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ABSTRACT 

The obesity epidemic continues unabated and currently available pharmacological 

treatments are not sufficiently effective. Combining gut/brain peptide, GLP-1, with estrogen 

into a conjugate may represent a novel, safe and potent, strategy to treat diabesity. Here we 

demonstrate that the central administration of GLP-1-estrogen conjugate reduced food 

reward, food intake, and body weight in rats. In order to determine the brain location of the 

interaction of GLP-1 with estrogen, we avail of single-photon emission computed 

tomography imaging of regional cerebral blood flow and pinpoint a brain site unexplored for 

its role in feeding and reward, the supramammillary nucleus (SUM) as a potential target of 

the conjugated GLP-1-estrogen. We confirm that conjugated GLP-1 and estrogen directly 

target the SUM with site-specific microinjections. Additional microinjections of GLP-1-

estrogen into classic energy balance controlling nuclei, the lateral hypothalamus (LH) and the 

nucleus of the solitary tract (NTS) revealed that the metabolic benefits resulting from GLP-1-

estrogen injections are mediated through the LH and to some extent by the NTS. In contrast, 

no additional benefit of the conjugate was noted on food reward when the compound was 

microinjected into the LH or the NTS, identifying the SUM as the only neural substrate 

identified here to underlie the reward reducing benefits of GLP-1 and estrogen conjugate. 

Collectively we discover a surprising neural substrate underlying food intake and reward 

effects of GLP-1 and estrogen and uncover a new brain area capable of regulating energy 

balance and reward. 
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1.0 INTRODUCTION 

The obesity epidemic continues unabated and is associated with adverse health 

consequences - diabetes, cardiovascular disease, disability, and increased cancer risk. The 

currently available pharmacological treatments are less efficient than expected. Therefore, 

there is an urgent need for novel therapies that reduce body weight more potently than 

currently available pharmaceutics without producing undesirable side effects. One potential 

way to achieve a more potent weight loss may be by combining multiple anti-obesity drug 

targets in one molecule. Polypharmaceutical approaches, for example targeting the incretin 

system with a unimolecular glucagon-like peptide 1 (GLP-1)-estrogen co-agonist, offer 

promising solutions to treat diabesity (Finan et al., 2012). 

GLP-1, a gut/brain peptide primarily produced in the intestinal tract in response to ingested 

nutrients and by the neurons of the nucleus of the solitary tract (NTS) of the brainstem 

(Holst, 2007), gained interest due to its glucoregulatory (Drucker, 2006) and appetite 

suppressing effects (Barrera et al., 2011). The highly selective GLP-1 receptor (GLP-1R) 

agonist, Exendin-4 (Ex4), is approved as antidiabetic agent in the treatment of type 2 

diabetes (Byetta®) and anti-obesity treatment (Saxenda®). The steroid hormone estradiol, 

mainly produced by the ovaries, has also been implicated as a potential anti-obesity agent 

(Mauvais-Jarvis et al., 2013). However, the reproductive endocrine toxicity and oncogenicity 

limit its clinical application. 

The conjugation of GLP-1 to estrogen allows for specific delivery of estrogen to GLP-1R 

expressing tissues without producing the undesirable side effects. In addition, this selective 

targeting of estrogen receptors to GLP-1R expressing cells is much more effective in reducing 

obesity and improving dyslipidemia and hyperglycemia than activation of either GLP-1 or 

estrogen receptors alone (Finan et al., 2012). The site of action of the weight and food intake 

reducing impact remains unknown. Here we hypothesize that the anti-obesity action of the 

conjugated GLP-1-estrogen is mediated by its direct action on CNS GLP-1 and estrogen 

receptors (ER), which are co-expressed in several brain areas regulating homeostatic feeding 

behavior and metabolism (Shughrue et al., 1997; Merchenthaler et al., 1999).  Hedonically 

driven feeding may be one of the key components driving overeating (Berthoud, 2002, 2011, 

Alsio et al., 2012). Furthermore the potential impact of the GLP-1-estrogen conjugate on 

food-reward behavior has not yet been explored. 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

4 

 

In the present study we determine whether peripheral or central co-activation of GLP1 and 

estrogen receptors impacts on food-reward behavior. Using single-photon emission 

computed tomography (SPECT) imaging of regional cerebral blood flow (Kolodziej et al., 

2014) and site-specific microinjections we identify the supramammillary nucleus (SUM), a 

brain area largely unexplored for its role in feeding or reward, as a potential target for the 

synergistic activity of the conjugate to regulate food reward. The latter finding not only 

reveals a surprising neural substrate underlying food intake and reward effects of GLP-1 and 

estrogen but also uncovers a new brain area capable of regulating energy balance and 

reward. 

2.0 MATERIAL AND METHODS 

2.1 Animals: Adult Sprague-Dawley rats (200-250 g, Charles River, Germany) were housed in a 12-

hour light/dark cycle (lights on at 6 am) with regular chow and water available ad libitum in their 

home cages. All experiments were performed in male rats as the initial study by Finan et al. (2012) 

already demonstrated that the GLP-1-estrogen conjugate exerts the metabolic benefits 

independently of the gender. All animal procedures with rats were carried out with ethical 

permission and in accordance with the University of Gothenburg Institutional Animal Care and Use 

Committee guidelines. For functional neuroimaging adult eight week old male C57Bl/6 mice (Charles 

River, Germany) were used and studies were carried out in accordance with the German animal 

welfare laws and approved by the animal ethics committee of Sachsen-Anhalt. 

