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Abstract
The collection of high-resolution temporal data from complex molecular biolog-
ical systems has become of great importance over the past decades. Further, the
quality of available data has reached high standards, allowing a complex study
of dynamical evolution in biological systems. Hypotheses are usually investi-
gated with statistical and mathematical methods with conclusions based on the
collected data. Such methods range from functional data analysis to ordinary dif-
ferential equations, approximating the temporal measurements by flexible smooth
functions or modelling the system and its relation to the change of this system
over time mechanistically, respectively. With an increased quality and quantity of
available temporal data, new research possibilities are created. Corresponding sta-
tistical or mathematical methods often perform, however, unsatisfactorily by not
considering the full information. As a result, the applied methods are either not
capable or unavailable of handling new research challenges. The application of an
inappropriate method might lead to false conclusions and thus corrupt the estab-
lished work-flow of data generation, data analysis and conclusion statements. In
the present thesis, we consider the analysis of data from biological systems where
knowledge about a certain system is available and yet some indeterminacies about
the system remain. Because the system cannot be fully described our approach re-
lies on modelling of the underdetermined parts with novel techniques. We identify
three such situations where a novel statistical tool is able to substantially increase
the modelling possibilities and at the same time reduce the system indetermina-
cies. First, we employ data modelling by a significance test for difference between
two groups of paired temporal observations. Next, we mechanistically study and
describe biological networks and consider a change in network topology through
additional latent components if a network extension in required. Finally, we build
up our network extension approach and generalize it to non-linear extensions by
studying catalysis in the biological system. In each of the three situations, we
propose a novel method which is either able to outperform existing ones or its
application suggests additional aspects on the regulation and composition of the
studied biological systems. Each method is thoroughly evaluated on a large num-
ber of simulated data scenarios. Moreover, we investigate real-world data exam-
ples where results suggest novel insights into the studied applications.



Zusammenfassung
Hochaufgelöste Zeitdaten aus der Molekularbiologie stehen in immer größerem

Umfang zur Verfügung. Dabei ist die Qualität dieser Daten zu neuen und höheren

Standards gestiegen. Datensammlungen solcher Art ermöglichen unter anderem

die Untersuchung dynamischer Verläufe biologischer Systeme. Hierbei werden

verschiedenste Hypothesen unter Anwendung von statistischen und mathema-

tischen Methoden zur Datenanalyse untersucht und Schlussfolgerungen auf der

Grundlage der gesammelten Daten gezogen. Solche Methoden reichen von der

Analyse funktionaler Daten, bei der die zeitlichen Messungen durch flexible glatte

Funktionen erklärt werden, bis hin zu gewöhnlichen Differentialgleichungen, die

mechanistisch eine Verbindung zwischen dem System und der Änderung des Sys-

tems über die Zeit modellieren. Die Erhöhung der Qualität und Quantität der

gemessenen Zeitdaten schafft neue Forschungsmöglichkeiten. Oft sind jedoch

die statistischen oder mathematischen Methoden, die zur Analyse verwendet wer-

den, teilweise ungeeignet, diese neuen Forschungsfragen zu untersuchen, da sie

z. B. nicht den vollen Informationsgehalt der Daten ausschöpfen. Die Anwendung

einer ungeeigneten Methode kann dabei zu falschen Folgerungen oder Behauptun-

gen führen und somit den Arbeitsablauf, bestehend aus Datengenerierung, Daten-

analyse und Schlussfolgerungen, negativ beeinflussen. In der vorliegenden Arbeit

betrachten wir die Analyse biologischer Systeme, für die bereits ein partielles Vor-

wissen besteht, aber auch einige Unbestimmtheiten über das System vorhanden

sind. Dementsprechend kann das System mit den ver-fügbaren Methoden nicht

ausreichend beschrieben werden.Wir zeigen neuartige Ansätze der Modellierung

und ermöglichen eine bessere Beschreibung der unbestimmten Teile des Systems.

Wir untersuchen drei Szenarien, in denen jeweils mit einem neuen statistischen

Werkzeug zusätzliche Modellierungs-möglichkeiten und gleichzeitig die Unbes-

timmtheiten im System reduziert werden. Zunächst beschäftigen wir uns mit

Datenmodellierung, indem wir einen Signifikanztest für den Unterschied zwis-

chen zwei Gruppen von gepaarten zeitlaufgelösten Beobachtungen entwickeln.

Als nächstes charakterisieren wir die mechanistische Kopplung von biologischen

Netzwerken und führen zusätzliche latente Komponenten in das Netzwerk ein,

falls die Notwendigkeit zur Netzwerkerweiterung identifiziert wird. Schließlich

bauen wir auf unserem Netzwerkerweiterungsansatz auf und verallgemeinern die



Methode auf nichtlineare Erweite-rungen durch Katalyse im biologischen Sys-
tem. In jedem der drei Fälle entwickeln wir eine neue Methode, die entweder in
der Lage ist, bestehende Methoden zu übertreffen, oder mit der wir zusätzliche
Aspekte zur Regulierung und Zusammensetzung des untersuchten biologischen
Systems aufzeigen. Jede Methode wird durch Anwendung auf zahlreiche Simula-
tionsstudien bewertet. Darüber hinaus wenden wir die Methoden auf reale Daten-
beispiele an. Dabei zeigen die Ergebnisse interessante und neue Erkenntnisse über
die untersuchten Systeme auf.
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1

Introduction

Statistics is the science which deals with modelling, analysis, classification, ex-

ploration, interpretation and visualization of data. Statistical tools are of general

interest and are used to combine statistics with diverse scientific fields such as

biology, chemistry, psychology, sociology, economics, medicine and many more.

Especially in life sciences, statistics has become an unavoidable partner for draw-

ing conclusions and making sense of the collected experimental data. Such con-

clusions aim to manifest propositions for a much broader picture than only the

analysed data. Here, exactly the fundamentals of statistics come into play. One

basic principal of statistics states that if the data is a valid sample of a general

population, the conclusions drawn from its analysis are valid for the general pop-

ulation.

In the present thesis, we develop novel statistical methods to study biological

data and thus couple both sciences. Undoubtedly biological studies were often

conducted with the help of statistics on many occasions in history (Bliss [1970];

Cleland [1967]; Mather [1943]; May et al. [1976]; Pearl [1977]; Ptitsyn [1969]).

Interestingly, biological experiments always have some fluctuations even when

performed under the exact same conditions. This is very much in concordance

with statistics where models are developed which gain knowledge from these fluc-

tuations and at the same time put them in an interpretable context. Increasing

availability of biological experiments and corresponding data opens up additional

possibilities for the exploration of many novel biological phenomena.

In the ages of big data (Marx [2013]; Stephens et al. [2015]), it is possible to study
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such phenomena in a way that was not possible due to e. g. financial limitations

of data generation a decade ago. For example, the cost for sequencing a whole

human genome is currently estimated to be approximately US$1,000 (Stephens

et al. [2015]), which means that it was reduced by more than ten thousand times

in the range of only ten years (Wetterstrand [2015]). At the same time, technical

advances allow the generated data to be of higher accuracy and the process of data

generation is speeded up enormously. With data generation at such pace, many

additional experimental designs can be performed realistically nowadays. This

involves not only the replication of a certain experiment but also several other as-

pects such as studying a fine temporal development of variables and thus better

understanding the underlying mechanisms of the studied phenomenon. The gen-

eration of new types of data naturally calls for the development of new techniques

for analysis.

New methods are also developed to improve existing ones. This holds true not

only for experimental methods where technological advances allow measurement

of new types of data but it definitely also holds true for statistical and mathematical

methods. Improving an established method can be advantageous is many aspects

such as computational time, precision or reliability. Improvement can further be

motivated by different angles or perspectives of looking at the same project and

the same data.

For a deeper understanding of biological systems, a statistician formulates a model,

which serves as a tool for assessment of one or multiple hypotheses of interest.

When formulating a model for a given biological process, one aims to use the

model with respect to two things. First, the model should be able to be tuned to

explain the available data. Second, once this tuning is achieved, one is interested

in further characteristics which can be extracted from the model. Such character-

istics are model prediction, model selection or hypothesis evaluation. All of these,

however, are not of much help for drawing any conclusions if the first step – the

formulation and tuning of a model – is unsuccessful. On the one hand, one of

the pitfalls in modelling a complex biological system is choosing a model which

is heavily tailored only towards the analysed data. On the other hand, a too sim-

ple model may fail to detect important data details. A nice quote, which is often

attributed to Albert Einstein states ”Everything should be made as simple as pos-

sible, but no simpler”. This nicely illustrates the modelling dilemma.
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Statistical or mathematical modelling of complex biological systems in a compu-

tational context is nowadays referred to as systems biology. An excellent overview

over systems biology is available now for little over a decade (Kitano [2002a,b]).

Especially in systems biology, where usually the data is of high complexity, model

building or model formulation is a key responsibility for the statistician. In this

field data arises from different species, such as genes, enzymes or proteins. They

are organised in complex network structures which wire the different species to-

gether and aim to produce a broader picture of the studied system. Things get

even more complex when the data arising from such a network is not recorded at a

steady state of the network but is dependent on time. One then goes over to models

which concern the dynamics of a biological system using this temporal data. As

one example for temporal data consider measurements of the same subject over

the course of a certain time period. These could be monthly height and weight

measurements of newborn children in the first year of age. As a next example,

consider a biological experiment in which cells are cultured for a certain amount

of time and small parts of the cells are hourly extracted from the culture and pro-

tein expression is measured in the cells. However, once the cells are measured they

cannot be returned to the cell culture and are lost for the further experiment. These

two examples demonstrate that temporal data has many varieties which have to be

taken into account with respect to analysis.

In this thesis, we rely on modelling temporal data in two ways. First, we approx-

imate time courses of single biological species based on their raw observations as

smooth functions of time using methods from the field of functional data analy-

sis (Ramsay & Silverman [2005]). Such smooth functions have the advantage to

be extremely flexible and thus are able to explain a large variety of time courses.

Second, we also use differential equations (Coddington & Levinson [1955]; Ross

[1984]) for assessing not only the mechanic coupling of time points within one

species but also the dependency of several network species to each other. They

can be of great use to gain detailed insights of the mechanistic nature of a stud-

ied biological network (Aldridge et al. [2006]). Differential equations create a

relation between a function of time and its time-derivatives. The derivative rep-

resents the rate of change over time of the given species and thus is of special

interest when gaining a detailed look on a biological system. Putting together

both approaches of temporal variable modelling is one of the topics which was

thoroughly investigated in this thesis. Both methods are depending on parameters,
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such as basis coefficients, smoothing parameter, reaction rates or initial condi-

tions. These parameters are calibrated to produce a model fit to a given data. This

is called parameter estimation. Furthermore, if not only parameters of a model are

to be estimated but rather the model itself is not fixed, one could consider several

competing models which are applied on the data and the most appropriate one is

then chosen as a final model. This process is called model selection. Statistical hy-

pothesis testing in its most general formulation presents a further variant of model

selection. Here, two (or several) competing hypotheses are made and finally one

comes either to the conclusion that only one of the hypotheses is valid with very

high probability or the conclusion reads that with the given data one cannot favour

one of the competing hypothesis over the other. The single hypotheses can be seen

as competing models which are most appropriate for the analysed data.

1.1 Scientific question

As already mentioned, temporal data with biological context is readily available

and is used to investigate complex and possibly novel research questions. Such

questions often appear extremely interesting from multiple different points of

view. First, additional biological insight brings forward the whole scientific com-

munity as for example new drugs and therapies are developed based on the pro-

vided answers of these questions. Second, if a research question or scientific

idea of explaining a certain phenomenon to which no or only insufficient meth-

ods exist is investigated, this naturally calls at least for improvement of available

methods or even development of new ones. Therefore, from a statistical point of

view, it is immensely exciting to develop, test and apply a novel method which

helps in answering complex questions and thus drive forward the overall scientific

progress. Obviously, the need for a novel method arises from the non-existence of

appropriate methods in available literature. In situations where a given question

is answered with the help of a (partly) inappropriate method, the credibility of the

conclusions made by this analysis is at least questionable.

In this thesis, we pursue three main research questions in such situations where

lack of available methods is leading to inability of finding answers.
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First, we identified the need for development of a significance test for differences

in paired time-resolved observations. In biological applications, often times pair-

ing between different groups leads to a disagreement between method assumptions

and analysed data. Although this problem is well-handled in literature if the anal-

ysed data is static rather than temporal (Fahrmeir et al. [2007b]; Student [1908])

and even some extensions to temporal data exist (Angelini et al. [2007]; Berk et al.

[2011]; Crainiceanu et al. [2012]; Fahrmeir et al. [2007a]), the case of paired time-

resolved observations presents a considerably larger complexity with no available

method adequately satisfying these requirements. Clearly, the correct answer of

this research question should incorporate the full information available in the data,

such as time dependency or pairing.

Second, we explore the general question of systematic extension of biological net-

works based on temporal data. Biological networks (Girvan & Newman [2002])

connect different species such as genes, microRNAs or proteins and describe the

communication pattern between these species. Network topology and its identifi-

cation is a frequently studied research field (Coates et al. [2002]; Radicchi et al.

[2004]; Zhou & Lu [2007]). Results from studying network formations can lead

to novel insights of how different parts of a biological network communicate with

each other and this in turn can be of great help for the understanding of biologi-

cal processes. As already mentioned, the reliability, precision and even the size of

such a network depend on the quality of the measured data. Therefore, with limited

data sources only small networks may be identified reliable. As more and more

data from the same biological system becomes available, it seems naturally that

a network extension becomes desirable. With our approach, we target networks

where no additional data and no prior information concerning network extensions

is available. For such networks, we are able to identify additional nodes, which

significantly improve the data explanation without producing an overfit. The im-

plication of developing a tool which is able to answer the question of systematic

network extension has the potential of driving the systems biology loop by gen-

erating novel and interesting hypotheses about the structure of a given biological

system.

Finally, we investigate another aspect concerning the analysis of temporal data

from biological networks as we investigate the modelling of catalysis in biological

systems. Catalysis (Eisenmesser et al. [2005]; Masel et al. [2001]) is a non-linear
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change of interaction intensity between two nodes of a network. Often times, al-

though catalysis is present in a studied system, these interactions are still modelled

linearly and catalysis is omitted. As we already described, often times a too sim-

plistic model may fail to recognize important aspects of the data but at the same

time the available data may be non-informative for the identification of catalysis.

With our approach, we ask if there is a way of efficiently inferring catalytic re-

actions from large biological networks. Existing methods in the field (Guyon &

Elisseeff [2003]; Rickert et al. [2013]) either oversimplify modelling of cataly-

sis and thus fail to robustly detect catalytic reactions or they are not suitable due

to extreme computational demand when considering all modelling possibilities.

Finding a good compromise between both strategies will be one of the topics of

this thesis.

With these three research questions, we aim to perform a work-flow which is em-

blematic for (temporal-based) statistical modelling of biological systems. First,

we contribute an additional method which is able to investigate and summarize

statistical aspects of the studied data. Next, we strengthen the possibilities of

data modelling by introduction of a general method for systematic network exten-

sion. Finally, we concentrate on more specific aspects of data modelling with a

specialised method for non-linear catalysis identification in biological networks.

Hence, we are able answer questions on different levels, starting from general

aspects of the data (data statistics) and finishing in specialised models (data mod-

elling).

To answer these questions, we present several tools for statistical analysis of tem-

poral data from biological systems. These tools, answer questions regarding pa-

rameter inference, model selection and statistical hypothesis testing. We success-

fully cope with typical problems which arise in biological data such as high noise

level and low number of observations. This is done by combination and refinement

of several existing methods from functional data analysis, differential equations

modelling and statistical testing.

In summary, the aim of this thesis is to advance the arsenal of available statistical

tools tailored for the analysis of temporal data arising from complex biological

systems.

6



1.2 Overview

This thesis consists of six chapters. In the current introduction, we present the

general motivation of our work, organise the thesis contents and state the scientific

contributions in form of publications on which parts of the thesis are based.

In Chapter 2, we discuss several aspects on biological systems. Furthermore, we

present the necessary statistical background information needed for understanding

the developed methods in later chapters.

Following the first two general chapters, we continue with the development of

novel methods for analysis of biological systems in the next three chapters. In

each chapter we identified a situation in which no or no sufficient method is avail-

able to allow a proper analysis. Each of the three methods is first presented on

the base of sound statistical techniques. It is then thoroughly tested on artificial

data before being applied on real-world data and conclusions about the respective

studied biological system are drawn and interpreted.

In Chapter 4, we develop a latent variable approach which aims to estimate hidden

variables from network-structured temporal data. Identification of such hidden

variables allows a systematic extension of the studied network and leads to formu-

lation of novel biological hypotheses. The method is applied on protein data from

the JAK-STAT signalling pathway.

Chapter 5 presents a novel approach for inference of catalytic reactions in bio-

logical systems. The method is again suitable for analysis of network-structured

temporal data. It strongly reduces the computational effort for estimating catalyst

candidates in a given network topology. The method is applied on data from the

CD95 apoptotic signalling pathway.

In Chapter 3, we develop a further method for analysis of temporal biological data.

Here, we focus on statistical hypothesis testing and present a novel test which

answers the question whether two groups of paired time-resolved observations

are significantly different. The test is applied on metabolomics data as well as

chromatin data in the application examples.

Finally, in Chapter 6 we discuss the presented methods and applications. More-

over, we show several future research potentials as an outlook of this thesis.
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1.3 Scientific contributions

The major scientific contributions discussed in this thesis are listed in the follow-

ing.

• Creation of a new method which makes it possible to systematically extend

ordinary differential equations by additional latent components and allows

for causality statements on the basis of a combination of smooth function

approximation and dynamical modelling.

• Novel method for a computationally efficient inference of catalysis in ordi-

nary differential equations on the basis of combination of smooth function

approximation, dynamical modelling and similarity analysis.

• Novel statistical test for assessing differences in two groups of temporal,

paired observations.

• Analysis of several biological datasets - JAK-STAT signalling pathway; CD95

apoptosis pathway; SysMBo nutritional challenges, heterochromatin for-

mation at retrotransposons - with the above-mentioned datasets and corre-

sponding interpretation and discussion of results.

• Development and preparation of a software package which includes an im-

plementation of the latent component identification method.

• Development and preparation of a software package which includes an im-

plementation of the statistical test for assessing differences in two groups of

temporal, paired observations.

Parts of these contributions were already published in peer-reviewed journals.

Some parts of this thesis will therefore correspond to or be identical with these

publications:

• I. Kondofersky, C. Fuchs, and F.J. Theis (2015). Identifying latent dynamic

components in biological systems. IET Systems Biology, 9, 193–203.

• I. Kondofersky, F.J. Theis and C. Fuchs. Inferring catalysis in biological

systems, submitted.
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• I. Kondofersky, T. Brennauer, T. Erdmann, H. Hauner, F. J. Theis, C. Fuchs.
Significance test for difference between paired temporal observations, in

preparation.

• D. Sadic, K. Schmidt, S. Groh, I. Kondofersky, J. Ellwart, C. Fuchs, F.J.
Theis, and G. Schotta (2015). Atrx promotes heterochromatin formation at
retrotransposons. EMBO Rep., 16, 836-850.

At the beginning of each chapter, we explicitly indicate which publications are
relevant for the chapter.

Further scientific contributions

Furthermore, the author of this thesis was involved in several other research projects,
which were not directly connected to the main focus of the thesis. The findings in
these projects were also published in peer-reviewed journals:

• S. Wahl, C. Holzapfel, Z. Yu, M. Breier, I. Kondofersky, C. Fuchs, P.
Singmann, C. Prehn, J. Adamski, H. Grallert, T. Illig, R. Wang-Sattler, T.
Reinehr (2013). Metabolomics reveals determinants of weight loss during
lifestyle intervention in obese children. Metabolomics 9(6), 1157–1167.

• A. Chursov, S.J. Kopetzky, I. Leshchiner, I. Kondofersky, F.J. Theis, D. Fr-
ishman, A. Shneider (2012). Specific temperature-induced perturbations of
secondary mRNA structures are associated with the cold-adapted temperature-
sensitive phenotype of influenza A virus. RNA Biol. 9, 1266-1274.

• S. Vlaic, A. Hoppe, N.S. Mueller, S. Braun, L.A. D’Alessandro, S, Müller,
R, Meyer, S, Bohl, I. Kondofersky, M.U. Muckenthaler, N. Gretz, F.J.
Theis, R. Guthke, H.-G. Holzhütter, U. Klingmüller, M. Boerries, H. Busch.
Systematic Analysis of Time-Resolved Transcriptional Signature of the Cross-
Talk Between HGF and IL6 Reveals Genetic Program of Hepatocyte Prolif-
eration Control, submitted.
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2

Statistical modelling of biological
systems

In this thesis, we model dynamical biological systems with mathematical and sta-

tistical methods. First, we will elaborate on the mathematical and statistical mod-

elling of biological systems which give rise to temporal data. Specifically, we

will discuss spline approximations as well as differential equations. Next, we will

make the reader familiar with the studied biological systems. Along this line, we

will review current literature in the context of biological systems corresponding to

the central dogma of molecular biology. We will also introduce signalling path-

ways which structure the relationships between molecules in a biological system.

Finally, we will introduce the concept of catalysis of chemical reactions in such

systems.

2.1 Time series and dynamic systems

In this section we will introduce the mathematical and statistical background on

which this thesis builds up. The data analysed in later chapters is of time-resolved

nature. This means that for one observation, we have several measurements at

different time points available. Dynamical systems giving rise to such temporal

data can be modelled in various ways and depending of type on the studied phe-

nomenon, length of the available time series and studied context different mod-
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elling options are available. In the following, we will briefly introduce the notation

and discuss the modelling systems used throughout this thesis.

2.1.1 Notation

We present the notation used throughout this thesis in Table 2.1.

Table 2.1: Notation
Exemplary symbol Description
x vector
xi i-th vector element
A matrix
Ai j i-th row and j-th column element of

matrix A
diag(A) main diagonal of quadratic matrix A
f (x) function with argument x
t time
f (t) function of time
f (t) function f (t) evaluated at vector t
xT the transpose of vector x
X= {. . .} set
X= {xi}i=1,...l several vectors grouped in a set

fN(x | µ,σ2) = 1√
2πσ2 e−

(x−µ)2

2σ2 density function, normal distribution

fLN(x | µ,σ2) = 1
x
√

2πσ2 e−
(logx−µ)2

2σ2 density function, log-normal distribution
I(A) indicator function,

equal to 1 if A is true, 0 otherwise

The methods we develop in this thesis can be grouped into spline-based methods

and differential equations-based methods. As we will see in later chapters both

methods can also be combined. We will now introduce and discuss both methods

as well as discuss further methods which are suitable for modelling temporal data.

2.1.2 Splines

Research in approximation theory (Braess [2012]; Cheney & Lorentz [1980]; Rice

[1969]) is focused on approximations of functions with the least possible error

and control of this error. Hereby, the approximation of a function is often done
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with polynomial functions which are attractive due to simple computation and

numerical advantages. Particularly Chebyshev polynomials (Fox & Parker [1968];

Mason & Handscomb [2002]) are well-suited for approximation of functions with

small errors. Hereby, one e. g. constructs a Chebyshev expansion to approximate a

function f (x): f (x)≈ ∑
∞
i=0 ciTi(x) with ci being coefficients which are calculated

to obtain the lowest error of approximation and Ti(x) are first kind Chebyshev

polynomials. This sum is calculated up until the summand cnTn(c) which gives the

n-degree polynomial approximation. Research in approximation theory is further

concerned with the properties, existence, uniqueness, convergence and optimality

of such approximations. Closely connected to this research field is the study of

spline functions. Spline functions also aim at approximating data points with the

least possible error under certain conditions and they are defined in a similar way.

Suppose we have scalar observations at time points t0, . . . , tn which are ordered as

t0 ≤ . . . t j < t j+1 ≤ tn. The idea of splines is to represent these temporal measure-

ments with a smooth function. This smooth function should be chosen flexible

enough to model the studied time series. Here, splines (in contrast to e. g. a high-

degree polynomial representation of the time series) present possibilities to model

a time series with a high degree of smoothness while maintaining a high stability.

This is due to the spline being a piecewise polynomial function of a typically low

degree and thus avoiding Runge’s phenomenon (Runge [1901]) of high oscillation

between data points which is typical for high-degree polynomials. One particular

advantage of using a smooth function over the raw measurements for further anal-

ysis is that the smooth function can be evaluated at any time point t = (t0, . . . , tn)

and not only at the time points ti where the measurements were made. Addition-

ally, for large amounts of temporal data (large n) a dimension reduction is achieved

because the dimensionality of the smooth curve is typically chosen much smaller

than n. A spline is constructed to equal

x(t) =
K

∑
k=1

βkφk(t). (2.1)

Here, βk ∈ R are the basis coefficients, φk(t) are the basis functions and K de-

notes the number of basis functions. More formally, x(t) is a function in the space

spanned by a linear combination of φk(t) or x ∈ span{φk(t),k ∈ {1, . . . ,K}} =
{∑K

k=1 βkφk(t),k ∈ {1, . . . ,K},β1, . . . ,βK ∈ R}. x(t) is called a spline if certain
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properties of φk(t), which we introduce in the next paragraph, are fulfilled. Promi-

nent examples for non-spline constructs of type (2.1) include (Ramsay & Silver-

man [2005]) monomial series where φk(t) = tk−1, constant series where φk(t) = 1

as well as Fourier series where φk(t) = sin(kωt) if k is even and φk(t) = cos(kωt)

if k is odd.

