower, and it was observed that seed priming with Pseu-
domonas strain 186 with coapplication of 180 kg ha−1 increased
the number of branches, heads per plant, diameter of head, grain
number per head, grains per plant, 1000 grain weight and grain
yield of the plants (Sharifi 2012).

ROLE OF BIOPRIMING IN RESISTANCE
AGAINST ABIOTIC STRESSES

Kasim et al. (2013) used the technique biopriming to document
its effects against drought stress. They used two strains in-
cluding A. brasilense and B. amyloliquefaciens and observed that
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Table 3. Role of biopriming in abiotic stress tolerance.

Strains under study Mechanism of action Crop
Role in stress
tolerance PGP activities Reference

Bacillus pumilus, B.
furmus

ACC-deaminase activity,
IAA production, phosphate
solubilization, phytate
mineralization, siderophore
production

Potato Salinity, drought,
heavy metal stress
tolerance

Increase in plant
height, No. of leaves
plant−1, No. of
tubers plant−1, tuber
yield plant−1

Gururani et al. (2012)

Bacillus cereus Phosphate solubilization,
IAA, catalase, protease,
chitinase and siderophore
production, nitrate
reduction, starch hydrolysis

Rice, mungbean,
chickpea

Salinity tolerance Increase in seedling
height, number and
length of leaves, root
and shoot biomass

Chakraborty et al.
(2011)

Agrobacterium rubi,
Burkholderia gladii, P.
putida, B. subtilis, B.
megaterium

– Radish Improved seed
germination under
saline conditions

Increase in seed
germination

Kaymak et al. (2009)

Table 4. Role of biopriming in biotic stress tolerance.

Strains under study Crop Role in stress tolerance Reference

Trichoderma harzianum Maize Fusarium verticillioides and fumonisins tolerance Nayaka et al. (2010)
Pseudomonas fluorescens Sunflower Alternaria blight tolerance Rao et al. (2009)
Clonostachys rosea Carrot Alternaria dauci and Al. radicina tolerance Jensen et al. (2004)
Pseudomonas fluorescens Pearl millet Downy mildew tolerance Raj, Shetty and Shetty (2004)
Pseudomonas aureofaciens Sweet corn Pythium ultimum tolerance
Pseudomonas fluorescens Sweet corn Damping-off tolerance Callan, Mathre and Miller (1991)

biopriming with these strains increased drought tolerance in
wheat plants through upregulation of genes related to stress.
Role of biopriming has been studied in various crops using
different PGPR as compiled in Table 3. Role of biopriming in
salinity stress tolerance is widely studied and promising re-
sults have been recorded. Most notable genus used in abiotic
stress tolerance is Bacilluswhich is used in potato (Gururani et al.
2012), radish (Kaymak et al. 2009) rice, mungbean and chickpea
(Chakraborty et al. 2011).

ROLE OF BIOPRIMING IN RESISTANCE
AGAINST BIOTIC STRESSES

Biopriming has been applied in various crops for the biocon-
trol of several diseases (Table 4). Abuamsha, Salman and Ehlers
(2011) applied Serratia plymuthica and P. chlororaphis to the dif-
ferent oilseed rape cultivars for the control of a pathogen Lep-
tosphaeriamaculans causing blackleg disease, and itwas observed
that disease extent was reduced up to 71.6% by S. plymuthica and
54% by P. chlororaphis. Seed biopriming gave the highest control
over Verticillium longisporum as compared to coating the bacte-
ria on the seeds (Müller and Berg 2008). Biopriming has been
reported to control damping-off disease in various crops such
as cucumber (Pill et al. 2009), maize (Callan, Mathre and Miller
1990), pea (Taylor, Harman and Nielsen 1994) and soybeans. Rao
et al. (2009) applied a biocontrol agent P. fluorescens through seed
biopriming and observed that incidence of Alternaria blight was
reduced and biopriming helped the plants to tolerate the dis-
ease incidence efficiently. Inmaize, biocontrol agent Trichoderma
harzianum was applied which resulted in better control of F. ver-
ticillioides and fumonisins (Nayaka et al. 2010). Similarly, different
biocontrol agents were applied to the seeds through bioprim-

ing, and better biocontrol was observed in radish (Kaymak et al.
2009), carrot (Jensen et al. 2004), sweet corn (Bennett 1997) and
pearl millet (Niranjan, Shetty and Shetty 2004).

Microbes capable of colonizing the rhizosphere and plant
roots can protect the plants to pathogens through antagonis-
tic interaction (Buchenauer 1998, Berg et al. 2001, Whipps 2001).
They can also induce systemic resistance to the plants which
can reduce the fungal infection (Compant et al. 2005). During
the seed germination, successful antagonizing microbe colo-
nization helps in reducing the pathogenic attack on the plant
(Weller 1983). They can also induce systemic resistance to the
plants which can reduce the fungal infection (Compant et al.
2005). Jensen et al. (2004) reported that death of carrot plants due
to seedborne pathogens such as Al. radicina and Al. dauci was
significantly reduced with biopriming of the seeds with Clonos-
tachys rosea and was as effective as use of fungicide iprodione.
Root rot caused by different pathogens such as Macrophomina
phaseolina, F. solani and Rhizoctonia solani was reduced in cow-
pea through biopriming of the seeds with T. harzianum by 56.3%–
64% at the pre-emergence and 57.1%–64% at the post-emergence
stage (El-Mohamedy, Abd-Alla and Badiaa 2006). In faba bean,
biopriming with different bacterial strains was tested to reduce
the incidence of root rot, and it was observed that use of the bio-
priming technique can be used as economical, safe and easy to
apply biocontrol method (El-Mougy and Abdel-Kader 2008). Tri-
choderma harzianum is themain focus of the researchers in terms
of biopriming and has been used widely in different crops. An-
other evidence of T. harzianumwith coapplication of P. fluorescens
and B. subtilis as biopriming significantly reduced the incidence
of root rot pathogenic disease caused by F. solani and R. solani in
pea under greenhouse and field conditions (El-Mohamedy and
Abd-El-Baky 2008).
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ECONOMICS OF BIOPRIMING