2.2 Brain surgery: Brain cannulation was performed as previously described (Skibicka et al., 2011). 

Briefly, rats were implanted with a guide cannula under ketamine/xylazine anesthesia at the 

following coordinates: lateral ventricular guide cannula (26 gauge, Plastics One Roanoke, VA, USA; 

coordinates: ±1.6 mm from midline, 0.9 mm posterior to bregma, and 2.5 mm ventral from the 

surface of the skull, with injector aimed 4.5 ventral to skull); ventral tegmental area (VTA) guide 

cannula (±0.75 mm from midline, 5.7 mm posterior to bregma, and 6.5 mm ventral from the surface 

of the skull, with injector aimed 8.5 ventral to skull; (Skibicka et al., 2011); SUM guide cannula (on the 

midline, 4.7 mm posterior to bregma, and 7.1 mm ventral from the surface of the skull, with injector 

aimed 9.1 ventral to skull); lateral hypothalamus (LH) guide cannula (±1.5 mm from midline, 2.8 mm 

posterior to bregma, and 6.8 mm ventral from the surface of the skull, with injector aimed 8.8 

ventral to skull); NTS guide cannula (±0.75 mm from midline, on occipital suture, and 6.9 mm ventral 

from the surface of the skull, with injector aimed 8.9 ventral to skull, modified from Richard et al. 

(2015); were attached to the skull with dental acrylic and jeweler`s screws. Following a surgical 

recovery period (7 days) placement of the lateral ventricle cannula was verified by angiotensin II (2 
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µl; 10 ng/µl) administration. Rats, which consumed >5 ml/ water within 30 min following injection of 

angiotensin II were included in the studies. Correct placement of the VTA, LH and SUM cannula was 

confirmed post mortem by injection of India ink at the same microinjection volume as used for the 

experiment. NTS injection sites were evaluated by injection of 24 μg of 5-thio-d-glucose in 0.3 µl of 

aCSF, which induce a sympathoadrenal-mediated glycemic response if the injections correctly reach 

the NTS (Ritter et al., 1981). Only rats with correct placement were included in the study. 

2.3 Drugs: GLP-1 control compound and GLP-1-estrogen stable conjugate were provided by R. 

DiMarchi (Indiana University, Bloomington, IN, USA). The conjugate is likely to target nuclear ER, both 

ERα and ERβ may have a contribution since we previously demonstrated that both ER knockout mice 

have a blunted effect of the conjugate (Finan et al., 2012). The conjugate initiates the classic 

estrogen responsive element (ERE)-mediated transcriptional events, though a contribution from 

plasma membrane receptors cannot be excluded (especially considering the relatively rapid onset of 

the conjugate impact on reward). In the first study we confirmed that estrogen attachment does not 

influence the inherent activity of the peptide as the binding affinity and the biochemical signaling 

potency of the conjugate is similar to the parent peptides (Finan et al., 2012). This allows the ligand-

activated endocytosis of GLP-1R at target cells and finally drives the intracellular transport of the 

conjugated estrogen to reach the intracellular receptors (Finan et al., 2012). We previously reported 

that for all metabolic parameters measured the stable conjugate offered an advantage compared to 

the GLP-1 compound alone, or compared to a labile conjugate, with a 7.5% weight loss in mice given 

the labile conjugate and 23% weight loss in mice that received the stable conjugate (Finan et al., 

2012). Food intake followed the same pattern. Since the labile conjugate did not have any additional 

benefits over GLP-1 alone it was proposed that the efficacy of the conjugate likely relies on 

concentrating the estrogen into energy balance relevant tissues, since the estrogen is guided by GLP-

1 and released intracellularly only in tissues expressing GLP-1 receptors. Importantly, the conjugate 

was not only designed to maximize the metabolic benefits above those of the single agonists but also 

to avoid the side effects often seen with GLP-1 activation and to bypass the reproductive endocrine 

toxicity and oncogenicity of estrogen (Finan et al., 2012). β-Estradiol was purchased from Sigma 

(E4389; St Louis, MO, US), dissolved in saline (vehicle for subcutaneous injections) or artificial 

cerebrospinal fluid (aCSF, Tocris, Bristol, UK, vehicle for central injections). 

2.4 Operant conditioning procedure: To test the impact of GLP-1-estrogen on food-motivated 

behavior the sucrose-driven progressive ratio (PR) operant conditioning test was used. Food-induced 

operant conditioning training and testing were performed in rat conditioning chambers (30.5 x 24.1 x 

21.0 cm; Med-Associates, Georgia, VT, USA) containing a metal grid floor, two retractable levers with 

light bulbs above, and a food pellet dispenser that can deliver 45 mg of sucrose pellets (Test Diet, 

Richmond, IN, USA). The training included four stages: first three sessions on fixed ratio (FR) starting 
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with FR1 (single press on the active lever = delivery of one sucrose pellet) followed by FR3 (3 

presses/pellet) and finally FR5 (5 presses/pellet), where a minimum of 50 presses per session was 

required to graduate to the next FR level. The FR5 was followed by the PR schedule where the cost of 

a reward was progressively increased (Skibicka et al., 2011). PR sessions were continued until a stable 

baseline (15% for three consecutive sessions) was reached. During the FR and the first three PR 

sessions all rats were mildly food restricted resulting in a gradual loss of about 10% of their initial 

body weight over a period of one week. 