The first step of constructing a spline is dividing the range of t into K + 1 subin-

tervals. This is done by choosing a sequence of values τ0, . . . ,τK+1 with t0 = τ0 ≤
τ1 ≤ . . . ≤ τK+1 = tn. τk are called knots and they are a monotone increasing se-

quence. Note, that all τk other than τ0 and τK+1 are not bounded to equal the

measurement time points ttt. We will give some guidance as of how to place these

knots later in this chapter. After a sequence of knots is chosen, x(t) as defined in

(2.1) is called an order-M spline (M > 1) if two conditions are fulfilled (Hastie

et al. [2009]):

1. Each φk(t) is a piecewise polynomial of order M with local support defined

by the knot sequence τ0, . . . ,τK+1.

2. x(t) has M−2 continuous derivatives.

The second condition is automatically fulfilled for all t with t /∈ {τ0, . . . ,τK+1} due

to condition 1. At the knots τk where two polynomials join the second condition

is not necessarily fulfilled. This is achieved by introducing constraints on the

basis coefficients βk which force adjacent polynomials to have equal values at the

junction points.

More specifically, a spline curve of order M can be written in a simplified form as

x(t) =


p0(t) if t ∈ [τ0,τ1]
...
pK(t) if t ∈ [τK,τK+1]

(2.2)

and the p0(t), . . . , pk(t) are recursively defined and weighted polynomials of order

M− 1 with a domain defined by the knot sequence τ0, . . . ,τK+1. Polynomials

have the property of continuous derivatives which means for the whole spline is

infinitely differentiable at t /∈ {τ0, . . . ,τK+1}. However, additional care has to be

taken at the junction points and this is achieved by introducing a further constraint.

One requires additionally that function x(t) and the derivatives up to order M−2
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are equal at the junction points. If this is fulfilled, x(t) is called an order M spline.

We will give more details on how to construct the piecewise polynomials later.

The degrees of freedom of a spline equal the order of the polynomials plus the

number of interior knots. For example, an order-4 spline defined over 10 intervals

will have 13 total degrees of freedom. The special case of M = 1 which w. l. o. g.

results in a stepwise function can only fulfil condition 1 and thus it is strictly

speaking not a spline. In literature, however, the term of order-1 spline (Hastie

et al. [2009]) is used.

Several different types or systems of spline functions exist. As Ramsay & Sil-

verman [2005] state, the most prominent and widely used one which we also use

throughout this thesis is the B-spline basis system which was first introduced by

Schoenberg [1946] and Curry & Schoenberg [1947] and made prominent approxi-

mately a decade ago by De Boor [2001]. Other spline bases include natural splines

or the truncated power system or M-splines. We direct the interested reader to

Schumaker [2007] or De Boor [2001] for further information.

B-splines

Before defining B-splines, we first have to extend the original knot sequence

τ0, . . . ,τK+1 by 2M further knots which are placed at the boundaries of this se-

quence. The new sequence ξ1, . . . ,ξK+2M is defined as follows:

ξ1 = ξ2 = . . .= ξM = τ0

ξk+M = τk,k = 1, . . . ,K

ξK+M+1 = ξK+M+2 = . . .= ξK+2M = τK+1.

(2.3)

Using this new sequence of knots, B-splines are defined recursively. Denoting

Bk,M(t) as the k-th B-spline basis function of order M, we start with order 1:

Bk,1(t) =

{
1 if ξk ≤ t < ξk+1

0 otherwise
(2.4)

for k = 1, . . . ,K+2M−1. The special case of M = 1 produces a stepwise constant
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Figure 2.1: B-spline bases of different order. Dashed vertical lines mark the place-
ment of inner knots. Each base Bk,M(t) is non-zero over an interval spanned by
M+1 knots.

function. Then

Bk,M(t) =
t−ξk

ξk+M−1−ξk
Bk,M−1(t)−

ξk+M− t
ξk+M−ξk+1

Bk+1,M−1(t) (2.5)

for k = 1, . . . ,K +M fully recursively defines any order of B-splines. Note that

by choosing an order-M B-spline with K interior knots, we need M +K B-spline

basis functions in (2.1).

Figure 2.1 illustrates B-spline bases of order 1 – 4. Here, we placed the knots at

{0,1,2,3,5,2π} and mark the inner knots with vertical dashed lines.

Translated to the spline definition in (2.1), we replace the basis functions φk(t)

by B-spline bases Bk,M(t) and omit the fixed order M in the notation. In Fig-

ure 2.2 these B-spline bases are used to approximate the sinus function based on

20 equidistant data points between 0 and 2π . Hereby, the basis coefficients βk in
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Figure 2.2: Approximation of the sinus function by B-spline bases of different
order. Fitted functions are based on 20 equidistant data points between 0 and 2π

of function sin(t).

(2.1) are estimated with a standard least squares approach based on the 20 data

points (we will discuss different ways of basis coefficients estimation in a few

paragraphs). It is obvious that the lower the order M of the B-spline basis, the

rougher the corresponding approximation. While B-splines of order 1 and 2 result

in constant and piecewise linear approximations, respectively, order 3 and order

4 splines give smooth functions in the sense of at least one existing continuous

derivative.

With (2.4) and (2.5) a system of B-spline bases is defined. Next, we will briefly

discuss some properties which are important for the application of B-splines in

this thesis.

B-splines are linearly independent in the vector space spanned by span{Bk,M(t),k∈
{1, . . . ,K}}= {∑K

k=1 βkBk,M(t),k∈{1, . . . ,K},β1, . . . ,βK ∈R}. This follows from

the piecewise support definition and recursive formulation in (2.4) and (2.5) as
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well as linear algebra where we note that Bk,M(t) = Bl,M(t),∀t if and only if k = l.

One very important property of B-splines with respect to computational time is

called the compact support property (Ramsay & Silverman [2005]). The compact

support property follows from (2.4) and (2.5) and states that each B-spline basis is

equal to 0 over any interval which is outside of an interval spanned by M +1 ad-

jacent knots or more formally Bk,M(t) = 0 ∀t /∈ {ξk < t < ξk+M}. This means that

the matrix of inner products of (2.1) will be sparse containing values on only M

sub-diagonals to the left and right of the main diagonal. This, in turn, allows a fast

computation of constructs where B-splines are used for function approximation.

The next interesting property (De Boor [2001]; Prochazkova [2005]) is shown by

dBk,M(t)
dt

= (M−1)
(
−Bk+1,M−1(t)
ξk+M−ξk+1

−
−Bk,M−1(t)
ξk+M−1−ξk

)
. (2.6)

This shows that the derivative of a B-spline of order M is a combination of B-

splines of order M−1. Due to the recursive formulation of B-splines in (2.4) and

(2.5) the lower order B-splines were already computed. Thus, the calculation of

a B-spline derivative is practically not connected to any additional computational

cost.

Another property of B-splines is the possibility of creating abruptly changing

derivatives at certain time-points (Hastie et al. [2009]). This can be especially

useful when studying realistic biological data where abrupt temporal changes are

common after e. g. an external change of the studied system. The abrupt change

in derivatives is achieved by duplicating knots. In general, if a knot is duplicated l

times, this will lead to the M− l-th derivative to be discontinuous. This behaviour

is exploited at the boundaries of the B-spline domain. In the extended sequence

of knots as defined in (2.3) we introduce a duplication of M boundary knots. This

means that at the boundaries the 0-th derivative or the smooth function itself is dis-

continuous. This is a desired property of B-splines which approximate a function

only at the specified domain. Outside of this domain we do not want to model any

behaviour of the approximated function and consider all modelling possibilities,

even discontinuous functions.

Finally, other properties of B-splines include (Liu et al. [2014]):

• Positivity: Bk,M(t)≥ 0, t ∈ [t0, tn]
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• Unit decomposability: ∑k Bk,M(t) = 1, t ∈ [t0, tn]

• Symmetry: Bk,M(tn− t) = Bk,K+M−k+1(t), t ∈ [0, tn],k ∈ {1, . . . ,K +M}

Knot placement

Several strategies on how to place the knots τk have been developed (Powell

[1967]; Rice [1969]; Wold [1974]). In particular (Wold [1974]) state that one

should place as few knots as possible to achieve a large dimension reduction.

These few knots should be placed in such way that local extrema of a function lie

approximately at the center between two adjacent knots and inflection points are

close to the knots. However, these strategies work well only for a sample size of at

least 30 – 40 points. In the targeted application sin this thesis, the number of mea-

surements per observation is considerably lower (6 – 16). Additionally, Ramsay &

Silverman [2005] discuss the possibilities of placing a knot at every j-th data point

where j is an integer specified beforehand. A special case of this strategy is j = 1

resulting in smoothing splines which we will discuss later in this chapter. Finally,

the most widely used strategy of knot placement which is implemented in many

applications is to place the knots at equally spaced intervals so that τk+1− τk = c

with constant c. Choosing the knot sequence in a non-equidistant way may be ad-

visable if the curvature of the approximated function is varying in different parts

of the domain of t. Parts with low curvature are sufficiently approximated with

few knots as opposed to parts with large curvature which are better approximated

with a higher number of knots.

Estimation of basis coefficients

We introduced splines with the intention to approximate temporal data measure-

ments with these flexible functions. In the following, we explain how spline theory

is applied on such available measurements. Let yyy = (y0, . . . ,yn)
T denote the data

observations collected at time point t0, . . . , tn. Once a system of basis functions

and other hyperparameters such as the knot sequence, number of basis functions

K and the order of the basis functions are chosen, the basis coefficients β1, . . . ,βK

are calibrated using yyy. Furthermore, for convenience, we rewrite (2.1) in matrix

19



notation to equal

x(t) =
K

∑
k=1

βkφk(t) = βββ
T

φφφ(t). (2.7)

Here, βββ is the vector of basis coefficients and φφφ is the vector of basis functions.

The evaluated basis functions at time points ti, φk(ti) can be stored in a K×(n+1)

matrix which we denote by ΦΦΦ. We now want to calculate an estimate for x(t),

which models the assumed data generating process which gives rise to the obser-

vations yyy. Using the data, we can then estimate the coefficients βββ by minimizing

S(βββ | yyy) =
n

∑
i=0

(yi− x(ti))
2 =

n

∑
i=0

(
yi−

K

∑
k=1

βkφk(ti)

)2

= (yyy−ΦΦΦβββ )T (yyy−ΦΦΦβββ )

(2.8)

and thus using a least squares approach. As it is well known from linear model

theory (Toutenburg [1992]) after differentiating (2.8) with respect to βββ and setting

the derivative to 000, we arrive at the least squares estimator

β̂ββ =
(
ΦΦΦ

T
ΦΦΦ
)−1

ΦΦΦ
T yyy. (2.9)

The matrix ΦΦΦ
T

ΦΦΦ can be inverted as it is nonsingular because of the above-discussed

property of linear independence of basis functions. Additionally, also borrowed

from linear model theory, one could include a weighting matrix WWW into the esti-

mation of βββ . This is especially useful when dealing e. g. with nonstationary or

autocorrelated errors (Ramsay & Silverman [2005]). The least squares criterion

then changes to

S(βββ | yyy)WWW = (yyy−ΦΦΦβββ )T WWW (yyy−ΦΦΦβββ ) (2.10)

and the estimator changes to

β̂ββWWW =
(
ΦΦΦ

TWWWΦΦΦ
)−1

ΦΦΦ
TWWWyyy. (2.11)

WWW is a symmetric positive definite matrix which allows for unsymmetrical weight-

ing of the contribution of the single error terms yi−∑
K
k=1 βkφk(ti). This matrix can

be chosen accordingly to e. g. measurement error associated with the studied data.

For example, replicate observations at the same time points may be used by com-
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puting the standard deviation of all replicates and then this standard deviation may

be seen as an indicator for the amount of variability contained in the data for single

measurements. This, in turn, may be translated to the weighting matrix WWW . For the

rest of this thesis, for the sake of notation simplicity, we will assume the weighting

matrix to equal the identity matrix, WWW = III. This means that β̂ββWWW from (2.11) equals

β̂ββ from (2.9).

Calculating the function approximations at time points t0, . . . , tn is achieved by

x̂(ttt) = ΦΦΦ
(
ΦΦΦ

T
ΦΦΦ
)−1

ΦΦΦ
T yyy = HHHyyy (2.12)

with HHH called hat matrix or projection matrix. This matrix is used to calculate the

effective degrees of freedom of the estimation process in (2.9) which equals

df = trace(HHH). (2.13)

This formulation allows the calculation of degrees of freedom in more complex

scenarios such as penalization splines or smoothing splines which we will intro-

duce shortly. In the case of a least squares fit as in (2.9) unsurprisingly the effective

degrees of freedom equal K, the number of basis functions.

Choice of the number of basis functions

The choice of how many basis functions one should choose for the smooth esti-

mation of temporal data is an important one. On the one hand, with large K the

smooth approximation will fit the data very well with x̂(t) passing very close by

or directly through the data points yyy. However, this poses the danger of overfit-

ting the data in the sense of fitting noise or unrealistic temporal variations. On the

other hand, small K may lead to missing important data variability due to little to

no flexibility of the estimated smooth function. This trade-off is well known and

can be translated in the field of statistics as the bias-variance trade off.

The definitions of bias and variance in the context of our notation are

Bias(x̂(t)) = x(t)−E(x̂(t)) , (2.14)

Var(x̂(t)) = E
(
(x̂(t)−E(x̂(t)))2

)
. (2.15)
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For large K typically (2.14) will be small and (2.15) will be large and the con-

trary statement holds when choosing a small K. Keeping both, bias and variance,

acceptably small can be achieved by keeping a small mean squared error

MSE(x̂(t)) = Var(x̂(t))+Bias2(x̂(t)). (2.16)

A good algorithm for choosing the number of basis functions K will lead to an

overall low MSE. We formulated the smoothing approximation in the context of

linear models in (2.8). In this context, increasing K by 1 leads to one additional

coefficient which has to be estimated. Comparing this model with K + 1 coeffi-

cients and the original one with K coefficients in terms of MSE leads to a model

selection problem. Consequently, we can rely on the vast amounts of literature

concerning model selection for linear models. Here, top-down methods will start

with a large K and reduce it until either MSE cannot be reduced any more or, if

MSE is not possible to be calculated, the smooth approximation still explains im-

portant variability features of the data. In contrast, bottom-up methods will start

with a small K and increase it until the fit is not substantially improving. Combi-

nations of both methods exist. However, all of these methods have their limitations

and there is no gold standard in this case. One of the main challenges for variable

selection is the discrete nature of K. Thus, in the next paragraphs we will intro-

duce so called roughness penalties which are used for penalization and smoothing

splines. This substantially decreases the problem of choosing the correct number

of basis functions. For these methods the variability of x(t) is controlled via a

smoothing parameter and the number of basis functions merely has to be chosen

sufficiently high. The estimation of this smoothing parameter is done e. g. with

cross validation which acts as another way of controlling the bias-variance trade

off.

2.1.3 Smoothing splines

As we already discussed the bias-variance trade-off is important for controlling

the goodness of fit in terms of MSE of the function approximation. In addition

to altering the number K of basis functions this can also be done by applying a

penalization approach. This is done by introducing a roughness penalty and thus

punishing too high data faithfulness of the approximated function. Roughness
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penalties are widely known in statistics e. g. in the context of model selection.

Prominent examples are ridge regression (Hoerl & Kennard [1970]), lasso (Tib-

shirani [1996]) and the combination of both, elastic net (Zou & Hastie [2005]).

Before applying these ideas to the function approximation ”roughness of a func-

tion” has to be defined. A good indicator of the variability of a function is given by

its derivatives. The square of the second derivative of a function is called curva-

ture (Ramsay & Silverman [2005]). It seems to be a natural indicator for roughness

because the second derivative of a straight line (which is the smoothest functional

approximation) is equal to 0 and thus it has a natural reference value. For this

reason, a good quantifier of roughness is given by

PEN2(φφφ(t) | βββ ) =
∫

t

(
βββ

T D(2)(φφφ(s))
)2

ds. (2.17)

The derivative operator D(m)( f (t)) denotes the componentwise derivative of func-

tion f with respect to its argument t. The notation PEN2 with subscript is chosen

to indicate that the second derivative is calculated. More generally, we can also

formulate an equation PENm straightforwardly by changing the derivative operator

to Dm in (2.17).

Using this result we can extend the least squares criterion (2.8) to include a penal-

ization term:

S(βββ | yyy,λ ) = (yyy−ΦΦΦβββ )T (yyy−ΦΦΦβββ )+λPEN2(φφφ(t)T
βββ ). (2.18)

The parameter λ ∈R+
0 is a non-negative scalar and is called smoothing parameter.

It controls the flexibility of the approximated function and in general it holds that

for λ = 0 Equation (2.8) and Equation (2.18) are equal whereas for λ → ∞ the

approximated function becomes a straight line with a zero valued second deriva-

tive. In the context of bias-variance trade-off, λ → 0 will be associated a large

variance in the sense of large curve variability and low bias as the approximated

function will be close to the data points. On the other hand, λ → ∞ will result in

low variance and high bias as the approximated function will be almost a straight

line.

One remarkable theorem formulated in De Boor [1972] states that the function

that minimizes (2.18) is an order-4 spline as defined in (2.1) if the assumptions

of existing second derivative and distinct sampling points t0, . . . , tn are fulfilled.
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Before we can express the minimizer of (2.18) in matrix notation (2.17) has to be

slightly transformed:

PEN2(φφφ(t) | βββ ) =
∫

t

(
βββ

T D2(φφφ(s))
)2

ds

=
∫

t

(
βββ

T D2(φφφ(s))D2(φφφ T (s))βββ
)

ds

= βββ
T
∫

t

(
D2(φφφ(s))D2(φφφ T (s))

)
dsβββ

= βββ
T RRRβββ . (2.19)

The matrix RRR =
∫

t
(
D2(φφφ(s))D2(φφφ T (s))

)
ds depends only on the chosen system of

basis functions. With this result, the analytical estimator for βββ becomes

β̂ββ λ =
(
ΦΦΦ

T
ΦΦΦ+λRRR

)−1
ΦΦΦ

T yyy. (2.20)

The form of (2.19) has the same form as a ridge regression estimator for linear

models. The hat matrix for such models is

HHHλ = ΦΦΦ
(
ΦΦΦ

T
ΦΦΦ+λRRR

)−1
ΦΦΦ

T (2.21)

and the degrees of freedom can be calculated in the same way as in (2.13) to equal

trace(HHHλ ). The subscript λ in (2.20) and (2.21) denotes that these are the basis

coefficients estimator as well as the hat matrix for a previously defined smoothing

parameter.

There exist different methods for choosing λ and we will discuss three which are

the most commonly used in literature. The cross validation (CV) method and the

generalized cross validation (GCV) method are discussed in Ramsay & Silverman

[2005]. Alternatively, one can also use theory from mixture models (Wood [2000,

2004]; Wood & Augustin [2002]) for the estimation.

The general idea behind CV is to leave out some of the observations, then use the

rest of the observations for model calibration and finally assess the performance

of the calibrated model using the left-out observations. This is repeated until the

prediction is not improved any more. Applied to smoothing spline approximation

of time series data this means that we leave out a number m < n+ 1 from the

observations x0, . . . ,xn, then fit a smoothing spline to the rest of the observations

with a fixed starting smoothing parameter λ and finally evaluate the spline at the m
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time points, corresponding to the left-out observations. A loss function such as the

sum of squared residuals is then used to calculate the discrepancy between the ap-

proximation and the real data. This process is repeated for different λ parameters

until no reduction of the loss function is achieved. Choosing m = 1 is called leave-

one-out CV and this is the only variant where no randomness is included in the

estimation of λ . However, his variant of CV has two downsides. First, the compu-

tational demand is large because a smoothing spline has to be estimated n+1 times

for a single λ parameter and this might become infeasible for large n. Second, the

variant tends to undersmooth the data (Ramsay & Silverman [2005]). Choosing

m> 1 leads to randomness in the estimation of λ due to the random splitting of the

two groups of observations. Usually this randomness is tolerable compared to the

computational gain and to the more acceptable degree of smoothing. In practice

and as recommended in literature (Kohavi [1995]) the usage of m≈ n
10 , also called

ten-fold CV, is recommended. In the applications discussed in this thesis, we used

ten-fold CV wherever possible to estimate λ . In most real-world data scenarios

time series were short consisting of 6 to 16 temporal snapshots. In these cases we

generally applied leave-one-out CV.

GCV was introduced by Craven & Wahba [1979] as a simpler version of CV which

is computationally attractive due to the need for the repeated re-smoothing of the

smoothing splines being avoided. The GCV criterion can be expressed as

GCV (λ ) =

(
n

n− trace(HHHλ )

)(
L(βββ | yyy)

n− trace(HHHλ )

)
(2.22)

with the unpenalized criterion L(βββ | yyy) as defined in (2.8). Obviously, (2.22) is

only defined and makes sense if n > trace(HHHλ ). We first note that trace(HHHλ ) ≤
trace(HHH) = K, which is obvious from Equation (2.13) and Equation (2.21). Ad-

ditionally, it is reasonable to choose K < n which automatically guarantees the

condition n > trace(HHHλ ). We further note that the case of K ≥ n would result in a

highly overfitting curve with an exact fit for every measurement. For that reason

the case of n > trace(HHHλ ) can be assumed w. l. o. g. Although GCV is computa-

tionally more efficient than CV, it still has to be computed on a large number of

λ values to find the optimal one. These values can be ordered on a simple grid

or proposed by a numerical optimization. Further ideas of how to speed up this

process are discussed in Ramsay & Silverman [2005].
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As a further alternative for the estimation of λ , theory from linear mixed mod-
els (McCulloch & Neuhaus [2001]) can be used. To that end we first make the
assumption of normally distributed basis coefficients

βββ ∼ N(000,τ2RRR−1) (2.23)

where RRR is the same as in (2.19) and again only depends on the chosen system of
basis functions.

The distribution assumption in (2.23) is in contrast to the previous definitions of
βββ where we assumed a fixed coefficient vector. This can be related to a Bayesian
modelling perspective where parameters of a model are not assumed to be fixed
but rather random variables with distributions. More detailed, in Bayesian theory
one first assumes a prior distribution for the parameters and using Bayes’ theorem
and the data likelihood one arrives at a posterior distribution of the parameters.
Only few cases exist where the posterior distribution can be assessed analytically.
Therefore, for all other cases, sampling methods such as Markov chain Monte
Carlo (MCMC) sampling are used to approximate the posterior distribution of the
parameters. As Bayesian estimation is not in the focus of this thesis, we point the
interested reader to relevant literature (Lee [2012]; Raftery et al. [1992]). For the
rest of this thesis, we still consider the basis coefficients to be fixed and not have
a distribution and only make this assumption for the following comparison with
mixed models.

W. l. o. g., we assume that RRR is invertible. For strategies of handling a possible
singularity of RRR, see Fahrmeir et al. [2007a]. Then, we can consider a formulation
of the log-likelihood of a linear mixed model as

logL(βββ | yyy) =− 1
2σ2 (yyy−ΦΦΦβββ )T (yyy−ΦΦΦβββ )− 1

2τ2 βββ
T RRRβββ (2.24)

with σ2 the finite noise variance of the linear model part of the linear mixed
model. The estimation of σ2 and τ2 is done computationally efficient using a
restricted maximum likelihood approach (ReML). These estimates can then be di-
rectly translated to an estimation of λ in the form λ = σ2

τ2 as discussed in Fahrmeir
et al. [2007a].

Finally, we would also like to mention that further possibilities for estimation of the
smoothing parameter exist such as bootstrap methods or model selection criteria
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such as AIC or BIC measures.

2.1.4 Differential Equations

In biology differential equations represent a prominent tool for the exploration of

functional behaviour of species. As the name already suggests they relate a func-

tion to its derivatives. Prominent examples in biology where differential equations

are used include e. g. the Lotka-Volterra equations for the relationship between

predators and prey (Lotka [1910]; Volterra [1928]). Many types of differential

equations exist such as ordinary differential equations (ODE), delayed differential

equations (DDE), partial differential equations (PDE) and stochastic differential

equations (SDE) (Dargatz [2010]; Kuang [1993]; Michiels & Niculescu [2014];

Pons [1955]; Ross [1984]).