Several workers have encouraged this technique being a cost-
effective approach for the biocontrol of different pathogenic mi-
crobes (Rao et al. 2009) and application of beneficial bacteria to
the soil. Alongwith the crop productivity, biopriming can also be
favored as the potential technique for biocontrol of several plant
pathogens. Control of these plant pathogens is usually carried
out by using costly pesticides where we can promote this tech-
nique as dual purpose technology enhancing the plant produc-
tivity and stress resistance side by side.

CONCLUSION AND FUTURE PROSPECTS

Regarding the application of the bacteria, it has been explained
by the scientists that biopriming can be used effectively in ap-
plication of the bacteria as it gives enough number of bacteria
in the seeds. Competition of the our desired inoculants with lo-
cal bacteria is also a problem which can be addressed by bio-
priming as our desired bacteria will already be inside the seeds
reducing the chance of desiccation as well as harmful effects
of any pesticides applied to the field. On the other basis, it can
also be an alternative approach for the application of bacteria
to small seeded crops which can imbibe the bacterial suspen-
sion resulting in entrance of bacteria inside the seed. Bioprim-
ing gives equal or better control against several root rot diseases
so can be used commercially as an alternative to fungicides suc-
cessfully. In the application, there is need to search for the more
better media for application due to cost hurdles which can def-
initely be reduced by further research. Second, this method can
be implied to other crops yet not experimented which will give
better picture of potential of this technology.

Conflict of interest. None declared.
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Sahin F, Çakmakçi R, Kantar F. Sugar beet and barley yields in
relation to inoculation with N2-fixing and phosphate solubi-
lizing bacteria. Plant Soil 2004;265:123–9.

Salantur A, Ozturk A, Akten S et al. Effect of inoculation with
non-indigenous and indigenous rhizobacteria of Erzurum
(Turkey) origin on growth and yield of spring barley. Plant Soil
2005;275:147–56.

Saravanakumar D, Lavanya N, Muthumeena B et al. Pseudomonas
fluorescens enhances resistance and natural enemy popula-
tion in rice plants against leaf folder pest. J Appl Entomol
2008;132:469–79.

Scher FM, Kloepper JW, Singleton C et al. Colonization of soy-
bean roots by Pseudomonas and Serratia species: relationship
to bacterial motility, chemotaxis and generation time. Phy-
topathology 1988;78:1055–9.

Scot RI, Chard JM, Hocart MJ et al. Penetration of potato tuber
lenticels by bacteria in relation to biological control of black-
leg disease. Potato Res 1996;39:333–44.

Sharifi RS. Study of grain yield and some of physiological growth
indices in maize (Zea mays L.) hybrids under seed bioprim-
ing with plant growth promoting rhizobacteria (PGPR). J Food
Agric Environ 2011;189:3–4.

Sharifi RS. Study of nitrogen rates effects and seed biopriming
with PGPR on quantitative and qualitative yield of Safflower
(Carthamus tinctorius L.). Tech J Eng Appl Sci 2012;2:162–6.

Sharifi RS, Khavazi K. Effects of seed priming with plant growth
promotion rhizobacteria (PGRP) on yield and yield attribute
ofmaize (Zea mays L.) hybrids. J Food Agric Environ 2011;9:496–
500.

Sharifi RS, Khavazi K, Gholipouri A. Effect of seed priming with
plant growth promoting Rhizobacteria (PGPR) on dry matter
accumulation and yield ofmaize (Zea mays L.) hybrids. Int Res
J Biochem Bioinf 2011;1:76–83.

Simons M, Permentier HP, deWeger LA et al. Amino acid synthe-
sis is necessary for tomato root colonization by Pseudomonas
fluorescens strain WCS365. Mol Plant-Microbe In 1997;10:102–6.

Smith RS. Legume inoculant formulation and application. Can J
Microbiol 1992;38:485–92.

Sørensen J, Sessitsch A. Plant-associated bacteria lifestyle and
molecular interactions. In: van Elsas JD, Jansson JK, Trevors

JT (ed.).Modern Soil Microbiology. 2nd edition. CRC Press, 2006,
211–36.

Soto MJ, Sanjuán J, Olivares J. Rhizobia and plant-pathogenic
bacteria: common infection weapons. Microbiology
2006;152:3167–74.

Spaepen S, Vanderleyden J, Remans R. Indole-3-acetic acid in
microbial andmicroorganism-plant signaling. FEMSMicrobiol
Rev 2007;31:425–48.

Srinivasan K, Gilardi G, Garibaldi A et al. Bacterial antagonists
from used rockwool soilless substrates suppress Fusarium
wilt of tomato. J Plant Pathol 2009;91:147–54.

Sriprang R, Hayashi M, Ono H et al. Enhanced accumulation of
Cd2+ by a Mesorhizobium sp. transformed with a gene from
Arabidopsis thaliana coding for phytochelatin synthase.Appl
Environ Microb 2003;69:1791–6.
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