For the drug testing the following conditions were used: (1) For subcutaneous (sc.) drug application 

(1 ml per kg body weight): vehicle, 2 µg GLP-1-estrogen, 1.87 µg GLP-1, and 0.13 µg estrogen per kg 

body weight. (2) For intracerebroventricular (ICV) drug application (1 µl): vehicle, 0.125 µg GLP-1-

estrogen, 0.117 µg GLP-1, and 0.008 µg estrogen. (3) For VTA (0.5 µl), and SUM (0.3 µl) drug 

application: vehicle, 0.075 µg GLP-1-estrogen, 0.07 µg GLP-1, and 0.005 µg estrogen. Satiated rats 

received the injections early in the light phase 90 min (sc. injections) or 30 min (central injections) 

before the 60 min sucrose reinforced PR operant conditioning. 

2.5 SPECT-imaging of regional cerebral blood flow: SPECT-imaging of rCBF was performed similarly 

as described in detail in Kolodziej et al. (2014). In brief, awake unrestrained C57Bl/6J mice were 

intravenously injected via jugular vein catheters with the blood flow tracer 99m-technetium 

hexamethylpropyleneamine oxime (99mTc-HMPAO) after treatment with GLP-1-estrogen, GLP-1, or 

PBS as control. After 99mTc-HMPAO-injection animals were anesthetized and scanned using a small-

animal SPECT/CT scanner. 99mTc-HMPAO is a lipophilic compound that, after flow-dependent wash-

in, is rapidly converted to a hydrophilic compound that remains trapped in the brain and shows no 

redistribution. The 99mTc-brain distribution as determined in anesthetized animals in the scanner 

thus reflects the spatial pattern of the average blood flow during the injection period in the awake 

state. Jugular vein catheters (ALZET, Cupertino, USA; 44.5 mm PU, OD: 0.84 mm, ID: 0.36 mm, 

connected to a 50 mm ALZET connection, OD: 1.02 mm OD, ID: 0.61 mm, total catheter length 9.5 

cm) were implanted into the right external jugular vein. Following a two days recovery period, mice 

were intraperitoneally injected either with 400 µg per kg body weight (1 ml per kg body weight) GLP-

1 (n=8), GLP-1-estrogen (n=7), or PBS (n=7). After substance application the jugular vein catheter was 

connected via a saline-filled Teflon tube (Tefzel-Tube, CS-Chromatographie Service GmbH, D-52379 

Langerwehe, Germany, OD: 1/16 inch ID: 0.5 mm) of 60 length to a saline filled syringe. 30 min after 

substance application a syringe filled with the 99mTc-HMPAO-injection solution was connected to 

the Teflon tube and the tracer injection started. 99mTc-HMPAO was freshly prepared from frozen 

aliquots of kit preparations for use in humans (Ceretec
TM

, GE-Healthcare, Buchler, Braunschweig, 

Germany) (Kolodziej et al., 2014). Compared to the previous study (Kolodziej et al., 2014) the 

HMPAO-concentration in the aliquots was doubled so that the volumes of the aliquots could be 
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reduced (125 µl as compared to 250 µl). Injections were made using a syringe pump (Harvard 

Instruments, Holliston, MA, USA). The tracer was injected over 18 ± 2 min. In principle, the tracer can 

be injected in much shorter time periods (Kolodziej et al., 2014). We here hypothesized that 

averaging blood flow over longer periods of time might be a more suitable approach for visualizing 

longer-lasting drug effects. The animals were injected with 99mTc-HMPAO-solutions in volumes of 

340 + 83 µl, the differences in volume being due to variations in 99mTc-contents in the eluate from 

the 99mTc-generators. The flow rate of the tracer-infusion pump was adjusted according to the 

differing volumes (16 µl to 25 µl/min) of the tracer-solutions. After tracer injection, animals were 

anesthetized with 2% isoflurane and transferred to the SPECT/CT-scanner (four-head 

NanoSPECT/CT
TM 

Mediso / Hungary). The amounts of 99mTc remaining in the syringe, and teflon 

tube were determined using a radionuclide calibrator (Aktivimeter Isomed 2010, Nuklear-Medizin-

Technik Dresden GmbH, Germany) and subtracted from the initial activity of the tracer solution to 

calculate the injected dose. The animals were injected on average with 60 ± 8 MBq of 99mTc. 

For SPECT/CT imaging mice were scanned under gas anesthesia (1.0 - 1.5% isoflurane in 2:1 O2:N2O 

volume ratio). CT and SPECT images were co-registered. CT scans were made at 45 kVp, 177 µA, with 

180 projections, 500 msec per projections, 96 µm isotropic spatial resolutions, and reconstructed 

with the manufacturer's software (InVivoScope 1.43) at isotropic voxel-sizes of 100 µm. SPECT scans 

were made using ten-pinhole mouse brain apertures with 1.0 mm pinhole diameters providing an 

isotropic spatial resolution of about 0.7 mm FWHM (Kolodziej et al., 2014). 24 projections were 

acquired during a total scan time of 2 hours. Axial FOV was 20.9 mm. Energy windows were set to the 

default values of the NanoSPECT/CT (140 keV +/- 5%). SPECT images were reconstructed using the 

iterative algorithm of the manufacturer's software (HiSPECT
TM

, SCIVIS, Goettingen) at isotropic voxel 

output sizes of 338 µm. 