In the course of this thesis we focus methods and applications on ODE. For that

reason, we now briefly discuss definition and properties of this type of differential

equations. Let x = x(t) be a function which is m times differentiable with respect

to time. An m-th order ODE can be written as

Ψ

(
t,x,

dx
dt
, . . . ,

dmx
dtm

)
= 0. (2.25)

In this notation Ψ is a real function with m+ 2 arguments t,x, dx
dt , . . . ,

dmx
dtm . x and

its derivatives are functions of t called dependent variables and t is called the

independent variable and usually represents the time. Similarly, a linear ordinary

differential equation that can be expressed in

a0(t)
dmx
dtm +a1(t)

dm−1x
dtm−1 + · · ·+am−1(t)

dx
dt

+am(t)x = b(t). (2.26)

where ai(t) as well as b(t) are functions which depend only on the independent

variable t and where a0(t) 6= 0. The applications in this thesis will mostly use

linear ODE as models of temporal data. Moreover, we will focus on systems of

first-order linear ODE functions which can be written as

dx j

dt
= ψ j(x1, . . . ,xN , t,θθθ) (2.27)
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for j = 1, . . . ,N and ψi functions with N + 1 arguments and θθθ ∈ Rp denoting a

p-dimensional parameter vector. x j is short notation for x j(t) and denotes the j-

th function of t. With such functions it is possible to describe the dynamics of

various biological processes involving N different species, such as genes, proteins

or enzymes.

Another notation, which is well in conformity with modelling of chemical reac-

tions is based on stoichiometry which is used to relate reactants and products to

each other. The notation goes as follows:

dxxx(t)
dt

= ẋxx(t) = SSSvvv(xxx(t);θθθ) =
m

∑
g=1

sss·,gvg(xxx(t);θθθ) (2.28)

with N×m stoichiometry matrix SSS, m-dimensional flux function vvv(xxx(t);θθθ) with

arguments xxx(t) = (x1(t), . . . ,xN(t))T ∈ RN
≥0 as the non-negative network compo-

nent concentration functions and θθθ ∈ Rp.

Let us consider two examples in the following which will nicely illustrate the

concept of stoichiometry modelling. Consider the dimerization reaction

A+B
θ1→C.

In other words, the reactants A and B react to form the product C. In this case the

stoichiometry matrix S equals (−1,−1,1)T and the one-dimensional flux function

equals v = θ1AB. As a second second example, consider the following system

consisting of 6 reactions of 5 species:

2A
θ1


θ2

B

B+C
θ3


θ4

D

D
θ5→ E

E
θ6→ /0.
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The corresponding stoichiometry matrix equals
−2 1 0 0 0 0
1 −1 −1 1 0 0
0 0 −1 1 0 0
0 0 1 −1 −1 0
0 0 0 0 1 −1


and flux function vvv = (θ1A2,θ2B,θ3BC,θ4D,θ5D,θ6E)T .

Finding the solution of (2.25), (2.27) and (2.28) is the main focus of ODE analysis.

Most textbooks on ODE address the two most important properties of ODE solu-

tions – existence and uniqueness. We will not go into detail and further discuss

those aspects but rather point the interested reader to relevant literature (Codding-

ton & Levinson [1955]; Gear [1971]; Ross [1980]). In general, an m-th order

ODE has m linearly independent solutions. Only few ODE have an exact solu-

tion which can be calculated analytically. In most cases if solutions exist and are

unique, they are found numerically. A large amount of numerical algorithms exist

in literature (Hull et al. [1972]). Prominent examples for such algorithms are the

family of Runge-Kutta solvers discussed e. g. in Butcher [1987]. In the statisti-

cal software R R Development Core Team [2011], one can for example use the

package deSolve (Soetaert et al. [2010]) where a large variety of ODE solvers

are implemented efficiently.

The unknown parameters in (2.27) are θθθ and the initial conditions xxx(t0). If those

parameters are specified, the complete dynamics of xxx(t) can be described. For

applications, it is possible to extract these parameters from common knowledge or

literature. Generally parameter estimation is usually involved in the calibration of

ODE systems.

Parameter estimation for ODE

Many possibilities exist for calibration of ODE systems. We consider observations

xobs
j (ti) where i = 0, . . . ,n denote n + 1 observations per species x j(t) and j =

1, . . . ,N are N species. Probably the most intuitive way of calibrating an ODE

system to fit these observations is to apply a least squares approach where we
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estimate θθθ as

θ̂θθ = argmin
θθθ∈RD

n

∑
i=0

N

∑
j=1

(xode
j (ti | θθθ)− xobs

j (ti))2. (2.29)

xode
j (ti | θθθ) is the evaluation of the (numerically) solved ODE system with pa-

rameter vector θθθ at ti for x j(t). The least squares approach yields an estimate

θ̂θθ . Finding solutions of least squares estimates is well covered in Björck [1996] or

Marquardt [1963]. These estimates coincide with the estimates produced by maxi-

mum likelihood optimization if one makes an assumption of normally independent

and identically distributed (iid) observation noise

xobs
j (ti) = x j(ti)+ εi, j, εi, j

iid∼ N(0,σ2) (2.30)

for all i ∈ {1, . . . ,N} and j ∈ {0, . . . ,n}. Here, the finite and positive parameter σ2

is the variance of the noise terms εi, j and x j(ti) the true but unknown data gener-

ating process. Making this assumption allows us to estimate θθθ with a maximum

likelihood approach. The corresponding log-likelihood function is then

l(θθθ ,σ2 | xxxode(ttt)) =C− (n+1)N logσ −
n

∑
i=0

N

∑
j=1

(
xobs

j (ti)− xode
j (ti | θθθ)

)2

2σ2 .

(2.31)

In this notation, the constant C depends only on the fixed quantities N and n.

Maximization of (2.31) leads to estimates θ̂θθ and σ̂2.

In (2.30) we make the assumption of normally distributed errors. Although this

a common assumption widely made in literature, for real biological systems it

is at least debatable and we can state two problems. First, when dealing with

e. g. protein concentrations, one has measurements in R+
0 . In this case, (2.30)

is ill-defined. Second, the measurement noise is independent of the value of the

measurements which is again unrealistic for biological studies where measurement

noise is expected higher for larger concentrations. Both problems can be met by

altering the noise terms to contribute in a multiplicative way:

xobs
j (ti) = x j(ti) · εi, j, εi, j

iid∼ LN(
−σ2

2
,σ2). (2.32)
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The parameters of the log-normal distribution are chosen so that E(xobs
j (ti)) =

x j(ti). This formulation amounts in a different log-likelihood function:

l(θθθ ,σ2 | xxxode(ttt)) = C− (n+1)N logσ−

n

∑
i=0

N

∑
j=1

(
logxobs

j (ti)− logxode
j (ti | θθθ)+ σ2

2

)2

2σ2 .
(2.33)

Maximization of (2.33) again leads to estimates θ̂θθ and σ̂2. The specification of
different noise models can be also further extended to e. g. shot noise (Poisson-
distributed errors, Nagaev [1995]).

Other possibilities of estimating parameters in ODE exist. For example Bayesian
parameter estimation has evolved greatly with the availability of better computa-
tional resources during the past decades (Girolami [2008]; Lawrence [2010]). Es-
pecially when the modelled ODE system is underdetermined in the sense of more
parameters than observables a Bayesian model can be of great help for parame-
ter identifiability. Here, profile likelihood approaches (Kreutz et al. [2013]; Raue
et al. [2009]) allow the study of marginal distributions of parameters and thus
recognize identifiable parameters from partially identifiable or non-identifiable
ones. Bayesian methods in general rely on Markov chain Monte Carlo (MCMC)
sampling for approximation of parameter distributions. Prominent MCMC based
methods for parameter estimation include Metropolis Hastings algorithm (Metropo-
lis et al. [1953]) or Gibbs sampling (Geman & Geman [1984]). Another ap-
proach for parameter estimation is presented in multiple shooting (Peifer & Tim-
mer [2007]), cross-entropy (Wang & Enright [2013]) or regression models (Brunel
et al. [2008]).

Observability of ODE systems

Until now we assumed that all species xi in the ODEs are directly observed and that
all of them are observed. In this section, we relax this assumption. First, we now
consider the number M of observed time courses to be smaller than N. Second,
we allow the observed time courses y1, . . . ,yM to be affine linear transformations
of x1, . . . ,xN . W. l. o. g. we can then write y j(t) = ∑

N
l=1 Al, jxl(t) + b j for all

j = 1, . . . ,M with scalar constants Al, j and b j collected in the N×M-dimensional
matrix AAA and the M-dimensional vector bbb, respectively.
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In this case, parameter estimation of ODE models can still be performed by op-

timizing one of (2.29), (2.31) or (2.33). However, some alterations to the ODE

system have to be performed. First, (2.27) has to be adapted to the new observ-

ables and therefore can now be formulated as

dy
dt

= f j(y1, . . . ,yM,x1, . . . ,xN−M, t,θθθ ?) (2.34)

for j = 1, . . . ,N. The new parameter vector θθθ
? extends the old parameter vector θθθ

by the new parameters AAA and bbb. Formulation of (2.34) can be derived analytically

for affine linear combinations by making use of the chain rule. Second, the loss

function which is optimized for parameter estimation ((2.29), (2.31) or (2.33))

has to be adapted. For example using normally distributed additive measurement

noise, the corresponding log-likelihood function version is formulated as

l(θθθ ,AAA,bbb,σ2 | xxx(ttt),yyyode(ttt)) = C− (n+1)M logσ

−
n

∑
i=0

M

∑
j=1

(
yobs

j (ti)− yode
j (ti | θθθ ,AAA,bbb)

)2

2σ2 .
(2.35)

with yode
j (ti | θθθ ,AAA,bbb) denoting the solution of the j-th equation of the ODE system

evaluated at ti for parameters θθθ , AAA and bbb.

Overall, we arrive at parameter estimates by again optimizing a likelihood func-

tion. As M is smaller than N these estimates will be typically less accurate, espe-

cially if M� N. Furthermore, if the dimension of estimated parameters is larger

than M, then non-identifiability issues will arise for some parameters. This can be

handled by e. g. introducing literature-derived constraints on parameters. Details

on parameter identifiability in ODE systems are discussed in Raue et al. [2009,

2010, 2013].

2.2 Biological systems

In the second part of this background chapter, we will briefly summarize the es-

sentials of state of the art molecular biology, molecule structuring in signalling

pathways and catalysis.
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2.2.1 Molecular biology

In this thesis we will develop methods for analysis of biological data. More pre-

cisely, the data that we analyse in several applications can be classified as coming

from the field of molecular biology. As the term suggests, molecular biology is

the branch of the science biology which studies biological systems on molecular

level. This includes the interaction of cellular systems in terms of their DNA, RNA

and proteins. As postulated in the central dogma of molecular biology (Crick et al.

[1970]; Crick [1958]), these are the key parts of a biological system which transfer

genetic information in cells and thus are responsible for various processes such as

cell division, cell growth or cell death. Hereby, the three processes which occur in

most cells are DNA replication (DNA is copied into DNA), transcription (DNA is

copied into mRNA) and translation (synthesis of proteins is directed by mRNA).

It is therefore obvious that information flow within a cell is a complex process

which occurs at many different scales. Understanding the various processes in a

cell and thus understanding e. g. mechanisms of a certain disease evolution leads

to understanding this information flow. Figure 2.3 (adapted from Ritchie et al.

[2015]) schematically puts this into context as it shows the information transduc-

tion from DNA level ultimately to the forming of a phenotype such as different

diseases or metabolic syndromes. Further details on this topic are given in Alberts

et al. [1995]; Fasman et al. [1977]; Watson et al. [1970]. A huge amount of data

has been generated in recent years (Marx [2013]) on all of the above-described

scales (Ritchie et al. [2015]). Generating this data from single cells rather than

from bulks of cells is becoming more and more available (Shapiro et al. [2013]).

Development of appropriate methods which are able to cope with the vast amount

of data is another important challenge which the scientific community is facing.

This thesis will cover application examples using proteomics and metabolomics

data. Let us therefore give a rough classification of where this data stands in the

process of cell information flow. Consider Figure 2.3, where the two omics are

put into context with respect to other omics types such as genomics and tran-

scriptomics. The proteome (Gooley et al. [1996]) is a collection of all proteins

produced by an organism. Proteins are large molecules consisting of amino acid

chains and they have several important cell functions. Interaction patterns between

proteins are intensely studied in systems biology. Proteins are also the key players
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Figure 2.3: Illustration of several different omics types. DNA (stored in the
genome) is transcribed to RNA (stored in the transcriptome) and RNA is trans-
lated to proteins (stored in the proteome). Proteins can act as transcription factors
(TF) and activate DNA or further function as metabolites which e. g. can be asso-
ciated with different phenotypes. The information flow from DNA to phenotype
is indicated by arrows. Figure is adapted from Ritchie et al. [2015].

in cell signalling pathways (see chapter 2.2.2) as well as in catalysis (see chap-

ter 2.2.3) of biochemical reactions in the cell. The metabolome is a collection of

all small molecules in a cell. Metabolites are much smaller than e. g. proteins

or DNA samples (Wishart [2007]). Examples for metabolites include alcohols,

amino acids, antioxidants, vitamins or nucleotides. The study of metabolites is

called metabolomics (Shulaev [2006]). It is one of the cornerstones of systems bi-

ology (alongside with genomics, transcriptomics and proteomics) and has received

widespread attention in many different applications such as drug discovery (Kell

[2006]), clinical toxicology (Nicholson et al. [2002]) and nutritional genomics

(Gibney et al. [2005]; Trujillo et al. [2006]). Metabolites are measured by stan-

dard techniques used e. g. in chemistry, such as nuclear magnetic resonance or

mass spectrometry. The generated and analysed data in metabolomics typically

involves measurements performed on subjects under different conditions. This

is then stored in a matrix with columns corresponding to the single measured

metabolites and rows corresponding to the single subjects.

Relationships between proteins as well as between metabolites are often explored
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using pathways. In the next section we will present some pathway examples as

well as briefly review pathway properties.

2.2.2 Signalling and metabolic pathways

A signalling pathway (also called biochemical cascade) describes a series of bio-

chemical reactions of molecules such as proteins or enzymes which cooperate to

control cell functions such as division or death. For a detailed explanation of

this process we can point the interested reader to the relevant literature (Lodish

et al. [2000]). In brief, the first signal is delivered by an extracellular signalling

molecule (ligand) which binds to an extracellular receptor located on the cell sur-

face. This receptor is a transmembrane protein which has one part located outside

the cell and the other inside the cell. After extracellular binding of the ligand to the

receptor, the inside part of the receptor is changed. More specifically, this creates

a binding site for intracellular signalling proteins and triggers a set of chemical

reactions. Ultimately this leads to a certain response of the cell. The whole pro-

cess is also called signal transduction and the corresponding molecules which are

part of the signal transfer are organized in a signal transduction network. Depend-

ing on the activating molecule, cell and activated signal transduction network, the

response can be e. g. an alteration of the shape of the cell or its ability to divide

(Krauss [2006]).

Metabolic pathways are required for the cell stability and cell structure conser-

vation. They also represent a series of chemical reactions which alter the initial

metabolite. The end product of such pathways can be another metabolite which

serves as an initiator of another cascade of chemical reactions. This connection

between several metabolic pathways can then be organized into large metabolic

networks (Jeong et al. [2000]). In nutritional science these can then e. g. be used

to identify metabolites associated with diet or study metabolite effects on diet-

disease relations (Guertin et al. [2014]).

Important signalling pathways include the MAPK/ERK pathway which has thor-

oughly been studied in cancer research (McCain [2013]; Roberts & Der [2007]) as

well as the JAK-STAT signalling pathway (Arbouzova & Zeidler [2006]; Horvath

[2000]; Rawlings et al. [2004]) which is essential for differentiation and growth

of erythroid progenitor cells. A canonical representation of this pathway is shown
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Figure 2.4: Illustration of JAK-STAT signalling pathway. Extracellular receptor
activation leads to phosphorylation of JAK and provides docking sites for STAT.
Next, STAT is phosphorylated and dimerized. Finally, it is translocated to the
nucleus where it can bind to DNA sequences and thus drive important processes
such as cell division or cell death. This signalling cascade is indicated by the
arrows. Figure is adapted from Arbouzova & Zeidler [2006].

in Figure 2.4. Here, the process of extracellular receptor activation, phosphory-

lation of JAK and binding of STAT molecules followed by phosphorylation and

dimerization of STAT and subsequent translocation to the nucleus is indicated by

the black arrows. We will analyse data from the JAK/STAT pathway in Chapter 4.

Apoptosis pathways (Elmore [2007]) represent an additional class of signalling

pathways which regulate a programmed cell death. In Chapter 5 we will study

data from the cluster of differentiation 95 (CD95) apoptosis pathway (Huang et al.

[1996]; Lavrik et al. [2007]).

Signalling and metabolic pathways usually are comprised of different recurring

network motifs such as (negative or positive) feedback (discussed in Chapter 4),

catalysis (discussed in Chapter 5) or cross-talks (Alon [2007]; Ashkenasy et al.

[2004]; Cao et al. [2015]; Donaldson & Calder [2010]; Masoudi-Nejad et al.
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[2012]). In the following, we will discuss one of these, catalysis, in more detail.

2.2.3 Catalysis

Until now we several times mentioned biochemical reactions between two species.

Whenever such a reaction occurs, a set of some (chemical) substances, called re-

actants, is converted to another set of (chemical) substances, called products. The

reaction rate is the speed at which such a chemical reaction is happening. The rate

of a chemical reaction is characteristic at given atmospheric conditions as well as

reactant concentrations. For example iron rusting can be characterized as a very

slow reaction which happens over a large interval of time as compared to burn of

glucose when sugar is metabolised to energy which is very fast as it happens in

a fraction of seconds. For the occurrence of such processes energy plays a major

role. The reactants of a chemical reaction are activated by either adding free en-

ergy (e. g. in form of heat) or spontaneously in the direction of a lower and more

stable energy state. Hereby, the energy of a reaction is first increased to reach

a transition state after which the energy starts decreasing and reaches the energy

state of the products. The transition state of a chemical reaction is the point at

which the energy of a reaction is highest.

Reaction rates can be changed when an additional (chemical) substance, called

catalyst is present. In literature one divides catalysts into two categories. On

the one hand, a reaction rate is increased by a catalyst. On the other hand, a

reaction rate is decreased by an inhibitor. However, in the course of this thesis

we will not distinguish between both terms and use catalyst as a collective word

for both directions of change of reaction rates. Technically, whenever a catalyst

is participating in a reaction, a different amount of energy is required to reach a

transition state. A catalyst may be one of the reactants or products of a given

reaction or a substance which is neither the reactant nor the product.

An example for such a catalytic concept is shown in Figure 2.5 based on the EGF

pathway. Here, different proteins form complexes and some these reactions are

catalysed. For example, LRIG-1 is acting as catalyst and inhibiting the formation

of EGF:EGFR, whereas SRC-1 is activiting the formation of EGF:p-6Y-EGFR.

Figure is adapted from Creixell et al. [2015].
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Figure 2.5: Concept of catalysis in EGF pathway. Proteins (green) form com-
plexes (blue) which further participate in curated reactions. LRIG-1 is acting as
catalyst and inhibiting the formation of EGF:EGFR, whereas SRC-1 is activiting
the formation of EGF:p-6Y-EGFR. Figure is adapted from Creixell et al. [2015].

We can list some special forms of catalysis. The energy needed to reach the tran-
sition state is decreased by the presence of a positive catalyst. In contrast, the
required energy for reaching the transition state is increased by a negative cata-

lyst or also inhibitor. If one of the reaction products is also a reactant then it is
called autocatalyst. Finally, an induced catalyst influences the rate of a reaction
which without the presence of the catalyst would not be possible under ordinary
conditions.

In the following chapters, we will use the described mathematical and biological
background as a basis for investigating several research questions.
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3

Significance test for difference
between paired temporal
observations

In this chapter, we introduce a novel statistical significance test for the difference

of paired time-resolved observations. We construct a test statistic similar to a

univariate t-test and take into account location, variability and size of the tested

data. This is done by approximating the time courses with smoothing splines

and then calculating and integrating over the functional mean and the functional

standard deviation. The formulated test statistic has an unknown distribution and

for assessing its significance we sample from the null hypothesis with preservation

of the functional variability. It is the first statistical test of its kind which is suitable

for time-resolved and paired data.

The developed test is applied on a large number of different artificially created

datasets and its dependence on several influencing factors such as noise, number

of time points per sample, number of samples per group and fraction of missing

time points per sample are investigated. Furthermore, the test is compared in terms

of power and receiver operator characteristic (ROC) curves to two other methods

which do not account for the sample pairing in the two investigated groups. Fi-

nally, the test is used to quantify data in two real-world data scenarios. First, a

setting from nutritional sciences is studied. Second, differences in genetic loci of

wild-type and Atrx knock-out embryonic stem cells are assessed.
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This chapter is based on and in part identical with the following publications:

• I. Kondofersky, T. Erdmann, T. Brennauer, H. Hauner, F. J. Theis, C. Fuchs.

Significance test for difference between paired temporal observations, in

preparation.

• D. Sadic, K. Schmidt, S. Groh, I. Kondofersky, J. Ellwart, C. Fuchs, F.J.

Theis, and G. Schotta (2015). Atrx promotes heterochromatin formation at

retrotransposons. EMBO Rep., 16, 836850.

3.1 State of the art

Studying biological processes is often done by collecting temporal observations

(Kholodenko [2006]; Smith et al. [2015]; Zhang et al. [2005]). As an example

consider longitudinal studies which study obesity and insulin resistance over time

(Jess et al. [2008]; McCormack et al. [2013]; Mihalik et al. [2012]). In such

studies, often a hypothesized effect is investigated by collecting data either under

different conditions or from two different groups of origin, called wild-type and

knockout group or control and treatment group. Often this effect is assessed by

performing univariate significance tests for each time point where data was col-

lected and applying a multiple comparison correction to adjust for the number of

time points (Fathers et al. [2005]; Lohr et al. [2014]; Nishino et al. [2011]; Pra-

japati et al. [2009]; Schikowski et al. [2013]; Weber et al. [2015]). However, this

approach has multiple problems such as interpretation of different significance

findings at different time points. Instead, a solid conclusion about an overall dif-

ference in both groups should be based on the full information available: all tem-

poral measurements, group association and possibly pairing within groups. To our

knowledge, the current literature does not provide a tool which is able to use the

full information and at least some of the available information (e. g. time depen-

dency or observation pairing) is not used. In this chapter we develop a novel test

which uses the full information and allows to draw conclusions about the overall

difference of two groups of temporal observations. We call it time-resolved paired

differences test, or short TPDT.

Several methods which account for the time dependency between single measure-

ments, were developed throughout the past decade.
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Figure 3.1: Artificial example for difference assessment in temporal measure-
ments. Treatment 1 (solid lines) and treatment 2 (dashed lines) are performed
on five different subjects denoted by the different colours. The overall mean of
both treatments is shown in orange colour and thicker lines. Four tests were ap-
plied on this data with only TPDT correctly rejecting the null hypothesis of no
differences between both groups.

One of the first to start developing such a test by using smooth functions were

Storey et al. [2005], however the developed test did not have the ability to deal

with missing, repeated or non-synchronized time points. A Bayesian approach

by Angelini et al. [2007] was proposed where the testing procedure could be

used for the analysis of two competing smooth curves. However, the test does

not allow to compare two bundles of time series data representing two different

groups. Recently, a test which was able to handle multiple time series per group

was proposed by Berk et al. [2011]. It relies on mixture models theory to ap-

proximate smooth functions which appropriately represent the time dependency

of the measured data. The test is carried out by comparing the parameters of these

smooth functions. Finally, Crainiceanu et al. [2012] formulate a test which is
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Table 3.1: Comparison of different significance tests which may be applied on
temporal data.

Properties Uni-
variate
t-test

Varying
coeffi-
cients

Storey
2005

Ange-
lini
2007

Berk
2011

Craini-
ceanu
2012

TPDT

time-resolved no yes yes yes yes yes yes
missing no yes no yes yes yes yes
repeated no yes no yes yes yes yes
non-synchronized no yes no yes yes yes yes
paired yes no no no no yes yes
global decision no yes no no yes no yes

easy to implement and allows for detailed investigation of the difference between
two groups. The method uses bootstrap based confidence intervals, which allow
for the quantification of single time periods where a difference between the two
studied groups may occur. The above-described tests as well as two other com-
monly available alternatives, univariate t-test and varying coefficients model, can
be conveniently grouped alongside with the newly developed TPDT by different
properties in Table 3.1.

The different properties we judged the tests on were the following:

• time-resolved: can the test be applied on time resolved observations?
• missing: can the test handle missing observations?
• repeated: can the test handle repeated observations?
• non-synchronized: can the test still be applied if the observations are not

made at the exact same time points?
• paired: does the test consider pairing between the two groups?
• global decision: Does the test come to a decision whether there is a global

difference between the time series?