For data analysis brain 99mTc-distributions were compared in mice injected with PBS; GLP-1, or GLP-

1-estrogen. SPECT/CT images were manually aligned to a high-resolution MR mouse brain data set 

(Ma et al., 2005) based on skull-landmarks of the CTs using the MPI-Tool
TM

 software (version 6.36, 

ATV, Advanced Tomo Vision, D-50169 Kerpen, Germany). SPECT brain data were cut out of the 

SPECT-data in the Osirix
TM

 DICOM-viewer (64-bit version 5.7.1) using a whole-brain volume-of-

interest (VOI) made from the template provided by Ma and colleagues (Ma et al., 2005). Brain SPECT 

data were global mean normalized using the MPI-Tool
TM

 software. In the voxelwise analysis unpaired 

t-tests were made to compare brain tracer distributions in PBS versus GLP-1 and GLP-1-estrogen 

using the MagnAn-software (version 2.4, BioCom GbR, D-90180 Uttenreuth, Germany). Following 

common procedures in small-animal radionuclide imaging (Endepols et al., 2010; Wyckhuys et al., 

2010; Thanos et al., 2013) uncorrected p-values were used. As a major result at the level of p<0.01 

we found when testing GLP-1-estrogen against PBS a deactivation in a mid-rostrocaudal part of the 
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cingulate cortex and a prominent activation centered on the SUM. Illustrations of the results were 

made in Osirix
TM

. Images in Osirix
TM

 were exported as TIFF files and arranged using the Photoshop
TM

 

software (version CS4). 

In order to calculate the differences in mean tracer uptake in the volume covered by the p<0.01 

voxels in the SUM-region in the probability maps, significant voxels from GLP-1-estrogen versus PBS 

injection extending from Bregma -2.1 to -2.8 according to Franklin and Paxinos (George Paxinos, 

2012) were grouped to one VOI using the Plugin function “Growing region” in Osirix
TM

. Compared to 

the PBS-group mean tracer uptake in this VOI increased by 12% in the GLP-1-estrogen group and by 

6% in the GLP-1 group.  

2.6 Chow intake and body weight: Immediately after operant testing rats were moved to their home 

cages and 1h and 24h chow intake was measured. Body weight was determined immediately before 

the injection and 24h postinjection. 

2.7 Pica response: To investigate whether GLP-1 injection induces malaise, the intake of kaolin 

(Research Diets, Lane New Brunswick, NJ, USA) (Mitchell et al., 1976), a non-nutritive substance, was 

measured in parallel to chow intake measurements. All rats were exposed to kaolin before the 

experimental injections. 

2.8 Locomotor activity: For activity measurements rats were injected centrally (ICV) with vehicle, 

GLP-1-estrogen, GLP-1 or estrogen, placed into the activity chamber 30 min later and spontaneous 

horizontal activity was recorded for 60 min. Rats had no access to food during the test. 

2.9 Statistical analysis: For statistical analysis all parameters were initially tested with Levene´s 

statistics for homogeneity of variances. At equal variances data were analyzed by repeated measures 

analysis of variance (ANOVA) followed by post hoc Bonferroni test. If the variances were not 

homogeneous parameters were analyzed using the Generalized Linear Model. All statistical analyses 

were conducted using the SPSS software. A p-value <0.05 was considered significant and values are 

expressed as means ± SEM, unless otherwise stated.    

 

3.0 RESULTS AND DISCUSSION 

3.1 Subcutaneous co-activation of GLP-1 and estrogen receptors reduces body weight and 

food reward. 

Given the initial data of Finan et al., (2012) demonstrating the anorexigenic properties of the 

GLP-1-estrogen conjugate in mice we first tested whether peripheral injection of GLP-1-

estrogen in rats can similarly reduce food intake and body weight. In rats, a single peripheral, 

s.c., injection of GLP-1-estrogen (2 µg/kg) significantly decreased body weight and 24h food 
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intake (Figure 1a,b), whereas 1h chow intake was unaltered in all groups (data not shown). 

The equimolar doses of GLP-1 or estrogen alone were subthreshold for the anorexic effect, 

indicating a synergistic effect of GLP-1-estrogen combination. The reduced feeding response 

in GLP-1-estrogen treated animals was not accompanied by the induction of a malaise 

response, as the ingestion of kaolin (a pica response) was similar in all compared groups 24h 

postinjection (Figure 1b). We have previously shown that in mice the weight loss after the 

conjugate administration is primarily due to fat loss (Finan et al., 2012). While water intake 

was not measured in the current study, recent literature suggests it is possible that GLP-1 

alone reduces water intake (McKay et al., 2011, McKay and Daniels, 2013) in addition to 

reducing food intake, it is less likely, however, that the conjugate further reduced water 

intake since to date the water intake reducing effects of estrogen were primarily seen in 

females (Santollo and Daniels, 2015), and the current study is performed in males. 

Furthermore the conjugate is equally effective at reducing body weight in males and females 

(Finan et al., 2012).  

GLP-1 effects on body weight regulation and feeding are largely mediated by the CNS.  

Recent literature demonstrates that peripheral or central application of GLP-1 or GLP-1 

analogs into the VTA, NAc, NTS, or parabrachial nucleus alters food-reward behavior 

(Dickson et al., 2012; Alhadeff et al., 2014; Richard et al., 2015). NTS GLP-1-producing 

neurons project directly to the mesolimbic VTA and NAc (Rinaman, 2010; Dossat et al., 2011; 

Alhadeff et al., 2012; Dickson et al., 2012). So far the impact of estrogen on food-motivated 

behavior is largely unknown. To determine whether the GLP-1-estrogen conjugate can 

change the motivational value of palatable food, a correlate of food-reward behavior 

(HODOS, 1961), we examined the number of sucrose rewards earned under a progressive 

ratio (PR) reinforcement schedule after peripheral, s.c., administration of the GLP-1, 

estrogen or the conjugate of the two. Conjugate-injected rats reduced food-motivated 

behavior to a greater extent than rats treated with vehicle, estrogen, or GLP-1 alone as the 

number of active-lever presses (Figure 1c) and sucrose pellets earned (Figure 1d) were 

significantly decreased. Taken together these data demonstrate a new role for conjugating 

GLP-1 with estrogen in regulation of food reward. The potentiated reward-suppression of 

these two substances applied together is in line with recent findings demonstrating that 

estrogen is a critical regulator of the impact of a GLP-1 analogue, exendin-4, on food reward 

in both males and females (Richard et al., 2016).   
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3.2 Central co-activation of GLP-1 and estrogen receptor is sufficient to decrease food 

intake and food reward. 

Central activation of GLP-1R reduces food intake, whereas central GLP-1R blockade induces 

hyperphagia (Tang-Christensen et al., 1996; Turton et al., 1996; Schick et al., 2003). Several 

studies documented that estradiol (E2) suppresses food intake via central ERα and ERβ 

(Heine et al., 2000; Geary et al., 2001; Asarian and Geary, 2002; Liang et al., 2002; Gao et al., 

2007). Here we demonstrate that central, ICV, application of GLP-1-estrogen was sufficient 

to reproduce the effect of peripheral injection on body weight and chow intake (Figure 2a,c), 

whereas 1h food intake was unaffected (Figure 2b). Conjugate injection was more effective 

at reducing body weight and food intake than estrogen alone and tended to be more potent 

in comparison to GLP-1, though this difference did not reach significance. The significantly 

reduced 24h chow intake after central injection of GLP-1-estrogen or GLP-1 was not 

accompanied by a malaise response (Figure 2c). We then examined whether central co-

activation of GLP-1 and estrogen receptors affects food-motivated behavior. Acute central 

GLP-1-estrogen treatment significantly reduced operant PR response for sucrose, whereas 

the equimolar doses of GLP-1 or estrogen failed to reduce food reward when applied 

individually (Figure 2d,e). Moreover, in a separate experiment, GLP-1 or GLP-1-estrogen did 

not affect general locomotor activity at doses that significantly reduced chow intake and 

food-motivated behavior (Figure 2f). These data support a role of the CNS in mediating GLP-

1-estrogen effects on food intake and reward. We additionally show for the first time that 

the beneficial metabolic effects of GLP-1 and estrogen stimulation are not necessarily 

accompanied by general locomotor impairment or malaise, side-effects often seen with GLP-

1 activation in rodents or humans, at the doses used in the study (Turton et al., 1996; Seeley 

et al., 2000; Kinzig et al., 2002; Madsbad et al., 2011; Dickson et al., 2012). It is of course 

possible that the results obtained would differ if higher doses of the conjugate or GLP-1 

were used than those applied in the current study. 

 

3.3 The supramammillary nucleus (SUM) is a direct target site for GLP-1-estrogen actions 

on body weight, food intake, and food-motivated behavior 

To find the CNS-sites underlying GLP-1-estrogen driven food reward changes we used a 

recently developed SPECT-imaging of regional cerebral blood flow (Kolodziej et al., 2014) as 
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a screening tool. The voxelwise analysis revealed significant differences in rCBF after 

intraperitoneal injection of GLP-1-estrogen, and GLP-1 in contrast to vehicle-treated animals 

at p<0.001 (Figure 3 and Supplementary Figure 1). The 99mTc brain uptake was significantly 

increased after GLP-1-estrogen injection in an area extending from the SUM to the posterior 

hypothalamus and substantia nigra and was significantly reduced in the cingulate area as 

compared to vehicle injections (Figure 3a and Supplementary Figure 1a). Few significant 

voxels were also detected in the left primary somatosensory cortex and left dorsal thalamus 

indicating reduced rCBF after GLP-1-estrogen injection in these regions (Supplementary 

Figure 1b). After injection of GLP-1 the 99mTc brain uptake was found to be significantly 

reduced in the left ectorhinal/entorhinal area and in few voxels within the primary 

somatosensory cortex (Supplementary Figure 1c,d). Isolated voxels indicating increased rCBF 

after injection of GLP-1 were found in the right amygdala, cingulum/anterior cingulate area 

and left superior colliculus (Supplementary Figure 1c,d). If the significance level is increased 

to p<0.01, a significant increase in rCBF was also found in the SUM and posterior 

hypothalamus after GLP-1 injection alone (Figure 3b). VOI analysis, representing the mean 

differences within the SUM/posterior hypothalamus after injection of GLP-1-estrogen, GLP-

1, or vehicle obtained from added global mean normalized data of single animals, revealed 

an increase in 99mTc uptake in this region from vehicle injection (1.10 µ) to GLP-1 injection 

(1.17 µ) and to GE injection (1.25 µ) of about 6% in each case (Figure 3c,d). Thus, SPECT-

imaging revealed the SUM as the main GLP-1-estrogen target area. The SUM is rather 

unexplored in the fields of energy balance regulation or reward. Nevertheless, a few studies 

have suggested that the SUM may participate in reward and feeding control. The medial part 

of SUM contains dopamine neurons and receives dense projections from the LH, including 

LH orexin neurons (Peyron et al, 1998; Swanson, 1982). Administration of GABAA receptor 

antagonists into the SUM potently induces intracranial drug self-administration. This nucleus 

also mediates reward triggered by administration of nicotine or the glutamate receptor 

agonist AMPA (Ikemoto et al., 2004, 2006). ERβ, GPR30, and GLP-1R have been detected in 

the SUM (Shughrue et al., 1997; Merchenthaler et al., 1999; Hazell et al., 2009) suggesting a 

potential for a direct effect of the GLP-1-estrogen in this area. GLP-1-estrogen injections into 

the SUM performed next further supported this idea as the sucrose-driven food reward and 

chow intake after GLP-1-estrogen administration were reduced to a much greater extent 

than by estrogen or GLP-1 alone (Figure 4a-d). It is impossible to entirely exclude the 
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possibility that some injection fluid also reached the VTA, the neighboring structure that co-

express GLP-1 and estrogen receptors (Shughrue et al., 1997; Merchenthaler et al., 1999). 