Table 3.1 demonstrates that there is no test yet which is able to extract the full
information out of the data. Especially when observations are paired and one is
interested in a global difference over the whole time series, no tests are available
to incorporate this information into the test procedure. A possible pairing may
have an effect on the end result, which, depending on the dataset, is of different
magnitude. We can further elaborate this statement with a theoretical example
which demonstrates the importance of pairing consideration in statistical testing.
First, notice that a significance test usually takes into account both location, e. g.
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the mean difference in two groups, and variability, e. g. the noise contained in the

measurements. An overall difference between two groups is more sensibly identi-

fiable when the difference location is large and at the same time the difference in

variability is low. If the pairing in the observations is ignored, the location measure

does not change. However, the variability measure is affected due to the simple

relationship var(X−Y ) = var(X)+var(Y )−2cov(X ,Y ) for two random variables

X and Y . On the one hand, if X and Y are positively correlated, then the variability

of the differences will be larger than the sum of the variability. On the other hand,

if X and Y are negatively correlated the variability of the differences will be larger.

To further demonstrate the state of the art methodology for assessing temporal

differences, consider the artificially created example of two different treatments

shown in Figure 3.1. Here, we created a data situation where we consider differ-

ently shaped time-resolved observations of two treatments. For each subject, we

first simulate one treatment outcome and then use this simulated time course and

shift it upwards by a nearly constant value of 0.8 (with small noise added) at each

time point. This results in paired time-resolved observations. The two treatments

are shown in solid versus dashed lines and the temporal measurements of five dif-

ferent subjects are shown in different colours. This means that data of each subject

is available one time with application of treatment 1 and one time with application

of treatment 2. The subject-specific effect is present as the temporal behaviour is

different across subjects. For example, the green lines tend to have high measure-

ment values at both limits of the considered time scale whereas the red lines have

high measurement values at the middle of the time scale.

The mean at each time point is shown in orange and it is obvious that there exists

a difference between the two treatments. However, available tests (which we will

address in more detail later in Section 3.4) fail to find a significant difference (all p-

values larger than 0.1). In contrast, the newly developed TPDT is able to correctly

reject the null hypothesis with a low p-value of 0.002.

Similar to the above mentioned tests, our approach also begins by approximating

the time courses of the samples by using the raw data measurements. Next, we

use these time-courses and develop a statistical framework and compute a test

statistic which measures the difference between two groups of multiple paired

smooth functions. The distribution of this test statistic is approximated with a

resampling technique which allows us to compute a p-value and thus in turn makes
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the decision whether to reject the null hypothesis of no difference in the two groups

feasible. For simplicity, we discuss applications and theoretical aspects of the test

by considering temporal observations. Note, however, that the proposed test does

not need time-resolved observations but any kind of data which can be described

by a smooth function.

The rest of this chapter is organized as follows: In Section 3.2 we develop the

method and present details on the mathematical computation and the statistical

hypothesis. Next, we apply the developed statistical test in on artificial as well as

real-world data. Here, we first assess the general applicability of the developed

test in Section 3.3 and then compare it to other commonly used approaches in

literature in Section 3.4. Analysis of data from nutritional sciences in Section 3.5.1

and embryonic stem cell data in Section 3.5.2 are also demonstrated. Finally, we

conclude the chapter in Section 3.6.

3.2 Methods

3.2.1 Notation and spline representation

We consider two paired groups of variables X= {xxxi}i=1,...,N and Y= {yyyi}i=1,...,N .

The index denotes the pairing of the two groups and contains the information that

xxxl and yyyk are connected or paired only if l = k. We assume that each xxxi and yyyi

represents time-resolved measurements of possibly different lengths denoted by

xi(t
(x,i)
j1 ) and yi(t

(y,i)
j2 ). The measurements were made at discrete time points t(x,i)j1

and t(y,i)j2 with j1 ∈ {0, . . . ,Jxi} and j2 ∈ {0, . . . ,Jyi}. Written in vector form, the

time points are tttxi = (t(x,i)0 , . . . , t(x,i)Jxi
) and tttyi = (t(y,i)0 , . . . , t(y,i)Jyi

). An example of such

measurements is shown in Figure 3.2A. We do not require that the measurements

of both variable groups or within the groups are synchronized in the sense that

the time points at which measurements were made are equal over all variables or

the number of measurements per variable is equal. However, mainly for simpler

notation, we require that t(x,i)0 = t(y,i)0 as well as t(x,i)Jxi
= t(y,i)Jyi

.

We are interested in the detection of time-resolved differences between both groups

X and Y and want to explore it in a functional context. We therefore define the fol-
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lowing hypotheses:

H0 : groups are equal,

H1 : groups are different.
(3.1)

More specifically, we are interested in the time-resolved differences in both groups.

We assume that the measurements xi(t
(x,i)
j1 ) and yi(t

(y,i)
j2 ) represent local snapshots

of a smooth time course of the variables. In a first step, we approximate this time

course by smoothing splines as already discussed in Chapter 2.1.3:

x̂i(t) :=
Kx

∑
k=1

β̂xkiφkx(t) = β̂ββ xiφφφ x(t)

ŷi(t) :=
Ky

∑
k=1

β̂ykiφky(t) = β̂ββ yiφφφ y(t)

(3.2)

where φφφ x = (φ1x, . . . ,φKxx)
T and φφφ y = (φ1y, . . . ,φKyy)

T are known basis functions,

e. g. B-spline basis functions and Kx, and Ky are the respective number of basis

functions. β̂ββ xi = (β̂x1i, . . . , β̂xKxi)
T and β̂ββ yi = (β̂y1i, . . . , β̂yKyi)

T represent optimized

coefficient vectors. There are several ways how these coefficients can be optimized

as discussed in Chapter 2.1.2. The corresponding equation for such an optimiza-

tion in the current notation is (analogously also for β̂ββ yi)

β̂ββ xi = argmin
βββ xi

(xi(tttxi)−βββ xiφφφ x(tttxi))
T (xi(tttxi)−βββ xiφφφ x(tttxi))+λxi

∫
t

(
βββ xiφ̈φφ x(s)

)2 ds


(3.3)

where φ̈φφ =(φ̈1x, . . . , φ̈1x)
T denotes the vector of twice differentiated basis functions

with respect to time. We estimate λxi using cross validation (see Chapter 2.1.3).

Figure 3.2B shows such estimated smooth curves.

With the above-described equations (3.2) and (3.3) we are able to represent the raw

measurements as smooth functions. For that reason, typical problems such as non-

synchronized time points of the measurements or missing values are effectively

addressed. In a next step, after smooth representation of X and Y, we proceed by

constructing a test statistic for difference assessment using these smooth functions.
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Figure 3.2: TPDT concept. Decision about the null hypothesis (H0) of no dif-
ferences between two groups of temporal observations is made. A: raw measure-
ments of each subject are denoted by different point shapes, treatments are shown
in different colours; B: splines are fitted to the raw measurements; C: difference
curves of each subject are calculated; D: the functional mean of the difference
curves is calculated and the corresponding integral (shaded area) approximated;
E: the functional standard deviation of the difference curves is calculated and the
corresponding integral (shaded area) approximated; F: distribution of test statistic
u is approximated with resampling; G: test outcomes such as p-value and hypoth-
esis decision are extracted.
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3.2.2 Test statistic u

After estimation of x̂i(t) and ŷi(t), we calculate the difference curves (Figure 3.2C)

d̂i(t) = ŷi(t)− x̂i(t). (3.4)

With these difference curves, we are able to transform the question whether the

two groups of paired time-resolved observations differ significantly from each

other by a pre-defined function µ0(t) into the question whether the difference

curves significantly differ from an arbitrary function µ0(t). This also allows a

reformulation of the hypotheses (3.1):

H0 : d̄(t) = µ0(t)

H1 : d̄(t) 6= µ0(t).
(3.5)

The answer has to take into account noise, variability, location and size of the

considered dataset. Similar to a univariate t-test for paired observations, we define

the test statistic to equal

u :=
√

N
D
S
=
√

N

tn∫
t0
| ¯̂d(s)−µ0(s) | ds

tn∫
t0

√
1

N−1 ∑
N
i=1

(
d̂i(s)− ¯̂d(s)

)2
ds

. (3.6)

with a functional mean difference curve ¯̂d(t) = 1
N ∑

N
i=1 d̂i(t). The test statistic u

captures the location differences of both groups in D and it takes the variability

of both groups into account in S. We approximate the integrals through finite

differences (Ramsay & Silverman [2005]). Both quantities are shown as the grey

areas in the Figure 3.2D and Figure 3.2E. Additionally, we use a correction term

for the number of curves in the two groups in the form of
√

N in order to extract

similar magnitudes of u for different sizes of datasets. The arbitrary curve µ0(t)

can be used to answer questions whether the two groups differ significantly from

each other and an additional offset µ0(t), which may also be constant over time.

A result of u = 0 means that D = 0 for the observed data and this in turn means

that the observed functional means of both groups are exactly the same. A result

of u > 0 means that there are differences between µ0(t) and ¯̂d(t) for the observed

data. The significance of these differences will be assessed with a resampling
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approach in the following. We reformulate the hypotheses a further time to:

H0 : u = 0

H1 : u > 0.
(3.7)

3.2.3 Resampling functional curves

Calculation of the test statistic u as described in (3.6) reveals whether there are dif-

ferences between the two considered groups of time-resolved observations. This

is representative for the current dataset but it is not generalisable due to the current

dataset being a random subsample of all possible datasets. The distribution of u

would allow to make general test decisions, however it is unknown. Therefore, we

apply a resampling approach to approximate the distribution of u. To that end, we

simulate time-resolved measurements under the null hypothesis of no difference

between both groups. The simulated curves are chosen in such way that both, the

smooth curves corresponding to the original data X and Y, as well as the simu-

lated curves contain the same amount of variability S and are of the same size

N in a sense that is explained further below. W. l. o. g. assume that µ0(t) = 0

and the considered smooth curves d̂i(t) belong to the same class of functions,

f (x) = ∑k βkφk(x), where φk(x) are cubic B-splines which span over the same in-

terval. We simulate curves from this class by adding a normally distributed noise

with mean 0 to the basis coefficients:

dsim
i (t) = di(t)+ εεε i

=
Kd

∑
k=1

β̂dkiφkd(t)+
Kd

∑
k=1

εkiφkd(t)

=
Kd

∑
k=1

(β̂dki + εki)φkd(t)

(3.8)

with Kd the number of basis functions used to represent the difference curves, β̂dki

the difference basis coefficients, φkd the corresponding basis functions (estimated

in (3.3)), εεε i = (ε1i, . . . ,εKd i)
T and εεε i ∼ NKd(0,Σ) with covariance matrix Σ. As

we show later, Σ is chosen to equal the empirical covariance matrix of the basis

coefficients which are extracted from the splines which approximate the observed

measurements. The expectation of dsim
i (t) equals the estimated functional mean
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d̂i(t):

E
[
dsim

i (t)
]
= E

[
Kd

∑
k=1

(β̂dki + εki)φkd(t)

]

=
Kd

∑
k=1

(β̂dki +E [εdki])φkd(t)

=
Kd

∑
k=1

(β̂dki +0)φkd(t)

= d̂i(t).

(3.9)

An example for simulated random curves is shown in Figure 3.3. We chose a

sinusoidal shaped curve demonstrating the randomizing of a functional curve. We

added normal noise with zero mean and variance equal to 1 to the basis coefficients

and repeated this for 1000 times. The mean curve of the resulting simulated curves

is very close to the function from which data was generated for this large sample

size. If we look at only the mean curve of the first 20 random curves it is already

very closeto the function from which data was generated for this moderately large

sample size.

As we stated above, the resampling of the test statistic is done under the null hy-

pothesis of no difference between both groups. While resampling, we want to

preserve the variability contained in the data for which the test is applied. There-

fore, the covariance matrix Σ is estimated from the fitted basis coefficients of the

difference curves:

Σ̂ = cov(β̂ββ d) (3.10)

with β̂ββ d = (β̂d1i, . . . , β̂dKdN)
T . Using this empirical covariance matrix, we simu-

late N curves and calculate a test statistic ub as in (3.6) which is based on these

simulated curves. Repeating this procedure B times (e. g. B = 106) results in B

different test statistics which are used to approximate the distribution of u (Figure

3.2F). In a last step, we apply the percentile method (Efron & Tibshirani [1994])

and consider the fraction of (u1, . . . ,uB)
T which have a more extreme value than

the test statistic computed on the original smooth curves u. This fraction also gives

the final estimate for a p-value p̂ of the test:

p̂ =
1
B

B

∑
b=1

I(ub > u) (3.11)
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Figure 3.3: Simulated random curves. The curve which is used for sampling has
a sinusoidal form and is shown in purple. 20 single simulated curves are shown
in red and the simulation based mean curves based on 20 (blue) or 1000 (green)
curves show good agreement with the data generating curve.

with indicator function I(A). This p-value can be interpreted in the usual way as

the probability of having observed a difference between X and Y given H0 is true

only by chance. Therefore, it serves as a tool to decide whether to reject the null

hypothesis or not. For a given significance level α , we can look at the approxi-

mated 1−α quantile q̂1−α = dB · (1−α)e -value of the sorted test statistics. The

final test decision is then made:

Reject H0 if u≥ q̂1−α

Do not reject H0 otherwise.
(3.12)

In summary, with the newly developed TPDT we are able to identify whether two

paired groups of time-resolved measurements significantly differ in location from

each other and summarize this result in a single scalar p-value (Figure 3.2G).

In the next section we thoroughly test the developed TPDT on several artificially

created data scenarios in order to investigate the general applicability of the test

and compare it to other available tests. We first study the effect of different data
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settings, such as noise level, number of subjects, number of time points, smoothing

parameters for the spline estimation as well as data missingness. This is studied

by considering vertical, horizontal and multiplicative shifts of two groups. Next,

we compare TPDT to two other statistical tests, which are used to compare differ-

ences in a functional context between two groups. We do this by comparing the

area under the receiver operator characteristic (ROC) and power of the three tests,

which are again applied on different artificially created datasets.

3.3 Parameter influence on TPDT

In this subsection we will demonstrate TPDT on synthetic data. Furthermore, we

will assess the test dependency on several parameters: noise, number of subjects,

number of time points, difference in the created groups and missing observations.

We consider two groups of temporal observations – group 1 and group 2. Data for

group 1 is generated based on the function

f1(t) = 2t sin(t)+10. (3.13)

We sample snapshots of this function at n equidistant time points within the in-

terval [0,10]. Subsequently, we add normally distributed noise with 0 mean and

variance σ2
1 to each snapshot. Next, we randomly delete a fraction of m obser-

vations to create a missing data scenario and thus form one time-resolved sample

of group 1. This process is repeated N times to obtain N similar time-resolved

samples of this group. The parameters n, σ2
1 , m and N are varied (see Table 3.2)

with the purpose of investigating a large number of different simulation scenarios

and thus get different datasets onto which to apply our test.

In a next step, we consider a second group of time-resolved measurements by

introducing shifts of different types and applying them on the data corresponding

to group 1. Here, we consider four different scenarios:

1. vertical shift ν1 (group 2.1)

2. horizontal shift ν2 (group 2.2)

3. slope shift ν3 (group 2.3)
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4. combined shift ν4 (group 2.4)

The corresponding functions from which we generate data in group 2 are

f2.1(t) = 2t sin(t)+10+ν1, (3.14)

f2.2(t) = 2t sin(t +ν2)+10, (3.15)

f2.3(t) = 2(t +ν3)sin(t)+10, (3.16)

f2.4(t) = 2(t +ν4)sin(t +ν4)+10+ν4. (3.17)

We introduce pairing between observations from group 1 and group 2 in the fol-

lowing way. We take the (noisy) time-resolved samples already obtained in group

1 and first shift them by a chosen value of νi, i ∈ {1, . . . ,4}, and subsequently add

normally distributed noise with variance σ2
2 to each of these shifted snapshots.

Using a (noisy) sample from group 1 for the generation of a sample of group

2 naturally introduces a pairing between the two samples. Therefore, following

the above-described protocol of data generation, we obtain matched samples from

group 1 and group 2.

A comparison of the functions for f2.1(t) to f2.4(t) for different values of νi, i ∈
{1, . . . ,4} is shown in Figure 3.4. We observe that with the same values for

νi, i ∈ {1, . . . ,4} in each scenario, we introduce differences between both groups

of varying magnitude. Along this line, we expect that ν3 and ν4 will have the

largest effect when we investigate differences in both groups and ν1 will have the

smallest effect.

We conducted a large number of TPDT comparisons by varying the parameters

n, N, σ1, σ2, m and νi, i ∈ {1, . . . ,4}. The varied parameters are summarized in

Table 3.2. The ranges of variation of these parameters were chosen to resemble

realistic data situations, such as e. g. 10 snapshots per time-resolved sample or a

low amount of samples per group and a moderate percentage of missing values.

Choosing a value of 0 for the shift parameters νi, i∈{1, . . . ,4} results in the correct

test decision being to not reject the null hypothesis because the data generating

process for both groups is the same. On the other hand, if we choose a positive

value for νi, i ∈ {1, . . . ,4}, the correct test decision is to reject the null hypothesis.

For each combination of parameters, we simulate a dataset and perform TPDT on

both groups and thus obtain a different p-value for each parameter combination.
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Figure 3.4: Functions from which data is simulated. The different types of shifts
νi, i ∈ {1, . . . ,4} are shown in the four panels.

We continue with discussion of these results in the following. Only a subsample

of the results is discussed and shown in Figure 3.5 – Figure 3.8. The complete set

of results is available upon request. For the discussion, we choose a significance

level α = 0.05 which means that whenever a p-value is calculated to be lower than

0.05, the test decision is to reject the null hypothesis of no differences.

It holds for all simulated parameters that the null hypothesis was almost never

rejected when there was no difference between both groups (blue boxplots). This

is an indication for low type II errors as we will demonstrate in Section 3.4.

Figure 3.5 and Figure 3.6 indicate that the two noise parameters σ2
1 and σ2

2 play

a major role if the difference between both groups is small (ν1 ≤ 0.5 or ν2 ≤ 0.2)

and especially if the number of samples per group is also small (N < 6). If we

introduce a large amount of noise for those cases, TPDT does not reject the null

hypothesis reliably.
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Figure 3.5: Influence of σ2
1 on TPDT performance (scenario: vertical shift). Blue:

null hypothesis correct, yellow: alternative hypothesis correct.
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Figure 3.6: Influence of σ2
2 on TPDT performance (scenario: horizontal shift).

Blue: null hypothesis correct, yellow: alternative hypothesis correct.

54



N = 2 N = 4 N = 6 N = 8 N = 10 N = 20 N = 50
●
●
●
●
●
●●●

●
●

●

●

●
●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●
●

●

●●
●

●

●

●
●
●

●
●
●
●
●

●

●
●

●
●

●

●

●●

●

●

●

●

●
●

●
● ●

●●

●

●

●

●

●
●●

●

●

●

●

●

●●

●

●

●●

●

●●
●

●

●

●

●

●●

●

●
●
●
●

●

●

●

●●

●

●
●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●●
●●
●

●

●
●

●

●

●

●

●

●
●●●

●

●

●

●

●

●

●

●

●
●
●●

●

●
●●

●

●
●
●
●●●

●

●
●●●●

●

●

●●●●●●●●●●●●●

●

●
●
●●

●

●●●●●●●●

●

●●●
●
●

●●
●
●●●●●●
●
●●

●
●
●●●
●●

●

●●●●●●

●

●●●●●●

●

●●●●●●

●
●

●

●●

●

●

●

●●●

●

●
●

●

●●

●

●
●

●

●●

●●●
●

●

●

●
●

●

●

●

●

●
●
●

●●●
●●

●

●

●

●
●
●
●
●

●

●
●●
●
●●●●

●
●
●●●

●

●
●
●●

●

●
●
●●

●
●
●

●

●

●

●

●
● ●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●

●

●●

●

●

●

●

●
●

●●

●

●

●

●●

●

●
●

●●●●
●●●

●
●
●

●

●
●
●
●
●
●●●
●
●●

●

●

●

●
●●●

●●●

●

●●●●●●●●●●●●●●●●●●●●●●●
●
● ●●●●● ●

●

●
●

●

●

●●

●
●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●●
●

●

●●

●

●
●

●

●
●

●

●
●

●

●
●●●●
●●
●

●

●

●●

●●
●

●

●

●

●

●

●

●

●

●

●

●●●●●●
●
●●●●●●●●●●●
●●●

●

●●
●

●
● ●

●

●●●
●

●

●

●

●●
●●
●

●
●

●
●
●
●
●
●
●

●

●

●
●

●●●

●
●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●●

●

●

●
●

●
●

●

●

●
●
●

●

●

●●●

●

●●●●●●
●
●

●
●

●

●●●●●●●●●
●
●●●●
●

●

●●●●

●

●●●●

●

●

●

●●●● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●●●●

●

●●●

●

●

●●

●

●
●●
●
●

●●●●
●

●●●
●●
●●●●
●
●

●

●
●●●●
●
●●●
●
●

●

●

●

●
●●●● ●●●●●●●●

●

●

●

●

●
●
●
●

●

●

●

●
●

●

●
●

●

●
●

●

●

●
●

●

●
●
●

●

●

●

●

●

●

●

●

●
●

●

●●●●●●●●●●●●
●
●●●●●●●
●
●
●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●●●●
●●
●

●

●

●

●

●

●

●●●
●
●

●

●
●
●●●

●
●●

●

●

●

●

●

●
●●●●●

●

●

●

●

●●

●

●

●

●

●
● ●●●

●●●●●
●●●● ●

●
●●●

●

●●●

●

●●●●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●●
●●●●
●
●●

●

●

●
●●

●

●●

●

●●
●●
●
●

●●

●
●
●

●

●

●

●

●●●●●●●●●●●●●●
●
●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●●●
●
●●

●

●●

●

●
●●●●●●●●

●

●
●
●
●●●●●● ●●

●

●

●

●

●

●

●●

●

●

●

●

●●●

●
●●
●
●
●●

●

●

●

●

●
●

●

●

●

●

●

●

●
●
●

●

●

●

●

●
●

●

●●●●●●●●
●
●●●

●●

●

●

●
●

●

●

●

●
●●

●

●

●

●
●

●

●

●●

●

●

●

●●

●

●

●
●

●

●

●●

●●●●●●●
●●●

●

●

●
●●●●

●

●●
●
●●●●

●

●

●

●

●
●
●

●

●
●

●

●

●

●

● ●● ●●●●
●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●●●

●

●

●●
●●
●
●●
●
●●
●

●●●

●

●●

●

●●●
●

●

●

●

●

●●
●●●●●

●

●
●
●●●
●

●

●● ●●
●
●●●●●●●
●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●
●

●
●

●

●
●●

●

●

●●●●●●●●
●
●●
●
●
●
●

●

●●

●

●
●
●

●●

●

●●●

●

●
●

●

●●
●
●

●

●
●

●●

●
●

●

●
●●
●

●

●

●

●

●

●
●●

●

●
●

●●●●

●
●
●●
●●
●
●
●●

●

●
●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●●
●

●

●

●

●
●

●

●●●●

●

●●
●
●●●●●

●

●●●●

●

●

●

●●
●

●

● ● ●●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●●

●

●●

●●

●

●

●

●

●
●
●●●●●●●
●
●●●●●
●●
●

●

●●

●

●

●
●●●●●

●

●●

●

●
●

●

●

●

●

●●

●

●●

●
●

●

●

●

●

●

●
●●●●●

●

●●●

●

●

●●

●

●

●

●

●

●●

●

●●
●

●●
●

●

●

●

●

●●●●●●●●●●●●●●
●

●

●

●●●
●
●

●

●

●●●●●●●●

●

●

●●●●

●

●●●●

●
●

●

●
●
●●●●●●
●
●
●●
●

●
●●●●

●

●●

●

●

●

●

●
●

●
●
●

●

●

●●

●

●

●

●

●●

●

●

●
●

●●

●

●
●●

●●

●

●●
●

●

●

●

●●

●

●
●

●

●
●
●

●

●●

●

●
●

●

●

●
●

●

●

●●

●

●●

●

●●

●

●
●●

●

●

●

●●●●
●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●
●

●

●

●

●

●
●

●

●●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●●

●

●●
●●●●●●
●

●●●●●●

●

●

●
●●●●

●

●●
●●

●

●
●●●

●
●
●
●●

●
●●●●●●

●

●

●
●

●●

●

●

●

●●●●●●●●●●●●●

●

●●●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●
●●

●

●

●

●

●●

●
●

●

●

●

●

●●●

●●●●●●

●

●●●●●●●●●
●
●●●
●
●●●
●
●

●
●●

●
●

●

●

●

●
●

●●

●

●●

●
●
●
●
●●●

●

●

●

●

●●●

●

●●

●

●

●
●

●

●

●●●●●
●
●

●

●

●

●●●●●●●●
●●

●●

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

n
=

10
n

=
20

n
=

50
n

=
100

0 0.2 0.5 1 2 3 0 0.2 0.5 1 2 3 0 0.2 0.5 1 2 3 0 0.2 0.5 1 2 3 0 0.2 0.5 1 2 3 0 0.2 0.5 1 2 3 0 0.2 0.5 1 2 3

ν4

p−
va

lu
es

combined shift: number of time points n vs. number of samples N

Figure 3.7: Influence of n on TPDT performance (scenario: combined shift). Blue:
null hypothesis correct, yellow: alternative hypothesis correct.
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Figure 3.8: Influence of m on TPDT performance (scenario: slope shift). Blue:
null hypothesis correct, yellow: alternative hypothesis correct.