However, current results demonstrate that the conjugate is ineffective at the level of the 

VTA (Figure 4f). The administration of GLP-1 alone into the VTA resulted in a significant 

suppression of food reward, which is consistent with previous findings (Dickson et al., 2012). 

Thus we show that, surprisingly, traditional reward-controlling areas do not contribute to 

the reward-suppressing effect of the conjugated GLP-1 with estrogen but instead discover a 

novel candidate area, the SUM, to underlie the reward-reducing impact of GLP-1-estrogen. 

Since both, GLP-1 and estrogen receptors, are present in the SUM and direct intra-SUM 

microinjections of GLP-1-estrogen potently suppressed food reward it is reasonable to 

conclude that the molecule hybrid targets the reward system through a direct action in the 

SUM. Accordingly we demonstrate that brain circuitry beyond the classical mesolimbic 

dopaminergic system drives food-motivated behavior and place the SUM on the food reward 

regulation map certainly warranting future studies on the role of this nucleus in regulation of 

food reward. 

 

3.4 GLP-1-estrogen enhances the metabolic benefits when injected into the LH and the NTS 

Since both, GLP-1R and ER, are also co-expressed in more classical energy balance regulating 

areas (Shughrue et al., 1997; Merchenthaler et al., 1999) we determined whether these sites 

comprise the CNS target sites of GLP-1-estrogen actions on energy homeostasis. The 

compounds were microinjected into the LH and the NTS; brain areas associated with feeding 

behavior control (Schwartz, 2006; Simpson et al., 2009). The LH was a highly sensitive target 

site for the body weight reduction of the conjugate (Figure 5a). Although the NTS GLP-1-

estrogen injections failed to reach significance there was an obvious trend (p=0.16) to body 

weight reduction. In addition targeting of the LH and NTS with the GLP-1-estrogen 

compound induced a robust reduction in 24h feeding response (Figure 5b). Moreover, in 

both cases conjugate injection was more efficacious at lowering body weight and food intake 

than either GLP-1 or estrogen alone. Thus, by site-specific injections we demonstrate that 

the LH and to some extent the NTS are involved in GLP-1-estrogen synergy on food intake 

and body weight regulation.  These results are in line with previous literature suggesting 

these two brain nuclei are key neural substrates for energy balance effects of GLP-1. Direct 

administration of GLP-1 into the LH significantly reduces food intake, whereas injection of 
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Ex9 increases food intake (McMahon and Wellman, 1998; Schick et al., 2003) indicating a 

physiological role of GLP-1R in this area in feeding behavior control.  

In addition, neuronal processing restricted to the NTS was also sufficient to mediate the 

intake-suppressive effects of the conjugate. The NTS is the first central area processing the 

gastrointestinal signals to the brain. Vagal-afferent signals synapse in specific subnuclei 

within the NTS to regulate food intake (Schwartz, 2000). Direct NTS injections of Ex9 or 

knockdown of preproglucagon, the precursor of GLP-1, in the NTS causes hyperphagia and 

weight gain (Hayes et al., 2009; Barrera et al., 2011). Activation of GLP-1R in the NTS, by 

direct injection of GLP-1 or Ex4, reduces both food intake and engages NTS noradrenergic 

neurons (Richard et al., 2015). Also estrogen can act via ERα on NTS neurons to inhibit 

feeding (Asarian and Geary, 2007; Thammacharoen et al., 2008). Current data indicating a 

potent food-intake reduction after intra-NTS conjugate infusion are in line with these 

previous studies showing a role for both GLP-1 and estrogen in NTS in food intake regulation. 

That both hindbrain and hypothalamic nuclei have a key contribution to the anorexic 

properties of GLP-1-estrogen is perhaps not surprising considering that the neural control of 

energy balance is distributed across the neuraxis and many food intake regulating signals 

exert a similar effect from several CNS sites (Grill, 2006; Skibicka and Grill, 2009, Kanoski et 

al. 2016). We also note that the SUM, LH and NTS may not be the only neural substrates 

targeted by the conjugate, and further studies examining more metabolic parameters (for 

example blood glucose changes) and different time points may reveal additional neural 

targets. One such possible target is the arcuate nucleus, suggested to be a important 

mediator of food intake effects of GLP-1R activation by some studies (Beiroa et al., 

2014)(Secher et al., 2014), or an important mediator of blood glucose changes induced by 

GLP-1 by other studies (Sandoval et al., 2008). 

Recent literature demonstrates that peripheral or central application of GLP-1 or GLP-1 

analogs into the VTA, NAc, NTS, or parabrachial nucleus alters food-reward behavior 

(Dickson et al., 2012; Alhadeff et al., 2014; Richard et al., 2015). NTS GLP-1-producing 

neurons project directly to the mesolimbic VTA (Rinaman, 2010; Dossat et al., 2011; Alhadeff 

et al., 2012; Dickson et al., 2012). So far the impact of estrogen on food-motivated behavior 

is largely unknown. Nevertheless, a wide range of behaviors and neurobiological 

mechanisms are modulated by estrogen, including alterations in a conditioned place 

preference test and the neuroprotection of dopamine cells (Küppers et al., 2000; Walf et al., 
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2007). In the current study microinjections of GLP-1-estrogen into the traditional reward-

associated area, the VTA, failed to show a synergistic effect of the conjugate in food-

motivated behavior changes. Thus we speculated that, in addition to SUM, the LH may be 

another good candidate neural substrate for the GLP-1-estrogen impact on food reward 

since the LH also regulates reward behavior and serves as an interface between the 

hypothalamus and the mesolimbic system (Geisler and Zahm, 2005; Teitelbaum and Epstein, 

1962; Thompson and Swanson, 2010). While microinjections into the LH revealed a 

significantly suppressed food reward by GLP-1-estrogen, GLP-1 alone reduced reward to the 

same level (Figure 5c) indicating that estrogen and GLP-1 do not synergise to reduce food 

reward in the LH. Similar results were obtained with the intra-NTS microinjections, indiating 

that consistent with previous studies (Alhadeff and Grill, 2014, Richard et al., 2015) NTS is an 

important brain nucleus for GLP-1-induced reward supression, but does not play a role in the 

interaction of GLP-1 and estrogen to reduce food reward. These results highlight the 

differential responsivity of different neural substrates to the conjugate, and show that only 

select sites mediate the synergistic effects of the conjugate. Thus it is possible that our effect 

in ventricle-injected animals gets diluted since it provides access to many GLP-1 expressing 

sites, many of which may not participate in the added benefit of combining GLP-1 with 

estrogen, in contrast to the injection performed at other sites (eg SUM).  

In summary, microinjections into key energy balance controlling nuclei revealed that the 

metabolic benefits resulting from GLP-1-estrogen injections are mediated through the LH 

and to some extent by the NTS. In contrast, no additional benefit of the conjugate was noted 

on food reward when the compound was microinjected into the LH or the NTS, leaving the 

SUM as the only neural substrate identified here to underlie the reward reducing benefits of 

GLP-1 and estrogen conjugate. 

 

3.5 Conclusions 

In conclusion, the data presented here provide clear evidence that the CNS is a crucial target 

for GLP-1-estrogen mediated actions on energy homeostasis and outline a previously 

unidentified role of this compound on food reward. These new insights into the mechanisms 

of the combined GLP-1 and estrogen action highlight the therapeutic potential of a new class 

of polypharmaceutical agents for the treatment of the metabolic syndrome. To localize the 
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site of GLP-1-estrogen synergy on food reward we used a novel approach of functional 

neuroimaging. An important and unexpected finding of the present study is that coactivation 

of GLP-1 and estrogen receptors results in a unique activation of SUM, brain area clearly 

capable of regulating energy balance and reward that has not been previously indicated for 

this role. These findings may be clinically relevant, since peripheral injections, the application 

route used in diabetic and obese patients prescribed GLP-1-based drugs, activated the SUM.  
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Figure 1. Combining GLP-1 and estrogen in a subcutaneous injection was 

effective at reducing body weight and food reward. Conjugation of GLP-1 to 

estrogen led to a synergistic effect on weight loss (A) and anorexia (B), without 

inducing malaise as measured by the PICA response (B). The changes in weight 

and chow intake were associated with a striking suppression of sucrose-driven 

food reward behavior as indicated by reduced active lever presses (C) and 

rewards earned (D). Data represent mean ± SEM. *p<0.05, **p<0.01, 

***p<0.001 by comparing vehicle to compound injections unless otherwise 

stated. Differences between groups were calculated with repeated measures 

ANOVA followed by post hoc Bonferroni test (food intake 24h: F(3,45)=5.6, 

p<0.005; sucrose pellets: F(3,45)=24.4, p<0.0001) or generalized linear model 

(body weight change: Χ2
(3)=10.4, p<0.05; active lever presses: Χ2

(3)=45.1, 

p<0.0001). n=16.
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Figure 2. Central injection of GLP-1-estrogen was sufficient to reduce body 

weight and food reward.  Body weight was significantly reduced after central 

(intra lateral ventricle) injection of GLP-1 or GLP-1-estrogen conjugate (A). The 

impact of the treatment on food intake emerged at 24h after injection (B-C). No 

changes in malaise were noted (C). The sucrose-driven food reward behavior was 

suppressed by the GLP-1-estrogen conjugate as measured by reduced number of 

active lever presses (D) and sucrose pellets (E). Importantly the reduced reward 

behavior was not associated with non-specific reduction in general motor 

activity (F). Data represent mean ± SEM. *p<0.05, **p<0.01, ***p<0.001 by 

comparing vehicle to compound injections unless otherwise stated. Differences 

between groups were calculated with generalized linear model (body weight 

change: Χ2
(3)=15.4, p<0.005; ICV, food intake 24h: Χ2

(3) =25.5, p<0.00005; active 

lever presses: Χ2
(3)=19.4, p<0.0005; sucrose pellets: Χ2

(3)=26.8, p<0.0001). n=11-

12.
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Figure 3. SPECT-imaging revealed the supramammillary nucleus (SUM), a nucleus 

largely unexplored in the field of feeding and reward, as the main GLP-1-

estrogen target area. Differences in mean tracer uptake in the SUM region 

(arrow) after injection of GLP-1-estrogen (row A) and GLP-1 (row B) versus 

vehicle (PBS) and corresponding probability maps (A, B, right column) clearly 

indicate that blood flow in the SUM was increased specifically after the 

administration of GLP-1 conjugated to estrogen. Differences in mean tracer 

uptake were calculated from normalized group data. Increases in mean tracer 

uptake were displayed in red, decreases in blue. Mean tracer uptake within the 

SUM/posterior hypothalamus in GLP-1-estrogen, GLP-1, or PBS injected mice (C-

D). Hemisections of added global mean normalized data are shown in C. The ROI 

is highlighted in red including the SUM and posterior hypothalamus and provides 

a significant increase in tracer uptake after injection of GLP-1-estrogen 

(**p<0.001) and GLP-1 (*p<0.01) in comparison to PBS injection (D). G: GLP-1; 