55



Table 3.2: Parameters are varied and for each combination, we simulate and anal-
yse the corresponding data with TPDT.

parameter varied values
number of time points n {10, 20, 50, 100}
number of paired samples in each group N {2, 4, 6, 8, 10, 20, 50}
noise in group 1 σ1 {0.5, 1, 2, 3, 5, 10}
noise in group 2 σ2 {0.5, 1, 2, 3, 5, 10}
percentage of missing snapshots m {0, 20, 40}
amount of difference νi, i ∈ {1, . . . ,4} {0, 0.2, 0.5, 1, 2, 3}

The number of sampled time points n only has a substantial effect on the test
decision if the number of observations per group N is small. For few time points
(n≤ 20) and low sample size (N ≤ 10), a large difference between both groups is
needed for a correct test decision (Figure 3.7). For a large number of time points
n = 100, TPDT correctly rejects the null hypothesis in almost all cases as long as
the number of subjects is not too low (N < 5).

Finally, the ratio of missing values m seems to not have a large effect on the sim-
ulation results again only if the shift values (ν3) are low (Figure 3.8). Overall, the
ratio of missing snapshots does not have a large impact on the test decision.

We further investigate this data in the next chapter, where we apply TPDT and
other tests on the same data discussed in the present section. In the following, we
introduce and describe other available tests and comment on possible adaptations
we perform in order to make all tests comparable. Subsequently, we compare
TPDT to the other methods by considering power and ROC analyses.

3.4 Comparison of TPDT to other methods

In this section, we compare TPDT to other methods which are specifically de-
signed for detection of time-resolved differences. Additionally, we also imple-
mented an adapted version of a univariate t-test, which is commonly used in lit-
erature. The comparison is done using the data simulated in Section 3.3 and cal-
culating the power and ROC curves of each of the tests for different values of
νi, i ∈ {1, . . . ,4}. Furthermore, we will also compare the tests for a shuffled ver-
sion of the same data where we intentionally remove the pairing between samples.
Prior to these comparisons, we first introduce and describe the considered tests.
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3.4.1 Other available methods

Moderated functional t-type statistic after Berk et al.

Berk et al. [2011] introduce an approximative time-resolved test for differences

between two groups of time-resolved samples. A test statistic is calculated by

applying a mixture model, and the distribution of this test statistic is then approx-

imated by bootstrap methods.

The authors first define a functional mixed-effects model (Guo [2002]) for each of

both groups as

yk(ti j) = µk(ti j)+νik(ti j)+ εki j (3.18)

where yk(ti j) are the measurements for group k,k ∈ {1,2}, µk(ti j) is the fixed

mean function for group k evaluated at ti j, νik(ti j) is the i-th random realization

of an underlying Gaussian process with zero mean for group k evaluated at ti j

and εki j are additive error terms with group specific variance σ2
k . The number of

samples per group are denoted by nk and the number of temporal observations per

sample are denoted by mi, thus i∈ {1, . . . ,nk} and j ∈ {1, . . . ,mi}. µk(t) and νik(t)

are represented by smoothing splines (see Chapter 2.1.3) and µ̂k(t) and ν̂ik(t) are

estimated by a penalised generalised log-likelihood ansatz. After obtaining these

estimates, a test statistic Ft is calculated

Ft =
l2

se+ sem
. (3.19)

The l2 term is the square root of
∫ tmax

tmin
(µ̂1(t)− µ̂2(t))

2 dt where the integration is

done by applying the trapezoidal rule on a fine grid between both time limits tmin

and tmax. The term se is the functional standard error and is defined as

se =

√
ŝ2

1
n1

+
ŝ2

2
n2

(3.20)

and ŝ2
k ,k ∈ {1,2} are the sample variance estimates for group k defined as

ŝ2
k =

1
nk

nk

∑
i=1

∫ tmax

tmin

(ν̂ki(t))
2 dt. (3.21)
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Finally, the term sem is a small value which is added to the denominator in (3.19)

and is used to slightly moderate the Ft statistic. This is done in order to handle

cases where the functional standard error se is very small and division in (3.19)

would lead to inflated Ft statistics if even for small estimation errors. However, sem

is only of relevance if multiple variables are investigated for temporal differences.

In the considered simulation studies this is not the case and thus we set this value

to 0.

After computation of Ft, its distribution under the null hypothesis of no differ-

ences is approximated by resampling (as done also for TPDT). This is done by the

following procedure which produces simulated observations:

1. Select one of µ1(t) or µ2(t) randomly as a mean curve.

2. Choose individual curves with replacement from νki randomly and add these

individual curves to the selected mean curve.

3. Choose error terms with replacement from εki j and add them to the individ-

ual and mean curves.

4. Calculate an Ft statistic for this generated data.

This is repeated B times and results in B different Ft statistics. The Ft statistic

which is based on the original data is then compared to those B statistics and a raw

p-value is approximated.

The R package sme (Berk [2013]) implements this procedure and we used mainly

the functions from this R package to calculate test statistics and p-values with this

test. We had to implement slight adaptations of the provided functions due to e. g.

computational errors when considering missing data.

Bootstrap-based joint pointwise confidence intervals after Crainiceanu et al.

Crainiceanu et al. [2012] propose a construction of pointwise and joint confidence

intervals by extracting the covariance matrix of the data and then using it to obtain

confidence intervals for the mean difference curve.

The authors first start by calculating two functional means, µ1(t) and µ2(t), and

suggest to use penalised splines for the functional representation. Next, a differ-

ence function d(t) = µ1(t)− µ2(t) is formulated and a functional bootstrap ap-
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proach is used to calculate estimates of d(t). This is done by randomly selecting
one sample from group 1 and one sample from group 2, fitting penalized splines
to these samples and finally computing the difference function. If the samples are
paired, then only the sample from group 1 is selected randomly and the matched
sample from group 2 is automatically chosen as second sample. This process is
repeated B = 1000 times resulting in B = 1000 estimates d̂(t). These estimates are
then evaluated at a grid of time points of length n and stored in the n×B matrix S.
The column mean of this matrix is denoted by d̄ and the covariance of the samples
is an n×n matrix Σ. Once both d̄ and Σ are calculated, the following algorithm is
used to create joint confidence intervals:

1. Simulate di from a multivariate Gaussian distribution Np(d̄,Σ).

2. Calculate xi = max
j
{ |di−d̄|√

Σ j, j
}.

3. Repeat steps 1 and 2 a total of N times and obtain q1−α , the 1−α empirical
quantile of the sample {xi, i = 1 . . . ,N}.

4. Obtain n joint pointwise confidence intervals d̄± q1−α

√
Σ j, jfor each j ∈

{1, . . . ,n}.

This method is especially useful if one wants to assess specific time intervals
where a difference between both groups can be observed. However, the authors do
not comment on how to construct a p-value with their method. For reasons of com-
parison we construct a score, which we can use for ROC comparisons later. The
score is standardized in the interval ( 1

B ,1−
1
B) and low values stand for strong ev-

idence against the null hypothesis given the current data. The score is constructed
with the following protocol:

1. The above-described calculation of pointwise confidence intervals is per-
formed with α = 0.

• If ∃ j : 0 /∈ [d̄−q1−α

√
Σ j, j, d̄ +q1−α

√
Σ j, j], set score s = 1

B

• Else: continue with protocol number 2.

2. The above-described calculation of pointwise confidence intervals is per-
formed with α = 1.

• If ∀ j : 0 ∈ [d̄−q1−α

√
Σ j, j, d̄ +q1−α

√
Σ j, j], set score s = 1− 1

B

• Else: continue with protocol number 3.
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3. The above-described calculation of pointwise confidence intervals is per-

formed on a fine grid of α values.

• Numerical optimization: find α?, such that the number of j with 0 ∈
[d̄−q1−α?

√
Σ j, j, d̄ +q1−α?

√
Σ j, j] is non-zero but minimal. Set score

s = α?.

In other words, in protocol number 3, we vary α? and the pointwise confidence

intervals in such a way that the null hypothesis is rejected at a minimal number of

time points and set the score s to this time point. The first two protocol numbers

handle cases at both limits of α .

Adapted version of univariate paired t-test

We implemented a further procedure which we can use to investigate the null hy-

pothesis of no differences in both groups. We call it an adapted version of the

univariate paired t-test. It consists of subsequent application of the t-test (Student

[1908]) at each time point which results in n different p-values. These p-values are

then adjusted for multiple testing by using an false discovery rate correction (Ben-

jamini & Hochberg [1995]) which in turn results in n adjusted p-values. Finally,

we choose the smallest of all adjusted p-values as the overall p-value for the whole

time-series data. As discussed in the beginning of this chapter, this approach is of-

ten used due to its simplicity and computational effectiveness. However, it clearly

has the following shortcomings (among others):

1. The time dependency is not taken into account.

2. It is not applicable if the time series are not synchronized.

3. It is not applicable if data snapshots are missing.

Nevertheless, we implemented a version of this test for reasons of comparison.

Varying coefficients model

As a last option to investigate differences in two groups of time-resolved obser-

vations, we consider a varying coefficients model (Fahrmeir et al. [2007a]; Fan &
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Zhang [2008]; Hastie & Tibshirani [1993]). Such model can be formulated as

yyy = α0 + f1(ttt)+ f2(ttt)xxx+β1xxx+ εεε (3.22)

with data yyy, coefficients (α0,β1)
T , smooth spline functions fi(ttt), i∈{1,2}, dummy

variable xxx and error vector εεε . The dummy variable xxx is used to distinguish obser-

vations of both groups. The interpretation of this model is as follows:

• α0 is the overall intercept which is used to centre the data and make the

model identifiable,

• f1(ttt) is the non-linear time effect for group 1 (corresponding to cases {xxx |
x j = 0} j=0,...,n),

• f1(ttt)+ f2(ttt)+β1 is the non-linear time effect for group 2 (corresponding to

cases {xxx | x j = 1} j=0,...,n).

Translated to the research question of this manuscript, difference between both

groups is suggested if the estimation of f2 is significantly different from 0. Es-

timation of the coefficients in fi(ttt), i ∈ {1,2} as well as (α0,β1)
T is performed

with a restricted maximum likelihood (REML) ansatz. Significance of the smooth

terms is assessed with an approximated p-value (details in Wood [2013]). For

an overall quantification of differences between both groups, we use the p-value

corresponding to f2(ttt).

3.4.2 Comparison measures

In the following, we introduce and describe use statistical power and ROC curves

as measures for the performance of the different tests.

Statistical power

The statistical power is defined as the probability of correctly rejecting the null

hypothesis when the alternative hypothesis is true.

pow = P(reject H0 | H1 is true). (3.23)
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In the field of biostatistics, power is often called sensitivity. In the context of
TPDT, power or sensitivity is the probability of rejecting the null hypothesis of no
differences given that the two groups are indeed different.

We will further illustrate the concept of statistical power by a small worked exam-
ple. We assume that we used a statistical test to predict a binary feature for 100
samples and got the test results shown in Table 3.3.

Table 3.3: Illustrative example for better understanding the concept of statistical
power.

H1 is true H0 is true
H0 rejected 60 20
H0 not rejected 15 5

For this worked example, the power is equal to 60
60+15 = 0.8.

Receiver operating characteristic

The second measure which is commonly applied for test evaluation is specificity.

spec = P(do not reject H0 | H0 is true). (3.24)

The interpretation of specificity in context of TPDT is the probability of not reject-
ing the null hypothesis of no differences given that there truly are no differences
between both groups. In the worked example summarized in 3.3, the specificity is
equal to 5

5+20 = 0.2.

The two values pow and spec are used to create an ROC curve which is a funda-
mental tool for test evaluation. It is created by visualizing pow and (1− spec) for
different cut-off values α . It holds that for very low values of α the specificity
of a test will be close to 1 due to the null hypothesis almost never being rejected
regardless whether it is true or not. At the same time the power of the test will be
very low for the same reason. On the other hand, if α is chosen close to 1, speci-
ficity will be low and sensitivity or power large. Overall, it is desirable for a test to
have high power for all specificity values. This can be measured by computation
of the area under the ROC curve (AUC). AUC is a value ∈ [0,1] and it holds that a
larger AUC represents a test with higher predictive power. A value of AUC at 0.5
is equivalent to random guessing.
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In the following, we employ the concept of ROC and AUC and reanalyse the
artificial data simulated in 3.3 (see (3.14) - (3.16) and Table 3.2).

3.4.3 ROC comparisons

We apply the five discussed statistical tests (TPDT, Berk et al., Crainiceanu et
al., adapted t-test and varying coefficients) on the simulated data and compare
all datasets which were produced under H0 with νi = 0, i ∈ {1, . . . ,4} to datasets
which were simulated under H1 with νi > 0, i ∈ {1, . . . ,4}. We first perform an
ROC analysis for two shift values νi = 0.5, i ∈ {1, . . . ,4} and νi = 1, i ∈ {1, . . . ,4}
shown in Figure 3.9 and Figure 3.10, respectively.

The ROC curves for the four scenarios - vertical, horizontal, slope and com-
bined shift - reveal interesting aspects about the test performance of the single
tests. TPDT is outperforming the other tests in terms of AUC in most scenarios.
While the varying coefficients model is comparable when the complete samples
are shifted either horizontally or with a combination of all shifts, its performance
drops substantially for the slope shift and the vertical shift scenario. For those two
scenarios the adapted t-test is strongest competitor for TPDT and a clear second
best test. While the joint intervals approach as well as the Moderated Ft statistic
perform satisfactorily for the horizontal and combined shift scenarios, their per-
formance clearly breaks down for the vertical and slope shift scenarios. Overall,
these results strongly favour TPDT over the other tests.

For the next ROC curve analysis, we investigated datasets where a clearer differ-
ence between both groups was introduced with νi = 1, i ∈ {1, . . . ,4}. The results,
shown in Figure 3.10, show higher AUC values as the difference in both groups
is larger. TPDT is again outperforming the other tests for the vertical and slope
shift scenarios. For the horizontal and combined shift, the AUC values associated
to TPDT and the varying coefficients model are roughly equal and are slightly
higher than the AUC values of the other three tests. In conclusion, the results for
the larger shift of νi = 1, i ∈ {1, . . . ,4} again point at TPDT as most appropriate
test as it outperforms all other tests in two of the considered scenarios and is only
matched by the varying coefficients model in the other two scenarios.

Overall, the results discussed in the previous and present sections make us con-
fident of the strong performance of TPDT when studying time-resolved paired
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Figure 3.9: ROC curve comparison for νi = 0.5, i ∈ {1, . . . ,4} and different tests
(black: TPDT, red: Moderated Ft statistic test (Berk et al.), green: Joint bootstrap
confidence intervals test (Crainiceanu et al.), blue: Adapted t-test, cyan: Varying
coefficients model) with artificially generated paired time-resolved samples. Re-
sults of four investigated scenarios vertical shift, horizontal shift, slope shift and
combined shift are shown from left to right.
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Figure 3.10: ROC curve comparison for νi = 1, i ∈ {1, . . . ,4} and the four dif-
ferent tests (black: TPDT, red: Moderated Ft statistic test, green: Joint bootstrap
confidence intervals test, blue: Adapted t-test) with artificially generated paired
time-resolved samples. Results of three investigated scenarios vertical shift, hori-
zontal shift and slope shift are shown from left to right.
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observations. In Section 3.5, we apply our test on data which is exactly of this

format.

3.4.4 Power comparisons

As a last comparison of tests, we investigated the statistical power of each test

for a grid of νi, i ∈ {1, . . . ,4} values. Looking only at the power of a test is not

of high value if it is the only measure of comparison. A hypothetical test which

always rejects the null hypothesis regardless of whether the null hypothesis is true

or not would result in a power value of 1. However, this hypothetical test would

have no predictive value and would not be of real interest. In this simulation study,

we already performed a ROC analysis and discussed results which show that the

considered tests are associated with high AUC values and thus have predictive

value. Therefore, an analysis of power in the present study is a valuable asset for

a broader comparison of the considered tests for temporal differences.

The results of the power comparisons are shown in Figure 3.11. They convincingly

demonstrate the dominating performance of TPDT as opposed to all other tests

with exception of the varying coefficients model in terms of power. This is most

obvious for the vertical and slope shift scenario where TPDT reaches a power

above 0.5 already at very low values of ν1 and ν3 and clearly dominates the other

tests. Compared to the varying coefficients model, we note slightly higher power

for TPDT in the region ν1 ≤ 1 and ν3 ≤ 1. For larger value of the shift parameters,

both test perform similarly. For the other two scenarios, the horizontal shift and the

combined shift, the power of all tests is generally high as these are the scenarios

where temporal differences are most distinguishable. Here, it holds that TPDT

power rises above 0.9 even for small ν2 or ν4 values. For these scenarios the

varying coefficients model has a similar performance in terms of power. Both tests

reach a power very close to 1 for shift values ν2 ≥ 1 and ν4 ≥ 1 which indicates

practically a correct test decision in almost all simulated examples.

In the following, we apply TPDT on two real-world data examples.
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Figure 3.11: Comparison of power for the artificially created datasets in section
3.3. Tests indicated by different colours are applied and power (3.23) is computed
at significance cut-off α = 0.05. Results of four investigated scenarios vertical
shift, horizontal shift, slope shift and combined shift are shown in the different
panels.

3.5 Applications

The results presented in the previous two sections make us confident that TPDT

will be applicable in general settings when analysing differences of two groups of

time-resolved samples. In the following, we apply TPDT on real-world data.

3.5.1 Dietary effects on postprandial metabolism

In this subsection, we will apply TPDT on human metabolite data collected in a

pilot study where probands were subject to four different dietary challenges:

1. Non-standardized Western Diet (NWD)

2. Standardized Western Diet (SWD)

3. Healthy Breakfast (HB)
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4. Oral Lipid Test (OLT)

The data consists of six probands which took part in all four challenges on dif-

ferent days and blood metabolite measurements were collected at 0, 1, 2, 4, 6

and 8 hours after consumption of one of the four menus. In challenge HB, there

were no measurements at the last time point of 8 hours. Probands were homoge-

neously chosen to be of the same gender (male), in the same age range (between

40 and 60 years old), non-smokers, perform less then 5 hours sports per week

and have a BMI between 20 and 27. Metabolite data was collected using two

platforms: targeted metabolomics measurements were carried out by using the

AbsoluteIDQTM p180 kit (Römisch-Margl et al. [2012]; Zukunft et al. [2013]);

non-targeted metabolomics profiles were measured using a previously described

method of Metabolon Inc. (Evans et al. [2009]). Overall, after cleaning the data by

omitting time-resolved samples with more than 50 % missing values, there were

approximately 400 time-resolved metabolite variables for each challenge avail-

able.

Important research questions within this project were the quantification of time-

resolved differences between the two menus NWD and SWD as well as further

comparisons between NWD or SWD and the other two menus HB and OLT.

The time-resolved measurements are paired due to data belonging to the same six

probands in each dietary challenge. We thus have six group comparisons (NWD

vs. SWD, NWD vs. HB, etc.) where we applied TPDT on each of the approxi-

mately 400 metabolite variables. In the following, we discuss results for the first

comparison, namely NWD vs. SWD. In Appendix B, we also present the tabulated

results of the other five challenges.

The comparison between NWD and SWD is of special interest. If we find many

metabolites that have significant differences within the two challenges, this will

mean that nutrition standardization is an important part of future study design in

nutritional sciences. On the other hand, if we do not find evidence for differences

in those two groups, we could postulate that a standardization of nutrition is not

necessary in future study designs (given a low sample size and similar variation as

observed in the present data). This in turn would mean that one can concentrate the

often times limited financial resources on the data collection of one larger group

rather than one standardized and one non-standardized. It would not only facilitate

data collection but also would make data modeling and analysis less challenging.
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The standardization of studies is a disputed topic in the field of nutritional science

(Walsh et al. [2006]; Winnike et al. [2009]).

With TPDT, we analysed all metabolites of both platforms biocrates and metabolon.

Due to performing the statistical test on different metabolites, we corrected the re-

sults for multiple testing. We did this by controlling the false discovery rate (FDR)

(Benjamini & Hochberg [1995]). As a main result we only found differences in

postprandial time-courses of isobutyrylcarnitine (adjusted p-value < 0.0305, see

Figure 3.12). Time-courses show lower postprandial plasma-isobutyrylcarnitine

levels after dietary standardization and similar trends in some subjects for leucine

and isoleucine. Additionally, with the targeted metabolomics approach we mea-

sured acylcarnitines with a chain length of 4 carbons (C4), potentially also in-

cluding isobutyrylcarnitine. However, C4 did not reach significance after FDR

correction for multiple testing, although differences were indicated prior to the

correction for multiple testing (non-adjusted p-value = 0.01). All other metabo-

lite time courses were not associated with significant differences between the two

challenges. An explanation of these significant differences for isobutyrylcarnitine

may be the trend for higher carbohydrate and fiber intake in the standardization

phase compared with the habitual diet of the study participants. Dietary fiber is

discussed to delay nutrient absorption and, therefore, might lead to a higher lo-

cal protein synthesis and oxidation in the small intestine (Pirman et al. [2007];

Ten Have et al. [2007]). Consequently, amino acid levels in the portal vein and

plasma might be reduced (Ten Have et al. [2007]). Isobutyryl-CoA is known to be

an intermediate of valine metabolism (Luı́s et al. [2011]), therefore, valine levels

might be associated with isobutyrylcarnitine levels in plasma.

We see this result as an indication against standardization of nutritional challenges.

However, we state this with caution since the study consisted of only 6 probands

and we had a large number of tested metabolites (> 400), which led to strong

multiple testing corrections. Furthermore, we want to stress that we do not inter-

pret the results in the sense that both groups of metabolites are equal which would

mean that not rejecting the null hypothesis means that it is true (this would be

a question which can be answered with an equivalence test). Nevertheless, our

suggestion remains to omit standardization of nutritional challenges if the data is

collected in the course of a pilot study as it was the case in the present analysed

data.
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Figure 3.12: Postprandial time-courses of isobutyrylcarnitine. Time-courses are
shown for metabolites measured with non-targeted metabolomics separately for
each subject. Lines show the fitted smoothing splines of the high-fat, high-
carbohydrate (HFHC) meal without previous dietary standardization (red) and af-
ter three-day dietary standardization (blue). Dots represent single measurements.
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As stated above, we present results of the other five comparisons in Appendix B.

There, we see multiple metabolites with significant differences, which is an indi-

cation that even with a low sample size and strong multiple testing correction, we

are able to identify metabolites which may explain the differences in the selected

nutritional challenges.

3.5.2 Promotion of heterochromatin formation at retrotrans-
posons

The study aimed to better understand how retrotransposon sequences are targeted

for silencing and which are the main contributors involved in both establishing as

well as maintaining the heterochromatic state. This is of importance since more

than 50 % of mammalian genomes consist of retrotransposon sequences and their

silencing is crucial to verify genomic stability (Bourc’his & Bestor [2004]) and

transcriptional integrity (Rowe et al. [2013]; Wilkins [2010]). Recent studies have

also involved retrotransposons in development of human diseases, such as cancer

(Helman et al. [2014]).

To identify novel players in heterochromatin establishment and maintenance on

retrotransposons we chose the class of intracisternal A-particle (IAP) retrotrans-

posons as a model system. We systematically tested sequence elements of IAP

retrotransposons for their ability to induce heterochromatin formation and identi-

fied a small region of 160bp (SHIN) which is sufficient to trigger silencing. Based

on this sequence we developed a small hairpin RNA (shRNA) screen and identi-

fied the chromatin remodeler Atrx as strong modifier of IAP silencing. Atrx was

initially identified as the gene responsible for the X-linked alpha thalassemia /

mental retardation (ATR-X) syndrome (Gibbons et al. [1995]).

In the course of the data analysis, we used TPDT to investigate the difference in

the two functional groups (wild-type vs. Atrx knock-out embryonic stem cells) for

several selected loci and corrected for multiple testing controlling the FDR (Ben-

jamini & Hochberg [1995]). Single loci p-values are shown in Figure 3.13. The

data we investigated was the consumption of the DNA in a specific locus which

changed with increase of micrococcal nuclease (MNase) concentration. Thus, the

time axis in the previous examples is now changed to a Mnase concentration axis

70



A

B

−0.35

−0.25

−0.15

−0.05

re
la

tiv
e 

te
m

pl
at

e 
/

M
N

as
e 

(1
/U

ni
ts

)

MNase (Units)
0 5 10 15

MNase (Units)
0 5 10 15

re
la

tiv
e 

te
m

pa
lte

0.0

0.2

0.4

0.6

0.8

1.0

calculate derivative function

determine derivative of
MNase50

3 biological replicates of MNase digestion

curve fitting

u.statisticprimerlocus type p.value fdr.corr.
IAP retrotransposons IAP SHIN region 9.180 0.003 0.016

IAP region 2 4.111 0.019 0.048
IAP region 3 3.780 0.013 0.046

intergenic sites 
H3K9me3 + Atrx

intergenic Chr.1 10.150 0.001 0.005
Polrmt 4.640 0.015 0.046
Nnat 5.154 0.011 0.046
Ezr 10.131 0.000 0.005

silent genes F8 1.141 0.340 0.509
Six3 0.275 0.869 0.869
Tspan32 0.543 0.727 0.818

active gene Oct4 2.428 0.071 0.127
major satelittes major satellite 0.335 0.805 0.852
telomeric regions Tel11 0.561 0.636 0.764

Tel5 3.294 0.033 0.075
TelX 1.095 0.367 0.509

�

�

�

�

�

�

�

�

Tspan32

determine MNase concentration
at which 50% template is digested

(MNase50) 

Figure 3.13: Results of TPDT applied to study the differences between wild-type
and Atrx knock-out embryonic stem cells and several selected genomic loci. Col-
umn 1: selected loci; column 2: primer; column 3: u statistic of TPDT; column
4: TPDT p-value; column 5: fdr-adjusted TPDT p-value. The yellow highlighted
adjusted significant p-values all correspond to either IAP retrotransposons (blue)
or intergenic sites (red). Control regions (gray) do not show significant differences
between the two groups.

for analysis. For each locus, we had three replicates available and for each repli-

cate we had wild-type as well as Atrx knock-out snapshots available, which means

that the data is paired. An example for data corresponding to one such locus, is

shown in Figure 3.14. Here, the MNase concentration measurements for the IAP

SHIN region and the fitted smoothing splines for this data are visualized. With

TPDT, we calculated an adjusted p-value of 0.016 for this example. Interestingly,

we found significant differences only for IAP retrotransposons and intergenic sites

but no significant differences for the control genes such as the primer for silent

genes F8, Six3 and Tspan32 as well as all other tested regions.

The TPDT analysis contributed to the overall analysis of this data and to the con-

clusion of Atrx being crucial for fast and efficient establishment of heterochro-
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matin. Furthermore, we found that chromatin accessibility in Atrx knock-out cells

was significantly increased on IAP elements, demonstrating that Atrx is important

for proper heterochromatin organization. Thus the analysis of our data provides

strong evidence for a general role of Atrx for establishment and robust mainte-

nance of heterochromatin domains.

3.6 Discussion

We propose TPDT, a novel statistical test for assessing the difference in paired,

time-resolved data. To our knowledge, this is the first test which is able to analyse

time-resolved and paired samples based on the whole time scale (global decision)

and also can be applied conveniently to assess the significance of multiple vari-

ables. We identified a demand for such a test and believe that it will be of great

help when analysing paired, time-resolved samples. For interpretability, we set up

the test in a similar fashion as a univariate t-test for paired samples and extended
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the corresponding equations to a functional context. This allows us to extract a

test statistic u, which quantifies the difference between two groups of samples.

However, the distribution of this test statistic is unknown and thus we had to resort

to resampling techniques to approximate the distribution of the test statistic. This

was done by sampling from the null hypothesis while preserving the functional

variability of the measurements. Overall, we are able to summarize the test result

in a single approximated p-value, which in turn allows for easy interpretation and

decision making with regard to the rejection of the null hypothesis of no difference

between the two studied groups.

In simulations, we show that the test can be successfully applied on very general

scenarios. We specifically investigate situations where artificially created data is

subject to a high amount of noise, the number of observed time points is low and

the number of samples per group is low and still are able to extract convincing

results. Furthermore, we investigate ROC curves and power of the proposed test

and also compare it to other commonly used significance tests. Here, we are able

to outperform the other tests both in power and AUC in most simulations.

TPDT is applied on data arising from two major projects. In both projects, the data

is exactly of the above-described nature: time-resolved and paired samples. This

means that we can analyse the data using all the provided information only with

the proposed test. First, we study the difference in nutritional challenges where

a large number of metabolite measurements from two groups of human probands

is collected. With TPDT, we are able to find only one out of several hundred

significant metabolites, isobutyrylcarnitine, when studying the differences in the

two nutritional challenges standardized and non-standardized Western Diet. For

other challenge comparisons, we found a substantially higher number of metabo-

lites which had significant differences. In the second project, we looked into the

promotion of heterochromatin formation at retrotrasposons. Specifically, the es-

tablishment and maintenance of heterochromatin state was studied by comparing

wild-type and Atrx knock-out embryonic stem cells and the digestion of several

DNA loci by interaction with micrococcal nuclease. TPDT was applied together

with multiple other methods to analyse the data. The results of the test suggest

a significant difference between wild-type and knock-out cells for IAP retrotrans-

posons and intergenic sites but no significant differences for all other investigated
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loci. Together with other analysis tools we were able to conclude that Atrx is a
major player for establishment and maintenance of heterochromatin domains.

Overall, the developed test allows for assessing the difference between two groups
of time-resolved paired samples. It is easy to apply and thus accessible to a large
community. Whenever this type of data is collected, we believe that TPDT is the
most appropriate way to correctly analyse it.
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4

Identifying latent dynamic
components in biological systems

In systems biology, a general aim is to derive regulatory models from multivariate

readouts, thereby generating predictions for novel experiments. We consider the

case where a given model fails to predict a set of observations from a biological

system with acceptable accuracy and ask the question whether this is due to the

model lacking important external regulations. Examples for such external entities

range from microRNAs to metabolic fluxes. This chapter describes the develop-

ment of a novel method which aims to systematically extend biological networks

by additional latent components. We demonstrate that the time course of this addi-

tional component can be inferred from data in a fully automatic way without using

any prior knowledge or requiring manual method guidance by the researcher. As

this identification of a latent component provides novel insights for extension of

the structure of a given biological system, the result can be used as guidance for

future experiments.

Our approach is a two-step procedure which is a combination of functional data

analysis and differential equations. In the first step, we approximate raw obser-

vations arising from the biological network with splines and calculate the spline

derivative. In combination with the network structure described by ordinary dif-

ferential equations, a rough and unweighted estimate for the time course of the

hidden component is calculated. In step two, we obtain final estimates for the time

course of the hidden component by iteratively performing maximum likelihood
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parameter estimation for ordinary differential equations. As an additional byprod-
uct of the developed method, estimates for the noise level in the system as well as
interaction strengths and directions between the hidden component and the rest of
the network are obtained.

The method performance when dealing with typical difficulties associated to ex-
perimental data such as low number of observations, partially observed networks,
high noise level and missing data are investigated via simulations. Results from
these simulations show that a hidden component can successfully and consistently
be inferred from data with a low error rate. The method is also applied to a sig-
nalling pathway model where we analyse real-world data and obtain promising
results.

This chapter is based on and in part identical with the following publication:

• I. Kondofersky, C. Fuchs, and F.J. Theis (2015). Identifying latent dynamic
components in biological systems. IET Systems Biology, 9, 193–203.

4.1 State of the art and research questions

We present a novel approach for extension of biological systems which is applied
on time-resolved measurements arising from biological networks. As discussed in
Chapter 2.1, for prediction of time-resolved, dynamical network behaviour, math-
ematical models are employed that typically involve several unknown parameters
in addition to the network components. A popular modelling approach for time-
resolved measurements is given by ODEs that represent the dynamics of and de-
pendencies between the components of the network. The parameters describing
the dynamics in an ODE must be inferred statistically, and in the case of several
competing network models, the most appropriate model can be chosen by model
selection methods. Hence, one deals with a mathematical modelling problem and
a statistical estimation problem, simultaneously (Emmert-Streib et al. [2014]).

In such an analysis, ODEs directly arise from the network topology, i. e. the mod-
eller specifies the components of the network and possible interactions. In many
applications, the key elements of the dynamics of interest have been previously de-
termined in various studies and are well-known from the literature. It is possible,
however, that some interaction partners or connections remain unspecified. For
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example, in addition to transcription factors modulating gene regulation, strong

evidence indicates that microRNAs play an important role in transcription and

translation processes (Hornstein & Shomron [2006]). Translation can also be in-

fluenced by external stimuli like drugs (Borowiak et al. [2009]; Chickarmane &

Peterson [2008]; Lin et al. [2009]). Consequently, a mathematical model may be

insufficient to explain the dynamics of interest, i. e. discrepancies with the mea-

sured data which are not simply due to measurement error may be evident even

with the best model fit.

A promising way of addressing such discrepancies is given by employing addi-

tional network components to extend the proposed model. Our main focus in this

chapter is systematic model extension. A substantial amount of work has been

conducted in the past years in this field.

Ambroise et al. [2009] identify additional links in undirected graphs with Gaussian

graphical models. These links represent model extensions and are systematically

identified using an l1-penalized likelihood. However, the proposed algorithm is

not applicable to dynamical data.

Gao et al. [2008] and Honkela et al. [2010] also consider a model extension, this

time for dynamical data. Similar to the approach to be presented here, they de-

scribe their models in terms of ODEs with a latent variable. Using Gaussian pro-

cesses, they infer the time course of this variable and predict its behaviour. How-

ever, they do not model entire networks, which may possibly involve numerous

links between components, but rather focus only on transcription and translation

of single genes and on analytical solutions of the specific ODE models.

Furthermore, model extension by latent variables is utilized in the context of latent

confounder modelling (Hoyer et al. [2006]; Ramb et al. [2013]). Here, the most

frequently used method is structural equation modelling (SEM) (Bollen [1998];

Monecke & Leisch [2012]). SEM allows the identification of multiple latent vari-

ables and their relationship with observed variables by exploiting the data covari-

ance structure. SEM is mainly formulated for single time points, and an extension

to dynamical data is quite limited and often not possible.

In contrast to the just described model extensions, however, we do not want to

change and possibly misspecify the ODE system but flexibly include a hidden

influence and do this in a data-driven and systematic way.
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In the present chapter, we address the problem of poor model quality in dynamical

models by considering the effect of hidden influences on the network. We do not

assume a functional form for the putative time courses of such hidden processes,

but flexibly estimate their dynamics and interaction strengths. Wherever a hidden

influence is observed that substantially improves the model’s ability to represent

the data, we attempt to provide a biological meaning with the help of experimen-

tal collaborators. Thus, we can guide the design of additional experiments in a

detailed manner by providing a quantification of the hidden time courses as well

as relative interaction rates between the hidden components and the existing net-

work. The proposed method is applicable to Lipschitz continuous ODE models,

e. g. gene regulation models or signal transduction models.

This chapter is organized as follows. We first present the ODE models consid-

ered and the means by which a hidden influence is included therein as well as a

schematic representation of the developed method. The hidden component and the

model parameters are statistically estimated in a two-step procedure. Furthermore,

we discuss parameter uncertainty and model selection for the current setting. We

then apply the developed technique to different scenarios and to a real-world data

example – the JAK2-STAT5 signaling pathway. Finally, we conclude the chapter

and discuss strengths and limitations of the proposed method.

4.2 Approach

In this section, we highlight the main ideas of the present study. Systematic net-

work extension is illustrated by considering a small motif example. Next, we

generalize this extension to networks of size N.

Consider a simple motif like the one presented in Figure 4.1. We use the schematic

representation of small network motifs shown in Figure 4.1 to illustrate our method

as follows. Figure 4.1A shows a simple network motif comprising two compo-

nents x1 and x2, which influence each other, as indicated by the corresponding

arrows. With the proposed method, we estimate a hidden component h, shown

in Figure 4.1B, which may substantially contribute to the network dynamics, but

was not previously considered. Thus, we call h a hidden influence. Figure 4.1C

stresses that not all components must be observed.
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Figure 4.1: Example network motifs (circles: observed and hidden components;
triangle: unobserved or indirectly observed component). A: a motif without hid-
den components, i. e. all components are observed. B: a motif with a single hidden
component (h), where all other components are observed. C: a motif with a sin-
gle hidden component (h) and partially observed components. Partially observed
networks are discussed in Section 4.3.5.

We describe the network dynamics with ODEs. We assume them to be Lipschitz

continuous; thus, the existence and uniqueness of an ODE solution are guaranteed.

For motif A in Figure 4.1, the corresponding equations are

ẋi(t) = ψi(kkk,xxx(t)) (4.1)

with parameter vectors kkk=(k1, . . . ,kL)
T , kl ∈R≥0, non-negative state vector xxx(t)=

(x1(t), . . . ,xN(t))T , xi(t) ∈ R≥0, derivatives with respect to time ẋi(t), possibly

non-linear functions ψi : Rp
≥0×RN

≥0→ R and suitable initial values xi(t0), where

t ≥ t0 represents the time. Equation (4.1) may also be represented with a stoi-

chiometry matrix and flux function as already discussed in Equation (2.28). The

functions ψi generate the network structure and may include several combinations

of the state variables xxx(t) such as linear combinations, Michaelis-Menten kinet-

ics, complex formation and others. The connection between the state variables is

described by the parameters kkk.

The components xi(t) may be observed or unobserved. In addition to the motif

in Figure 4.1A, we now assume a time-varying hidden component h(t) that acts

linearly on ẋi(t), as shown in Figure 4.1B. The system of differential equations

then changes to

ẋi(t) = ψi(kkk,xxx(t))+aih(t) (4.2)

with weights aaa=(a1, . . . ,aN)
T , ai ∈R. Positive weights ai in this context represent

activation of the i-th component, whereas a negative value of ai implies inhibition.
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A similar model was considered, e. g. in Blöchl & Theis [2009]. Other than for

xi(t), we do not assume any parametric structure for the hidden component. The

time course of h(t) cannot be observed directly.

Six elements determine the model: the components xi and their time derivatives

ẋi, the parameter vectors kkk and aaa, the dependency describing functions ψi and

the hidden influence h. We will extend established models from the literature

by adding hidden components and applying our estimation method described in

Section 4.3. For reasons of simplicity, we assume that the reaction rates kkk and

dependency functions ψi are known. Both assumptions can also be relaxed, as is

demonstrated later in Section 4.4.4 where we additionally estimate kkk and recover

a missing feedback, thus altering the network structure.

The objective of our study is to estimate ai and h(t), and examine if they improve

the ability of the model to represent the data; this also requires the estimation of xxx

and ẋxx. In our analysis we exploit the following connection between h and all other

components:

h(t) =
ẋi(t)−ψi(kkk,xxx(t))

ai
(4.3)

for all t and i with ai 6= 0. The hidden influence can then be estimated according to

two major steps as follows. First, we fit penalization splines to the measurements

of xxx. This allows a direct computation of the time derivatives ẋxx such that the

right-hand side of Equation (4.3) is known up to a scaling factor ai. These factors

are then estimated via likelihood maximization, utilizing the differential equation

structure. A flowchart that illustrates the details of the developed method is shown

in Figure 4.2 on page 81.

4.3 Methods

This section describes the above-mentioned two-step procedure for the estima-

tion of the hidden influence h. As a basis, we assume observations xobs
i (t j) of

all components x1, . . . ,xN at discrete time points t0, . . . , tn. The first step is pre-

sented in Section 4.3.1, where we use spline functions to approximate the time

courses of x1, . . . ,xN and their time-derivatives. In a second step, we define a noise

model for the data and estimate the weights ai using likelihood maximization in

Section 4.3.2. In Section 4.3.3, we discuss uncertainty and the fit quality of the
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ĥ ˆ̃aaa, ˆ̃aaa,σ2
)

choose weights

solve ODEs

compute likelihood

when
converged

fit splines

plug in

fit splines
for i≤M

solve ODEs with
h=0 for i>M

plug in plug in

iterate iterate

step 1

step 2

Figure 4.2: Flowchart illustrating the details of the developed method. The method
involves estimating hidden components according to two major steps (indicated by
gray boxes). We distinguish between fully and partially observed networks. If at
least one network component is unobserved, the procedure requires a preliminary
step where the system of ordinary differential equations (ODEs) is solved without
considering a hidden component. As a next step in both scenarios, penalization
splines are fitted to the measurements using cross-validation for the estimation
of the smoothing parameter. Finally, a maximum likelihood loop is performed
until convergence to estimate the time course of the hidden component and its
interaction weights as well as the noise parameter σ2.
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parameters of interest. Next, in Section 4.3.4, we perform model selection on the

considered networks. Finally, in Section 4.3.5, we extend the estimation meth-

ods to the case of not fully but partially observed networks. The different steps

are shown in Figure 4.2 where we highlight the two-step procedure with grey

background boxes and summarize the whole method with respect to network ob-

servability by dividing the flowchart into a left (fully observed network) and right

(partially observed network) branch.

4.3.1 Spline estimation for observed time courses and their time-
derivatives

As discussed in Chapter 2.1.2 splines are a convenient way to approximate the

time course of a series of measurements in a functional form and are successfully

used to model time-resolved, biological data, e. g. by Bar-Joseph et al. [2003].

Recall, that they arise as a linear combination of known basis functions and basis

coefficients as described e. g. in De Boor [2001]. Applied to the model given in

(4.2), for a given smoothing parameter λi, the basis coefficients β1i, . . . ,βKi are

chosen such that the following term is minimized (Ramsay & Silverman [2005]):(
xxxobs

i −
K

∑
k=1

βkiφφφ k

)T (
xxxobs

i −
K

∑
k=1

βkiφφφ k

)
+λi

tn∫
t0

(
K

∑
k=1

βkiφ̈k(s)

)2

ds. (4.4)

In this notation, xxxobs
i = (xobs

i (t0), . . . ,xobs
i (tn))T is the vector of the measured data,

and the basis functions evaluated at the observation times are denoted by φφφ k =

(φk(t0), . . . ,φk(tn))T . As the index i in λi suggests, a penalization parameter is

chosen for each component separately.

In this study, we choose a sufficiently large K and estimate λi using leave-one-out

cross-validation. See Chapter 2.1.3 for more details on cross validation.

Minimization of (4.4) yields optimal coefficients β̂ki, and consequently an approx-

imation for the time course of the observed components

x̂spl
i (t) :=

K

∑
k=1

β̂kiφk(t) (4.5)
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and their time derivatives

ˆ̇xspl
i (t) :=

∂ x̂spl
i (t)
∂ t

=
K

∑
k=1

β̂kiφ̇k(t). (4.6)

The estimation of the time derivatives given by (4.6) plays an equally important

role as the estimation of the splines given by (4.5) for the final estimation of the

time course of the hidden component given by (4.3). Thus, particularly for the

analysis of very noisy data, additional smoothing techniques, such as a higher pe-

nalization order in (4.4), may be considered. The results presented in Section 4.4

are based on cubic B-splines defined on an equally spaced time grid. Recall (Chap-

ter 2.1.2) that these functions are twice continuously differentiable such that the

penalization term in (4.4) is well-defined. In practice, the integral in (4.4) is ap-

proximated through finite differences.

With the approximations given by (4.5) and (4.6), we can now estimate the numer-

ator in (4.3):

ĥ0
i (t j) = ˆ̇xspl

i (t j)−ψi(kkk, x̂xxspl(t j)). (4.7)

For the estimation of the denominator in (4.3), we apply a likelihood approach, as

described in the following.

4.3.2 Maximum likelihood estimation

Given a weight vector aaa, the hidden influence can be approximated as

ĥaaa(t j) =
1

Naaa ∑
{i:ai 6=0}

ĥ0
i (t j)

ai
, (4.8)

where Naaa is the number of non-zero weights ai. The case aaa = 000 can be excluded

without loss of generality because it indicates the absence of a hidden influence

extending the network. This approximation of h will later be plugged into (4.2)

where it is multiplied with ai. If ĥ0
i is the true numerator of (4.3), the time courses

ĥ0
i on the right side will all be identical up to a scaling factor. However, because

it is an approximation there will be differences between them in practice. For

this reason we consider the pointwise weighted average in (4.8), which presents

a natural choice of a summary statistic. If it holds that the single estimates ĥ0
i (t j)
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strongly differ from each other, then the weighted average ĥaaa(t j) will be inaccu-

rate, and this in turn will be reflected in the likelihood function and the correspond-

ing information criterion that we later formulate in (4.13) and (4.16), respectively,

thus leading to the rejection of the proposed model.

Plugging in h into (4.2) and multiplying it by ai introduces a non-identifiability.

Because of

aiĥaaa = (ξ ai)

(
ĥaaa

ξ

)
(4.9)

for any ξ 6= 0, the weights ai are non-identifiable. For this reason, we restrict aaa to

∑i | ai |= 1. In the special case of a network consisting of only one component x1,

we only estimate the interaction direction of the hidden influence, i. e. a∈ {−1,1}.

In most biological applications, the data contains noise of different origins, such as

measurement noise or technical noise (Paulsson [2004]; Raser & O’Shea [2005]).

The most common assumption is that measurement errors are independent and

normally distributed with mean zero and constant variance σ2 > 0. This was

already introduced and discussed in (2.30) in Chapter 2.1.4. Translated to the

notation in this chapter, the assumption reads as:

xobs
i (t j) = xi(t j)+ εi j, εi j

iid∼ N
(
0,σ2) . (4.10)

In applications, xi(t j) often has a positive domain, and in this case, (4.10) might be

ill-defined. Note that we do not restrict our methods to only this type of noise. In

Appendix A.1, we also specifically derive all the equations given in this section for

log-normally distributed multiplicative noise. The distribution of εi j immediately

propagates to the measurements:

xobs
i (t j)

∣∣xi(t j)
iid∼ N

(
xi(t j),σ

2) . (4.11)

While the true time course xi(t) is unknown, it has already been approximated in

(4.5). This approximation, however, does not contain any information about aaa,

which we seek to estimate in the following. Hence, we introduce another approxi-

mation for xi(t), this time exploiting the ODE structure given in (4.2): For a given

aaa, we plug in ĥaaa from (4.8) into the ODE given in (4.2) and solve the differen-

tial equations either analytically or numerically, as described e. g. in Ross [1984].
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This yields x̂ode,aaa
i (t j) and leads to the approximate distribution

xobs
i (t j)

∣∣x̂ode,aaa
i (t j)

iid∼ N
(

x̂ode,aaa
i (t j),σ

2
)
. (4.12)

Overall, we arrive at the conditional likelihood function

L(aaa,σ2 | xobs
i (t j)) =

N

∏
i=1

n

∏
j=0

faaa,σ2(xobs
i (t j)), (4.13)

where faaa,σ2 is the probability density function corresponding to the chosen error

specification.

Additionally, a conditional estimate for σ2 can be derived analytically:

σ̂
2
ML =

1
N(n+1)

N

∑
i=1

n

∑
j=0

(
xobs

i (t j)− x̂ode,aaa
i (t j)

)2
. (4.14)

The parameters aaa and σ2 are jointly estimated using (4.14) and a numerical op-

timization of (4.13). Furthermore, unknown initial conditions xxx(t0) are treated as

unknown parameters and are equivalently estimated.

4.3.3 Parameter uncertainty

We further explore our likelihood approach with respect to parameter uncertainty.

The overall estimation performance of the unknown parameters σ2 and aaa can be

analysed by calculating the Cramer-Rao lower bound (CRLB) (Cramér [1945];

Rao [1945]) which is defined as the inverse expected Fisher information matrix.

This theoretical value describes a lower bound for the mean squared error (MSE)

of a given parameter. To that end, we look at the diagonal elements of the expected

Fisher information matrix, which, in the case of a normally distributed error, have

the following form:

Ik(aaa,σ2)=


1

σ2 ∑
i

∑
j

(
∂

∂ak
x̂ode,aaa

i (t j)
)2

k ≤ N

N(n+1)/
(
2σ4) k=N+1.

(4.15)

In practice, we solve the ODEs numerically. Here, a sophisticated ODE solver,
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such as the Runge-Kutta 4th order method (Butcher [1987]) can be employed to

produce accurate estimates. However, an analytical derivation of the CRLB for

such a method becomes very complex because of the complicated recursive for-

mulation of the ODE solution. For exemplary purposes, we outline a derivation

for a specific small example using the Euler method for solving the ODEs in Ap-

pendix A.2.

Large values on the diagonal of the expected Fisher information matrix represent

parameters with a small CRLB. These parameters can be estimated accurately with

an (asymptotically) efficient estimator. For the parameters al , the respective l-th

diagonal element increases if

• σ2 is small, i. e. the data are subject to a small amount of noise,

•
(

∂

∂ak
x̂ode,aaa

i (t j)
)2

is large, i. e. the ODE solution is sensitive to changes in the

parameter ak and

• n and/or N are large, i. e. the data arise from a large number of time points

and different (observed) species.