GE: GLP-1-estrogen
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Figure 4. The SUM is a direct target site for the impact of the GLP-1-estrogen 

conjugate on food-motivated behavior. Intra-SUM microinfusion of GLP-1 

conjugated to estrogen, but not free GLP-1 or estrogen, reduced body 

weight (A) and food intake (B) but did not induce malaise measured by kaolin 

intake (B). Food reward was also potently reduced by intra-SUM 

microinfusion of both GLP-1 alone and GLP-1 conjugated to estrogen (C-D). 

Notably the conjugate resulted in a synergistic effect on both parameters of 

food-reward behavior (active lever presses (C) and number of sucrose 

rewards earned (D)). Representative tissue section demonstrating SUM 

injection site (left side) and corresponding rat brain atlas section (right side) 

(E). In contrast, the same dose of GLP-1-estrogen conjugate injected into the 

VTA, the well-established target of GLP-1R action of food reward, did not 

affect food-motivated behavior whereas injection of GLP-1 alone reduces the 

number of sucrose rewards. Active lever presses (F) and number sucrose 

rewards (G) earned in an operant lever-pressing paradigm after compound 

injection into the VTA (n = 21). VTA injection site and corresponding rat brain 

atlas section (H). Data represent mean ± SEM. *p<0.05, **p<0.01, 

***p<0.001 by comparing vehicle to compound injections unless otherwise 

indicated. Differences between groups were calculated with repeated 

measures ANOVA followed by post hoc Bonferroni (food intake 24h: 

F(3,33)=10.0, p<0.0001; VTA, active lever presses: F(3,60)=6.2, p<0.001 ; VTA, 

sucrose pellets: F(3,60)=5.6, p<0.01) or LSD test (body weight change: 

F(3,33)=4.9, p<0.001; SUM, sucrose pellets: F(3,33)=7.3, p<0.001) or generalized 

linear model (SUM, active lever presses: Χ2
(3)=17.3, p<0.001). SN: substantia 

nigra; SUM: supramammillary nucleus; Aq: aquaduct; cp: cerebral peduncle; 

ml: medial lemniscus; VTA: ventral tegmental area
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Figure 5. GLP-1-estrogen enhances the metabolic benefits when injected 

into the LH and the NTS. Microinjections of GLP-1-estrogen reduces (A) 24h 

body weight change and (B) 24h chow intake after compound injection into 

the LH and NTS (n=21). No beneficial effects were noted on food reward 

when GLP-1-estrogen was microinjected into the LH and NTS as the number 

of active lever presses (C) and sucrose pellets (D) earned in an operant lever-

pressing paradigm was reduced to the same level as GLP-1 alone. LH 

injection site and corresponding rat brain atlas section (E). Data represent 

mean ± SEM. *p<0.05, **p<0.01, ***p<0.001 by comparing vehicle to 

compound injections unless otherwise stated. Differences between groups 

were calculated with repeated measures (ANOVA) followed by post hoc

Bonferroni test (NTS, Food intake 24h: F(3,60)=4.6, p<0.01; LH, active lever 

presses: F(3,60)=6.4, p<0.001; LH, sucrose pellets: F(3,60)=13.5, p<0.001; NTS, 

active lever presses: F(3,60)=6.5, p<0.001; NTS, sucrose pellets: F(3,60)=10.0, 

p<0.0001) and Generalized Linear Model (LH, Body weight change: 

Χ2
(3)=72.8, p<0.0001; LH, Food intake 24h: Χ2

(3)=98.5, p<0.0001). LH: lateral 

hypothalamus; DMH: dorsomedial hypothalamus; VMH: ventromedial 

hypothalamus; Arc: arcuate nucleus
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Supplementary Figure 1. Differences in mean tracer uptake after injection of 

GLP-1-estrogen (row A-B) and GLP-1 (row C-D) versus vehicle (PBS) and 

corresponding probability maps (A-D, right column). The tracer uptake was 

significantly reduced after GLP-1-estrogen injection in the (A) cingulate area 

and (B) left primary sensory cortex. After injection of GLP-1 the tracer uptake 

was found to be reduced in the (C,D) left ectorhinal/entorhinal area and in 

few voxels within the primary somato sensory cortex and increased in the 

right amygdala, right cingulate area and left superior colliculus. Differences in 

mean tracer uptake were calculated from normalized group data. Increases 

in mean tracer uptake were displayed in red, decreases in blue. GE: GLP-1-

estrogen; G: GLP-1
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• estrogen (E) and GLP-1 interact to reduce body weight, food intake and food reward  

• this interaction can be localized to supramamillary nucleus (SUM)  

• and also to the lateral hypothalamus (LH) and nucleus of the solitary tract  

• SUM underlies anorexic, weight loss, and reward effects of GLP-1 and E conjugate 

• LH underlies only the anorexic and body weight effects the GLP-1 and E conjugate 

• SUM is a novel brain area capable of exerting effects on energy balance and reward 