For the parameter σ2, we look at the (N+1)th diagonal element of (4.15), which

increases if

• σ2 is small, i. e. the data are subject to a small amount of noise and

• n and/or N are large, i. e. the data arise from a large number of time points

and different (observed) species.

We can conclude that, as expected, the estimation accuracy will suffer if we apply

our method to small networks, few observations, conditions indicative of a weak

influence of the hidden component and large noise. As indicated in Section 4.3.2,

we estimate the parameters with a maximum likelihood approach. The estima-

tion is asymptotically efficient (Zacks [1971]); thus, the CRLB is asymptotically

achieved. However, the approximation of the time courses using splines as de-

scribed in Section 4.3.1, introduces additional uncertainty. In Appendix A.2, we

examine this loss of accuracy for a given showcase network and various parame-

ter combinations, thereby concluding that our method produces estimates that are

close to the CRLB.
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4.3.4 Model selection

The vector aaa controls the interaction strength between the hidden influence h and

the network components xi. If a weight ai is estimated to be close to zero, it will

have a negligible effect on the network and will probably improve the model fit

only slightly. In such a case, one may ask whether the inclusion of this parame-

ter ai is worth the involved estimation effort or whether one should simply set this

component equal to zero, thus reducing the complexity of the model.

We already discussed in Chapter 2 that for quantification of the trade-off between

improved model fitting and increased model complexity the Akaike information

criterion (AIC) or the Bayesian information criterion (BIC) can be considered:

AIC(θ̂θθ) =−2log(L(θ̂θθ)) + 2dim(θ̂θθ)

BIC(θ̂θθ) =−2log(L(θ̂θθ)) + log((n+1)N)dim(θ̂θθ).
(4.16)

In these equations, θ̂θθ denotes a vector containing all parameter estimates, L(θ̂θθ) is

the likelihood function (4.13) evaluated at θ̂θθ and dim(θ̂θθ) is the number of esti-

mated parameters.

To consider the complexity of the overall estimation procedure, the vector θθθ can be

chosen to include all unknowns determined in our two-step approach, i. e. all λi,

βik and σ2. In our considerations, however, the number of variables is constant

apart from the number of non-zero ai. Hence, we can replace dim(θ̂θθ) by Naaa as

defined in (4.8), to compare different models.

The models that we are considering with our method are all of a nested type.

The special case of aaa = 000 is the null model and is nested within all other models

with arbitrary aaa. Regarding the decision of which values ai to set equal to zero,

we follow three conventional variable selection methods: best subset selection,

forward stepwise selection and backward stepwise selection. See Chapter 2 for

more details.

In the forward stepwise selection, we begin with the model given in (4.2), which

contains no interactions between the hidden influence and the network compo-

nents, i. e. all ai equal zero. In the second step, N models are estimated, where, for

each of the models a different element of aaa is non-zero while the others are held
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equal to zero. If the best model outperforms the selected model from the previ-

ous step, this model is accepted, and in the subsequent step, another component

of aaa is set to a non-zero value. This step is repeated until no increase in model

performance is achieved with a more complicated model. Once a component ai is

chosen to be non-zero, it will remain non-zero in all subsequent steps.

Backward stepwise selection is an analogy of forward stepwise selection wherein

the initial model selected is the most complicated model for which all interac-

tions between the hidden and the other components are estimated. In each subse-

quent step, a single entry of aaa is fixed to zero until no lower value of AIC/BIC is

achieved.

Finally, in the best subset selection, the AIC or BIC is computed for all possible

models, and the model with the best score is chosen.

In Section 4.4, we employ the BIC for model choice on synthetic and real data

because this criterion penalizes the model complexity more than the AIC.

4.3.5 Partially observed network components

In the estimation procedure discussed in Section 4.3.1 and Section 4.3.2, we as-

sumed that the components xi were directly observed and that all of them were

observed. In the following, we consider the case where the observed time courses

are affine linear transformations y1, . . . ,yM of x1, . . . ,xN and the number M of ob-

served time courses is smaller than the total number of network components N.

The flowchart shown in Figure 4.2 illustrates the single steps of the estimation

procedure. Chapter 2.1.4 outlined a general strategy how to deal with parameter

estimation for partially observed networks.

As an example for non-direct observations in the context of the current chapter,

consider the motif depicted in Figure 4.1C. It is assumed to follow exactly the

same dynamics as that in Figure 4.1B and can therefore be described in terms of

the ODEs given in Equation (4.2). Suppose that one can now only measure time

courses of the observation functions y1(t) = x1(t) and y2(t) = bx2(t)+c for scalars

b 6= 0 and c. The ODEs given in (4.2) can then be translated to

ẏm(t) = ηm(κκκ,yyy(t))+ ãmh(t) (4.17)
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with appropriate ηm, ãm depending on aaa, b and c and κκκ being the collection of the

interaction rates kkk and transformation parameters b and c. Because the observation

functions yyy are affine linear transformations of the network components xxx, we can

extract the hidden influence following Equations (4.7) and (4.8):

ĥãaa(t j) =
1

N ãaa ∑
{i:ãi 6=0}

ˆ̇yspl
i (t j)−ηi(κκκ, ŷyyspl(t j))

ãi
. (4.18)

Note that, for non-linear observation functions, we cannot directly apply our method

possibly due to, for example, quadratic or higher order terms of h(t) in Equa-

tion (4.17); however, in the above case, one can proceed in a manner analogous

to that given in Sections 4.3.1 and 4.3.2 for the estimation of h and ãaa if both y1

and y2 are observed.

As an example of partial observation, we can assume that only y1 is observed.

Because the two-dimensional ODE system given in (4.1) contains no redundant

equation, the dynamics of interest are fully described by a network of only two

components. Hence, in addition to the observed variable y1, we include one latent

component y2 in our analysis, e. g. y2 = x2 or y2 = bx2 + c, as discussed above.

More generally, we consider a network with observed components y1, . . . ,yM and

unobserved components yM+1, . . . ,yN . The estimation of a hidden influence and

its weights changes slightly as opposed to the fully-observed case because there is

no spline approximation possible for the time courses of yM+1, . . . ,yN .

In this case, we approximate y1, . . . ,yM and their derivatives as before (see (4.5)

and (4.6)). Furthermore, we approximate yM+1, . . . ,yN by their solutions of the

N-dimensional ODE system given by (4.17) with h ≡ 0. For simplicity, we de-

note these approximations by ŷspl
i for all i, although there are no splines involved

for i > M. The starting values yi(t0) are treated as additional unknown parameters.

Because of the ODE-based derivation of ŷspl
i for the latent variables, estimation of

the corresponding ãi is not feasible in the first step of the estimation procedure.

Hence, we restrict the components of ãaa to be zero for i > M. For a given weight

vector, the hidden influence is estimated through (4.18). In the second step, the

likelihood function results as in (4.13) as a product over all observed components

(i ∈ {1, . . . ,M}) and observation times ( j ∈ {0, . . . ,n}). Maximization of the like-

lihood function yields estimates for h and ãaa for all i ∈ {1, . . . ,N}.
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4.4 Simulation studies

In this section, we demonstrate several different applications of our method. In

Section 4.4.1, the prediction of the time course of a hidden component is evaluated.

In Section 4.4.2 and Section 4.4.3 we present further simulations which concern

the method performance when dealing with unusual shaped time courses of hidden

components or missing data, respectively. Finally, in Section 4.4.4, we present

our method as a tool that guides the reconstruction of a previously misspecified

network.

4.4.1 Synthetic examples with unimodal latent components

To evaluate the performance of our method, we conduct several simulation studies.

All test runs are performed with the statistical software R (R Development Core

Team [2011]). We examine the robustness of our method by varying the noise in-

tensity of the simulated data. Additionally, we evaluate networks of different sizes

and study the dependence of the results on the number of unobserved components.

The parameters kkk and aaa are chosen at random for each simulation run, and con-

ditioned on these, we generate artificial data at 30 equally spaced time points.

We use log-normal noise (see Appendix A.1), and the three noise levels that we

consider are low (σ = 0.01), medium (σ = 0.1) and high (σ = 0.3). In the simu-

lation, we allow only linear interactions between the network components which,

indicates that the structure of the ODEs can be summarized as

ẋi(t) =
N

∑
u=1

(kiuxu(t)− kuixi(t))+aih(t) (4.19)

with uniformly distributed kiu in [0,1] for describing the reaction strength between

the i-th and u-th component and uniformly distributed ai in [−1,1].

We use the same hidden influence for each simulation run, thus producing compa-

rable results. After application of our estimation procedure, the resulting fit quality

is measured by:

s =
1

n+1

n

∑
j=0
| ĥ(t j)−h(t j) | . (4.20)
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We estimate rates aaa with the forward selection technique. As illustrated in Figure

4.3, results of 100 simulations indicate that a smaller network size and a smaller

fraction of observed components lead to increasingly poor model fitting perfor-

mance.
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Figure 4.3: Description of the simulation studies used to evaluate the performance
of our method. For 27 different combinations of network size (3, 6 and 9 com-
ponents), noise intensity (‘low’ ≡ σ = 0.01, ‘medium’ ≡ σ = 0.1 and ‘high’
≡ σ = 0.3) and ratio of observed to unobserved components (100% observed,
67% observed and 33% observed), 100 different simulated networks are created
and the mean as well as the 5% and 95% quantiles of the error measurement in
(4.20) are displayed for each combination. All interaction rates between compo-
nents are chosen randomly. It holds that, the smaller the value of s, the better the
estimated time course.

Only small differences are observed between low and high noise intensities, indi-

cating that our method can accommodate a high degree of noise while extracting

the relevant information from the data. Additionally, it appears that the network

size plays only a minor role with regard to the estimation quality of our method

because the scores for larger networks decrease only slightly.
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Figure 4.4: Time course of the hidden influence used in the simulations (black
solid line) and the mean and 5% and 95% pointwise quantile courses of three
exemplary simulation scenarios with different parameters (dashed lines) defined
as follows: a fully observed network of size 3 with high noise intensity (red); a
partially observed network (33%) of size 6 with medium noise intensity (green); a
partially observed network (67%) of size 9 with low noise intensity (blue). Mean
and confidence intervals are based on 100 estimates ĥ(t).

Our approach also yields estimates of the time course of the hidden component,

which we can compare with the true hidden component used to generate the data.

Figure 4.4 shows the mean and 5% and 95% pointwise quantile time courses of

three exemplary simulation scenarios. The shape of the hidden influence is repro-

duced satisfactorily, albeit differently. For a network comprising 3 components

and a high degree of noise, the estimates produce additional fluctuations that are

not present in the true time course and the confidence intervals are very broad. For

a larger network size (6 or 9 components), the estimates become more stable and

recover the peak of the true time course; however, the second part of the peak is

slightly overestimated due to the network being partially observed.

In the following, we continue with extensive simulation from the same network

as in Equation (4.19) and focus on a comparison between unimodal and bimodal

shapes of the hidden influence.
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4.4.2 Synthetic examples with bimodal latent components

As a further test for our method on a larger number of scenarios we design an-

other simulation similar to Section 4.4.1. Networks are simulated according to

Equation (4.19), which is formulated as

ẋi(t) =
N

∑
u=1

(kiuxu(t)− kuixi(t))+aih(t). (4.21)

The parameters kkk and aaa are chosen at random for each simulation run (total 100

simulation runs); conditioned on these, we generate artificial data at 100 equally

spaced time points resulting in longer time series than the simulations in Sec-

tion 4.4.1. We use log-normal noise and the three noise levels we consider are

once again low (σ = 0.01), medium (σ = 0.1) and high (σ = 0.3). Here, we addi-

tionally investigate a bimodal hidden influence shape and compare the estimation

quality to the unimodal case from Section 4.4.1.

In Figure 4.5 we show the results of this simulation alongside with confidence

intervals of the hidden time course estimates. We confirm the finding that lower

noise and higher network size lead to the best results. Additionally we can con-

clude that the signal in the sense of time course shape (regardless whether bimodal

or unimodal) is successfully recovered in all simulations. The estimation of the bi-

modal time course has a tendency to be slightly worse. Additionally, we note a

considerably worse estimation of the bimodal time course for small sample sizes

N ≤ 3. A closer inspection of the fitted time courses (not shown) reveals that for

these small networks the estimation of both peaks is imbalanced. One of the peaks

is recovered with high accuracy at the cost of larger error for estimation of the sec-

ond peak. This also leads to an inaccurate shape of the time course of the hidden

component in the middle of the time scale. This effect disappears as more data is

available in larger networks and both peaks are estimated at balanced strength.

Finally, we note that the estimation at the two ends of the time interval are pro-

duced with a higher error. This is due to the fact that the splines are fitted with a

higher uncertainty when there is not enough neighbouring observations to support

their approximation.
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Figure 4.5: Estimating hidden time course from simulated data; left panels: uni-
modal time course of hidden component, right panels: bimodal time course of
hidden component. Top panels show boxplots of error measures s (see Equa-
tion (4.20)) for networks of different combinations of size and noise. Each boxplot
is based on 100 different s values. Lower panels show the 0.1 and 0.9 pointwise
quantiles of estimated time courses as shaded area alongside with true time course
used to generate the data as dashed line.
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Overall, the second set of simulations showed the ability of our method to esti-

mate irregularly shaped time courses with high accuracy. In the following, we

investigate the behaviour of our method when dealing with missing data.

4.4.3 Missing data

In the following, we investigate the behaviour of our method when parts of the

data are missing. Specifically, we consider some of the time snaphots of a given

time series to be missing. Missing data situations are common when dealing with

time-resolved real-world biological data. Reasons for missing data may be un-

availability of a test subject at a given time point or a broken experimental vessel.

We consider the case when the data are missing completely at random also referred

to as the MCAR case in literature (Rubin [1976]; Wothke [2000]). In short, this is

a situation where the probability of a data point to be missing is independent from

all variables (in the studied context xxx(t) and h(t)) and parameters (in the studied

context initial conditions, aaa, kkk and all spline parameters) in the model.

We simulate data from a small network motif of size N = 3. Equation (4.19) in

this case becomes

ẋi(t) =
3

∑
u=1

(kiuxu(t)− kuixi(t))+aih(t). (4.22)

For simulation, we again randomly choose the parameters aaa and kkk. However,

for estimation of h(t), we consider kkk to be known. This allows us to focus the

method performance evaluation solely on the estimation accuracy with respect

to missing data. Once these parameters are fixed, we generate artificial data at

one of n ∈ {10,30,50} time points. Normally distributed noise is then added to

these time points and we consider different options for the standard deviation, σ ∈
{0.05,0.1,0.3,0.5}. After simulation of these observations we randomly delete

a fraction m of observations from each component xi(t), i ∈ {1,2,3} with m ∈
{0,10,30,50,70}. For all combinations of n, σ and m, we simulate 100 datasets.

One example for the data generation at n = 30, σ = 0.1 and m = 50 is shown in

Figure 4.6.

The estimation accuracy of ĥ(t) for each of these datasets is measured by the score

s as defined in (4.20). Results of this simulation study are summarized in Table 4.1.
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Figure 4.6: Creating a MCAR data scenario. Left: all simulated observations;
right: 50% of observation per variable xi(t), i ∈ {1,2,3} are discarded.

The values in this table are the average score based on the 100 above-described

datasets. We observe that a higher number of sampled time points tend to lower

the score s. For example, if 10% of the observations are missing, the average

score is approximately three times lower for n = 50 and σ = 0.1 than for n = 10

and σ = 0.1. On the other hand, higher noise level is resembled in larger score

values. Both effects are in concordance with the previously discussed simulations

in Section 4.4.1 and Section 4.4.2. Interestingly, for a low fraction of missing

values (m < 50) there is only a low effect on the score. For example, scores almost

do not change if 10% of data is missing and they change by less than 10% if 30%

of the data is missing. However, for half or more of the data missing, the average

scores are considerably increased. The reason for this is that the chance for data

from the peak shown in Figure 4.6 completely missing is increased if the overall

percentage of missing data is increased. If this peak is not present in the data, it

is not possible to estimate the shape of the hidden component and this results in a

more or less random guess. Nevertheless, we are confident that in situations where

up to 30% of the data is missing, our method will not suffer a dramatic estimation

accuracy.
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Table 4.1: Average score s for different combinations of number of time points n,
noise level σ and fraction of missing values m. Values are based on 100 randomly
simulated datasets for each combination of parameters.

all data observed
σ = 0.05 σ = 0.1 σ = 0.3 σ = 0.5

n = 10 0.24 0.31 0.46 0.52
n = 30 0.14 0.23 0.36 0.42
n = 50 0.04 0.12 0.25 0.31

10% missing data
σ = 0.05 σ = 0.1 σ = 0.3 σ = 0.5

n = 10 0.25 0.34 0.47 0.53
n = 30 0.15 0.23 0.39 0.43
n = 50 0.05 0.11 0.26 0.33

30% missing data
σ = 0.05 σ = 0.1 σ = 0.3 σ = 0.5

n = 10 0.28 0.37 0.52 0.57
n = 30 0.17 0.27 0.40 0.45
n = 50 0.08 0.15 0.29 0.35

50% missing data
σ = 0.05 σ = 0.1 σ = 0.3 σ = 0.5

n = 10 0.35 0.45 0.58 0.64
n = 30 0.25 0.36 0.48 0.53
n = 50 0.15 0.23 0.37 0.43

70% missing data
σ = 0.05 σ = 0.1 σ = 0.3 σ = 0.5

n = 10 0.48 0.56 0.70 0.76
n = 30 0.37 0.45 0.60 0.68
n = 50 0.25 0.34 0.51 0.54

4.4.4 Recovering misspecified networks with a latent variable

Our method can be used for a guided repair of a wrongly specified network. We

demonstrate this using artificial data in a further example. In this example, the

network from which we simulate time-dependent observations consists of four

players that are connected with each other in a forward cascade ending with a

feedback loop, as shown in Figure 4.7A. However, we assume that the initial hy-

pothesis suggests a network structure with a missing feedback loop. Furthermore,

we do not assume known reaction rates kkk; thus, we incorporate the fitting of kkk into

the application of our method.
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Figure 4.7 shows that we can simultaneously reconstruct the misspecified network

structure and estimate kkk very well. The model without a feedback loop is best

estimated with parameters k̂kk = (0.05,0.06,0.01)T and has a BIC value of 1376.78

(Figure 4.7B-1). The identified latent component has a positive interaction with

the first species x1(t) and a negative interaction with the last species x4(t). This

suggests that a feedback loop might be missing in the network specification. The

corresponding BIC value is 857.48. The estimate k̂kk = (0.15,0.29,0.20)T is close

to the true kkk (Figure 4.7B-2,3). The constellation of interactions between the hid-

den component and xxx suggests a feedback loop. Inclusion of this loop further

improves the BIC value to 854.15 and slightly alters k̂kk = (0.14,0.30,0.20)T (Fig-

ure 4.7B-4). Subsequent application of our method does not identify a latent com-

ponent which significantly improves the model fit (Figure 4.7B-5,6).

This example demonstrates the ability of our method to recover misspecified net-

work structures. We repeated the presented example with random data 100 times

and concluded the same missing feedback in 97% of the repetitions (results not

shown). However, in general networks, misspecifications may occur in very a

complex manner; thus, overall it will be difficult to always apply our method un-

der all conditions. Nevertheless, even if the network structure cannot be recovered

completely, a hidden component may indicate which network components are can-

didates for refining the network structure and whether inhibition or activation of

certain network components are more likely to improve a given model.

4.5 Application: JAK2–STAT5 signalling pathway

The simulation studies in Section 4.4 have shown that our estimation procedure

can reliably detect and quantify a hidden influence on a given network. We now

focus on models and real-world data from the literature. A prominent and well-

studied example is the erythropoietin (Epo) signalling pathway which tranduces

Epo stimulation via JAK2-STAT5 (Darnell [1997]). Epo signalling plays an im-

portant role in proliferation, differentiation and survival of erythroid progenitor

cells (Klingmüller et al. [1996]). After binding of the Epo hormone to its receptor,

STAT5 can also bind. Subsequently, dimerization of STAT5 results in a transloca-

tion to the nucleus where the STAT5 dimer acts as a transcription factor.
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Several models exist which explain the molecular dynamics in various ways (Müller

et al. [2004]; Swameye et al. [2003]; Timmer et al. [2004]; Toni & Stumpf [2010]).

We analyze immunoblotting data which have already been analysed with a basic

model by Swameye et al. [2003] using the following system of ODEs:

ẋ1 =−k1x1EpoRA

ẋ2 =−k2x2
2 + k1x1EpoRA

ẋ3 =−k3x3 +0.5k2x2
2

ẋ4 =+k3x3.

(4.23)

Here, the different states of STAT5 are cytoplasmic unphosphorylated STAT5 (de-

noted by x1), cytoplasmic phosphorylated monomeric STAT5 (x2), cytoplasmic

phosphorylated dimeric STAT5 (x3) and STAT5 in the nucleus (x4). EpoRA de-

scribes the Epo-induced tyrosine phosphorylation which can be measured up to

a scaling factor. The initial values are x1(0) > 0 (to be estimated) and x2(0) =

x3(0) = x4(0) = 0.

In the above mentioned literature, the model given in (4.23) is further refined by,

e. g. introducing an additional transition from nuclear STAT5 to the cytoplasmic

unphosphorylated state, thus completing the loop from x1 to x4, or introducing

time delays. These model refinements typically lead to an improved representation

of the measured data, confirmed by, e. g. likelihood ratio tests, information criteria

(AIC/BIC) or Bayes factors. To start from the best-known model, we extend the

refined model by incorporating a hidden influence. As a first step, we consider

ẋ1 =−k1x1EpoRA +a1h,

ẋ2 =−k2x2
2 + k1x1EpoRA +a2h,

ẋ3 =−k3x3 +0.5k2x2
2 +a3h.

(4.24)

Here, we do not consider the fourth row of (22) because we have no informa-

tion about x4 as we use the measurements of experiment number 1 provided as

supporting material in Swameye et al. [2003]. These measurements describe

the total amount of cytoplasmic tyrosine phosphorylated STAT5, that is, y1 =

k5(x2 + 2x3), the total amount of cytoplasmic STAT5, y2 = k6(x1 + x2 + 2x3),

and the Epo-induced tyrosine phosphorylation, y3 = k7EpoRA. All three mea-
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sured time-varying variables were experimentally quantified up to scaling factors

denoted by k5, k6 and k7. Evidently, only transformations of the ODE compo-

nents x1, . . . ,x3 are observed. Furthermore, a system comprising only y1, y2 and y3

cannot be described in closed form. For that reason, we also include the auxiliary

variable x3. The differential equations for the observed and latent components are

as follows:

ẏ1=
k1k5y2y3

k6k7
− k1y1y3

k7
−2k3k5x3+k5(a2+2a3)h,

ẏ2=−2k3k6x3 + k6(a1 +a2 +2a3)h,

ẋ3=−k3x3 +
k2y2

1
2k2

5
− 2k2y1x3

k5
+2k2x2

3 +a3h.

(4.25)

We further refine the model by completing the loop from x4 to x1 and including

a time delay, as has been done previously (Nikolov et al. [2007]). The authors

suggested the use of a linear chain trick (Fall [2002]) and introduced a delayed

loop. Thus, two (or possibly more) additional variables in the system of differen-

tial equations are introduced:

ẋ1 =−k1x1EpoRA +2k4z2 +a1h,

ẋ2 =−k2x2
2 + k1x1EpoRA +a2h,

ẋ3 =−k3x3 +0.5k2x2
2 +a3h,

ẋ4 =+k3x3− k4z2,

ż1 =
1
τ
(x3− z1),

ż2 =
2
τ
(z1− z2).

(4.26)

Analogously, we can transform these equations to counterparts depending on y1,
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Figure 4.8: Schematic representation of the JAK2-STAT5 signaling pathway. The
four different states of STAT5 are regulated by a latent component h with different
weights, as estimated by our method. The observed variables y1 and y2 are linear
combinations of the single states x1 to x3. τ1 and τ2 represent artificial delay
variables.

y2 and y3:

ẏ1=
k1k5y2y3

k6k7
− k1y1y3

k7
−2k3k5x3+k5(a2+2a3)h,

ẏ2=−2k3k6x3 +2k4k6z2 + k6(a1 +a2 +2a3)h,

ẋ3=−k3x3 +
k2y2

1
2k2

5
− 2k2y1x3

k5
+2k2x2

3 +a3h,

ż1=
1
τ
(x3− z1),

ż2=
2
τ
(z1− z2).

(4.27)

This representation captures the dynamics of the observed variables. The right-
hand side of (4.27) depend on the observed components y1 to y3, the hidden
component h, the unobserved component x3 and the two artificially introduced
delay variables z1 and z2. For this reason, we must estimate x3, z1 and z2 prior
to h. This is achieved by numerically computing the solution of the model given
in (4.26) without considering the hidden component (i. e. aaa = 000) and using the
approximations for x3, z1 and z2 arising from this model. Once these quanti-
ties are determined, we estimate the three transformed weighting coefficients ãaa =

(k5(a2 +2a3),k6(a1 +a2 +a3),a3) and use the estimates for x3, z1 and z2 as input
in the new iteration. This procedure is repeated until convergence. Once ãaa is suc-
cessfully obtained, we simply calculate aaa from ãaa up to the scaling factors k5 and
k6.

Figure 4.8 shows a schematic description of the estimated model given in (4.27).
According to our estimation performed by best subset selection, the hidden com-
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Figure 4.9: A: experimental data and model fitting for STAT5 phosphorylation in
cytoplasm (y1). B: experimental data and model fitting for the total amount of
STAT5 in cytoplasm (y2). The model that includes no hidden component is in-
dicated by the dashed lines, whereas that which includes a hidden component is
indicated by solid lines. The model with a hidden influence produces a time course
that better fits the experimental data. C: estimated time course of the hidden com-
ponent, which exhibits a strong peak at the beginning of the experiment, quickly
drops to 0 and begins to increase again after 30 min.

103



ponent interacts only with the first and third state of STAT5. Interestingly, the

interaction direction (activating x1 and inhibiting x3) hints at a translocation of

STAT5 from its nuclear state to the cytoplasm as also hypothesized by e. g. Swam-

eye et al. [2003].

Figures 4.9A and 4.9B show the experimental data and the estimated time courses

of y1 and y2. The model with a hidden component h outperforms the model with-

out h because it best represents the experimental data. Most importantly, the time

course produced with a hidden component is considerably more flexible but does

not overfit the data. The time course of the estimated hidden component (third

panel of Figure 4.9C) exhibits large values at the beginning of the experiment,

decreases and then begins increasing after 30 minutes. Our interpretation of this

behaviour is that an external quantity should be present at the beginning of the ex-

periment (or shortly after); thus, the entire signalling pathway is kick-started. This

external stimulus depletes completely and its influence slowly begins increasing

after 30 min, bringing the entire system into equilibrium with the inhibition of the

dimerized STAT5, and simultaneously the activation of the monomeric STAT5.

4.6 Discussion

The main objective of this chapter is to provide a new method for model exten-

sion by introducing a hidden component to known networks. With the proposed

method, we can not only derive the relative time course of the hidden compo-

nent but also predict the influence of the hidden component on all other network

components.

We first fit splines to the observed components or to observation functions that are

affine linear transformations of the former. On the basis of the observation error

distribution, we apply maximum likelihood estimation and model selection. By

doing so, we can estimate a combination of the time course of a hidden component

and the weights that lead to the best model in terms of data faithfulness without

overfitting.

The method is applied to artificial data to test robustness and applicability. The

results suggest a robust and good performance for the identification of the time
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course of the hidden component even in situations with high level of noise, irreg-
ularly shaped time courses of the hidden component or missing data.

One application of our method is the detection of misspecified networks. As a
demonstration, we choose a network which includes a feedback loop that is miss-
ing in the model specification. The loop is successfully recovered, thus providing
a promising application variant of our technique. Our method, however, is not a
tool for general network inference in its current form. An automation of the pro-
cess by combining theory from network topology estimation with the proposed
latent variable model presents a possible extension in future work.

We applied the method to the well-studied JAK2-STAT5 signalling pathway. Ex-
tension of the model with a latent component was performed on a system of ODEs
with introduced delay. Our method improves the model quality in terms of BIC
and produces results which are in conformity with other methods suggested in the
literature.

For the method presented here, we intentionally chose to separate the two major
estimations into two steps, and both steps can be associated with two major mod-
elling perspectives (Emmert-Streib et al. [2014]). While fitting the spline param-
eters can be associated with a statistical perspective exploiting the network struc-
ture for inference of the latent time-course and its interaction weights is closely
connected to the mathematical modelling perspective. Model selection and thus
network prediction, brings the method back to the statistical perspective. For-
mulating the problem as a joint optimization of all parameters involved (reaction
rates, spline parameters and noise parameters) is possible. This, however, leads to
a considerably more complex and computationally intensive method.

As we demonstrate in Appendix A.2, the performance of our method depends
on the quality of the spline approximation. This quality will typically suffer if
the modelled data are sparse, contain extreme outliers, are corrupted by a high
amount of noise or the chosen spline representation cannot resemble fluctuations
of the observed time-series appropriately.

The results of the proposed method can be employed as a promising aid for guiding
future experiments, thus helping to complete the systems biology loop (de Ridder
et al. [2013]; Endler et al. [2009]) between experimental data and model analysis.
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5

Inferring catalysis in biological
systems

In this chapter we further investigate the communication patterns between several

species, such as genes, enzymes or proteins. As already demonstrated in the previ-

ous chapter, time-resolved communication between such species can be structured

by reaction networks. Mathematical modelling of data arising from such networks

often reveals important details, thus helping better to understand the studied sys-

tem. In many cases, however, corresponding models still deviate from the ob-

served data. This may be due to unknown but present catalytic reactions. From a

modelling perspective, the question of whether a certain reaction is catalysed and

which active catalyst is observed, leads to a large increase of model candidates.

For large networks the calibration of all possible models becomes computation-

ally infeasible very fast.

We present a novel method for inference of catalysis from biological systems. It

can be summarized in three major steps. First, we extend a given network by a

number of additional components which is equal to the number of total interac-

tions within a network. Next, we infer the time courses of the hidden components

with the help of spline approximation and a least squares approach. Finally, the

inferred time courses are compared to the time courses of the original network

components. This comparison results in a similarity score which describe the like-

lihood of a certain network component catalysing a certain network reaction. The

scores are standardized in the unit interval and can be used to identify the most
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probable catalysis candidates for each reaction and thus consider only a small
number of models for a given system. This is especially useful when the stud-
ied biological network is large and considering all model possibilities results in
high computational demand. Furthermore, the method also provides parameter
estimates for the reaction rates of network interactions.

The method is applied on artificial data with the aim to assess its general applica-
bility and it is also compared to other possible model selection techniques. Results
confirm that with our method, we are able to substantially reduce the number of
candidate models for a given system without discarding the correct model from
which the artificial data was generated. This holds true independent from the net-
work size and also for non-informative data with few observations. Finally, we
apply the method to real-world data arising from the CD95 apoptotic pathway and
provides new insights into apoptosis regulation.

This chapter is based on and in part identical with the following publication:

• I. Kondofersky, F.J. Theis and C. Fuchs. Inferring catalysis in biological
systems, submitted.

5.1 State of the art and research questions

A central objective in systems biology is to derive a mathematical model, which
is used to explain multivariate readouts and thus serve as a tool for detailed inves-
tigation of a given biochemical process ([Aloy & Russell, 2006; Kitano, 2002a]).
Although there are many ways in constructing such models, they generally share
the well-known dilemma of models being always only an approximation of real-
ity. This means that regardless of the quality of the model performance, there al-
ways remains uncertainty when explaining a biological phenomenon (Slezak et al.

[2010]). This uncertainty may arise from different sources, some of which are:
the collected data may be subject to various kinds of noise; parameters of complex
models may be unidentifiable and thus lead to equal quality of several competing
models; the model topology may be specified in a wrong way, e. g. providing a
too extreme simplification of reality.

Describing the connection between several variables can be conveniently done us-
ing networks or pathways (Barabasi & Oltvai [2004]). This has successfully been
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applied in the field of biology in past decades (Jeong et al. [2000]). For example,

signalling pathways are known to be the core mechanism of numerous biochemi-

cal processes, such as cell differentiation, cell death or cell division. Additionally,

the intracellular behaviour of small molecules can be described in a detailed man-

ner ([Artavanis-Tsakonas et al., 1999; Vogel & Sheetz, 2009]). Small differences

in this behaviour may determine the cell fate and thus are of major importance

for the overall understanding of the modelled system. Interactions between sin-

gle components of such networks can occur in various complexities e. g. linear,

higher-order or catalytic reactions. The identification of catalytic reactions can be

especially challenging if the catalyst of an interaction is not known.

Considering the possibility that reactions are catalysed expands the model can-

didate space in an exponential way. To address this challenge, some established

model selection techniques, such as greedy stepwise model selection or full best-

subset model selection, can be applied. However, these model selection techniques

often fail to find the most appropriate model for given data due to either not taking

correlation of network components into account or overfitting to data. This means

that reducing the model candidate space often comes at a high price of reduced

method performance.

Recently, a novel scheme of catalysis identification has been proposed by Rickert

et al. [2013]. Here, the authors suggest a model reduction technique which is

a graphical approach, taking into account the network topology of the system.

Although their approach is able to vastly reduce the model candidate space, this

reduction is mostly achieved by eliminating catalysis from certain reactions due to

biological prior knowledge rather than performing a statistical comparative study.

Furthermore, their approach needs user input suggesting which reactions should

be investigated for catalysis.

This manuscript proposes a novel approach for identification of catalysis in biolog-

ical systems. We first extend the known network by including hidden components

and estimate their time courses with a combination of smoothing splines and least

squares approach. In the next step, we compare those time courses of the hid-

den components to the time courses of network components. Here, we measure

similarity between two time courses based on correlation and L2-distance and as-

sociate each comparison with a score. Subsequently, we choose a threshold and

only consider components with high scores to be relevant catalyst candidates. The
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reduced number of model candidates is finally calibrated and the best model is

chosen via maximum likelihood.

This chapter is organised as follows. In Section 5.2 we define our modelling ap-

proach and explain how we estimate model parameters. This ultimately leads

to building a score for every network component, which describes its affinity to

catalyse a certain reaction. Section 5.3 applies the developed technique to different

simulated scenarios and Section 5.4 to a real data example - the CD95 apoptosis

pathway. Section 5.5 discusses strengths and limitations of the proposed method.

5.2 Methods

In this section, we present the developed method for inferring catalytic reactions

biological systems. We first describe the types of systems we aim to study with

this method in the context of catalysis. Then, we introduce the individual steps of

the estimation procedure. In brief, we model an extended system with external or

hidden catalysts and afterwards compare these external catalysts to observed net-

work components by construction of a similarity score. This allows us to preselect

only a small number of model candidates, which we then compare in more detail

with a likelihood approach. Overall, this results in obtaining the most appropriate

model for the data without wasting computational resources.

5.2.1 Mathematical formulation of catalysis

We consider N-dimensional ODEs with m reaction fluxes, as formulated in Equa-

tion (2.28) which we repeat here:

dxxx(t)
dt

= ẋxx(t) = SSSvvv(xxx(t);kkk) =
m

∑
g=1

sss·,gvg(xxx(t);kkk)

with N×m stoichiometry matrix SSS, m-dimensional flux function vvv(xxx(t);kkk) with

arguments xxx(t) = (x1(t), . . . ,xN(t))T ∈ RN
≥0 as the non-negative network compo-

nent concentration functions and kkk ∈ Rp as the reaction rate constants as already

defined in Section 2.1.4. We assume the individual flux functions vg(xxx(t);kkk) to
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be linear combinations of xxx(t). The components xi(t) may be observed or unob-

served.

Modelling network dynamics as in (2.28) presents a general way of describing bi-

ological systems. However, this description is often not sufficient to explain the

observed network dynamics. To improve the discrepancies between model fit and

observed data, one can choose different strategies. Approaches range from con-

struction of more complex interactions such as Michaelis Menten kinetics, time-

varying reaction rates or complex formations introducing external latent variables

(Chapter 4). Catalysis is an additional way of improving the model fit and at the

same time maintaining a low level of model complexity. Furthermore, it repre-

sents the modelling of a realistic scenario since catalysis is an often-occurring

pattern in many biological systems (Masel et al. [2001]). A catalytic reaction can

be included into (2.28) by

ẋxx(t) = SSS(vvv(xxx(t);kkk)◦hhh(t)) =
m

∑
g=1

sss·,gvg(xxx(t);kkk)hg(t) = ψ(SSS,vvv,xxx(t),kkk,hhh(t)) (5.1)

with ◦ denoting the Hadamard product (componentwise multiplication), hhh(t) =

(h1(t), . . . ,hm(t))T ∈Rm
≥0 representing the concentration of the non-negative cata-

lysts and ψ as a summarizing function for the right-hand side of the ODE. We will

later estimate the unknown catalysts hhh(t). We further restrict our models to hhh(t)

having a meaningful effect on ψ and thus require

∀ε > 0,∀t ≥ t0,∀h2(ttt) ∈Uε(h1(ttt)) : ψ(h1(ttt)) 6= ψ(h2(ttt)) (5.2)

with Uε(h1(ttt)) = {h2(ttt) ∈ R≥0 :|| h1(ttt)− h2(ttt) ||2< ε} and || · ||2 denoting the

L2 norm. Furthermore, without loss of generality, for the rest of the manuscript

we assume SSS and vvv to be known in parametric form, e. g. from literature. This as-

sumption can be relaxed and SSS and vvv can also be estimated with our method, which

increases the number of unknown parameters. The assumption seems reasonable

since we want to apply our method to well-studied systems where information

about SSS and vvv is available.
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5.2.2 Estimation of hidden catalysts

In the first part of the proposed method, we estimate hhh(t) and interaction param-

eters kkk. Here, we approximate the observed time courses of xxx(t) by smoothing

splines (compare Section 2.1.3) resulting in an estimtate x̂xx(t). This also presents

an immediate approximation of ẋxx(t) as ˆ̇xxx(t) = ∂

∂ t x̂xx(t). Subsequently, we plug in

these approximations into (5.1) and estimate the parameters hhh(t) and kkk by

(k̂kk, ĥhh(t)) = argmin
kkk,hhh(t)

[
|| ˆ̇xxx(t)−ψ(SSS,vvv, x̂xx(t),kkk,hhh(t)) ||2

]
. (5.3)

In general, (5.3) has more unknown parameters than the ODE dimension and thus

some estimated parameters in (5.3) may not be identifiable. One possibility to re-

duce the estimated parameter space is to set non-identifiable parameter entries in kkk

to a constant, e. g. to 1. Such non-identifiable parameters can occur wherever the

ODE has entries such as sss·,gvg(xxx(t);kkk)hhhg(t) where both kkk and hhhg(t) cannot be esti-

mated simultaneously due to sss·,gvg(xxx(t);kkk)hhhg(t) = (ahhhg(t)) ·
sss·,gvg(xxx(t);kkk)

a , ∀a∈ R 6=0

and without additional prior information or constraints. Approximations for the

non-identifiable entries in kkk will be found in the second step of the proposed

method. After elimination of such non-identifiable parameters, (5.3) is numeri-

cally optimized e. g. by a gradient descent method. The result of this first step are

the approximations of the components of hhh(t), which can be grouped in a set:

H = {ĥg(t j)}g=1,...,m; j=0,...,n. (5.4)

Once these approximations are found, we perform similarity analysis to relate

them to the network components which we describe in the following.

5.2.3 Relating hidden catalysts to network components

In the second step, we compare the entries of H to the set

X= {Xi j | Xi j = x̂i(t j) if i≤ N,XN+1(t j) = 1}i=1,...,N+1; j=0,...,n, (5.5)

which contains the spline-approximated time courses of the network components

x̂xx with an additional component xN+1(t), which is equated to 1 for all t and is thus

comparable to the intercept term in a regression context. This comparison between
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entries in H and X is done in terms of two different measures of similarity. On

the one hand, we measure similar time-course shapes of x̂xx and ĥhh by calculating the

Pearson correlation coefficient between entries in H and X, resulting in the set of

correlations C:

C= {Cig |Cig = cor(Xi·,Hg·)}i=1,...,N;g=1,...,m. (5.6)

On the other hand, the proximity between X and H is measured by the L2 distance

and these values are collected in a set L:

L= {min
κig∈R

(|| Xi·−κigHg·) ||2)}i=1,...,N+1;g=1,...,m (5.7)

with scaling parameters κig, which are used to find the best scaling of Hg· so that

the L2-distance to Xi· is minimized. Recall that while optimizing (5.3), we set the

non-identifiable parameters in k̂kk equal to 1. With the optimization in (5.7), these

parameters can now be estimated as the minimizers in (5.7).

The two sets, C and L, measure two different aspects of similarity (shape and prox-

imity), which are suitable for comparing two time series. Furthermore, smaller

values in L and larger values in C correspond to higher similarities. Therefore,

they are combined and weighted to form a set of scores S, which can be used to

easily identify catalysis candidates. To construct such a set, single entries of C and

L are combined and scaled in the unit interval. Formally, we build

S=
1
2

{
max(Li·)−Lig

max(Li·)−min(Li·)
+

Cig−min(Ci·)

max(Ci·)−min(Ci·)

}
i=1,...,N+1;g=1,...,m

(5.8)

with max(Li·) := max
g′
{Lig′ | g′ = 1, . . . ,m} and min(Li·), max(Ci·) and min(Ci·)

defined in the same way. The special cases of max(Li·)=min(Li·) and max(Ci·)=

min(Ci·) can be excluded without loss of generality. If one of those cases occurs,

it means that we cannot distinguish between all candidates either on basis of dis-

tance or correlation. In this case all candidates describe the data equally and no

candidate reduction can be achieved. The set S is constructed from C and L with

equal contribution, respectively. One could of course also consider the inclusion of

a weighting parameter which favours e. g. the correlation measure more strongly.

Overall, S has values in the unit interval with a value of 1 in Si,g meaning that Xi·

is best correlated and has the lowest L2 distance (after scaling) to H j·, making Xi·
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the most obvious catalyst candidate for the g-th reaction. It is possible that mul-

tiple entries of Xi· have a high score close to 1 which may then all be considered

as catalyst candidates. We define a threshold τ , which is used to filter components

with high associations for catalysts of a given reaction by the rule:

Si,g > 1− τ ⇒ Xi· candidate for g-th reaction. (5.9)

The index τ can be used in various ways. If τ equals 1, all components are clas-

sified as possible catalyst candidates (no model reduction), whereas if τ equals 0,

at most one component per reaction is chosen as a possible catalyst (and only if

it outperforms all other components in distance and correlation measure). Gener-

ally, τ can be used to control the trade-off between a large number of acceptable

models and a high probability of finding the most appropriate model with the pro-

posed algorithm. In practice and for the examples presented in this manuscript,

we found that setting τ to 0.1 presents a reasonable choice.

5.2.4 Choice of most appropriate model from reduced model
candidates with maximum likelihood

After performing the described steps above, a reduced set of models Mτ is ob-

tained as a subset of all possible models, M. Additionally, we obtain the set M̄τ ,

which describes the models which are not considered to be appropriate for the

characterization of the studied system. It holds that Mτ ⊆M and for large systems

and for small τ we usually obtain |Mτ |�|M |. Without loss of generality, we can

assume that |Mτ |> 1 and we still need to find the most appropriate model from

the set Mτ . In this context, we apply a maximum likelihood optimization scheme

to determine the model of choice. Therefore, we first specify an error distribution

of the observed data as (compare (4.10) in Section 4.3.1):

xobs
i (t j) = xi(t j)+ εi j, εi j

iid∼N
(
0,σ2) .

In applications, xobs
i (t j) often has a positive domain in which case this equa-

tion might be ill-defined. One possible solution for this might be log-normally

distributed multiplicative noise as discussed in Chapter 2. Such error model is
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straightforward here, however, for reasons of notation simplicity, we only con-

sider normally distributed errors in the manuscript and in the example section.

The distribution of εi j immediately propagates to the measurements:

xobs
i (t j)

∣∣xi(t j)
iid∼ N

(
xi(t j),σ

2) .
While the true time course xi(t) is unknown, it has already been approximated by

smoothing splines and we can plug in this approximation :

xobs
i (t j)

∣∣x̂i(t j)
iid∼ N

(
x̂i(t j),σ

2
)
.

With this last approximation, we are now able to formulate a likelihood function,

which measures the overall agreement between model and data depending on the

model parameters

L(θθθ) =
N

∏
i=1

n

∏
g=0

fN(xobs
i (t j) | θθθ)

with θθθ representing the conglomerate of parameters (kkk,σ2)T . This likelihood

function can be maximized with a gradient descent method and the parameters

corresponding to this optimum are then called θ̂θθ . The dimension of θ̂θθ does not

change regardless of the number of reactions catalysed and the different combi-

nations of catalytic reactions. Therefore, comparing models only by comparing

likelihoods instead of using e. g. information criterion is possible in this setting.

In the next section, we will test the developed method on several artificial datasets

and also apply it on real-world data from a biochemical pathway.

5.3 Simulation studies

In this section, we apply our method on artificially generated data. We perform

two excessive simulations in which we test the applicability and effectiveness of

our method. First, we simulate random networks of different size and estimate the

reaction catalysts in those networks. Second, we fix the network size at N = 5 and

test our method by comparing it to two other common approaches in model se-

lection – the computationally demanding best subset selection and the greedy for-

ward selection. All computations were performed using the open source software
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R (R Development Core Team [2011]), version 3.2.1 and associated packages fda

(Ramsay et al. [2009]) for the smoothing spline estimation and deSolve (Soetaert

et al. [2010]) for estimating ODEs.

5.3.1 Random networks and random catalysts

We use several simulation runs to test the general applicability of the proposed

method. To that end, we consider networks consisting of 2 to 10 nodes and sam-

pled from

ẋi(t) =
N

∑
g=1

(kigxg(t)hig(t)− kgixi(t)hgi(t)) , (5.10)

where the reaction rates kig are chosen randomly from U(−1
N , 1

N ) and the catalysts

h ji(t) are chosen randomly to equal one of (111,xxx1(t), . . . ,xxxN(t)) with equal proba-

bility. Furthermore, the initial values xxx(0) are chosen randomly from U(1,100).

To achieve more realistic sparse networks, we randomly delete approximately a

fraction of 2
N of the possible reactions by setting the corresponding reaction rates

kig to 0. After forward simulation of the randomly chosen network, we add nor-

mally distributed measurement noise ε ∼N(0,σ2) to the simulated time snapshots

and arrive at the observed measurement points used for further analysis. The num-

ber of observed time points per component xxxi(t) and the noise parameter σ2 are

also chosen at random for each simulation run from U(10,30) and U(1,15), re-

spectively. In the described setting, we run 100 simulation runs per fixed network

size and estimate the catalyst of each reaction. Results are shown in Figure 5.1.

Figure 5.1A shows violin plots of the fraction of models to be estimated after ap-

plying the latent catalyst method depending on the network size. Additionally, the

average time needed to compute either all possible combinations for a given net-

work size or the reduced set of models is shown with solid lines. Here, we observe

that computing all possible combinations for networks of size 2 or 3 is faster than

computing only a reduced number of models. This can be explained by the com-

putational time needed to fit the splines and the relatively low number of possible

candidate models for such small network sizes. With increasing network size, this

relationship switches very fast and already at network size 5 the computational

time needed to identify the correct catalysts with our method is less than 0.1% of
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Figure 5.1: Results of simulation 1. A: Violin plots show fraction of model candi-
dates chosen by application of the latent catalysts method compared to all possible
models. The reduction of model candidates becomes more pronounced for larger
networks. Additionally, lines show the average computational time in (log-scale)
needed to estimate either all possible models (solid line) or the reduced set of
model candidates (dashed line). B: Violin plots of the fraction of correctly classi-
fied catalysts. The reduced model candidates include the correct model that was
used to generate the data in almost all simulation runs. This is consistent for all
studied network sizes.
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the time needed to compute all possible models. In the violin plots, a value of
100% means that no reduction of model candidates was achieved with our method
and all possible models have to be computed. We observe a dramatic decrease of
model candidates for networks consisting of more than 4 nodes. This shows the
efficiency of our method, which potentially allows a reduction of computational
time from days to minutes depending on the studied system.

This efficiency would not be meaningful if the reduced number of models did not
include the correct model, which was used to generate the data. However, as Fig-
ure 5.1B suggests, in most simulation runs the correct model is part of the reduced
model candidates, this is consistent for all studied network sizes. Although the
method may also miss the correct model in certain simulation scenarios with e. g.
large noise or many similarly shaped component dynamics, we observe a median
of above 90% correctly identified catalysts by applying our method. Additionally,
we note that we used a threshold parameter τ = 0.1 for all simulations. If we set
this parameter to a higher value, we will capture more correct models in the model
candidates, however at the cost of lower efficiency and higher computational de-
mand.

5.3.2 Catalysis in common network motifs in systems biology

Figure 5.2 shows artificial networks with and without catalytic interactions. This
network consists of 5 nodes x1−x5 and a total of 7 regulatory interactions between
those nodes. In Figure 5.2A, we first show a version of the network with no cat-

x1 x2

x3

x4 x5

A
x1 x2

x3

x4 x5

B

Figure 5.2: Network of interest for simulation 2. A: ”core network” with no cat-
alytic interactions. B: network with catalytic interactions from which data is sam-
pled.

alytic reactions in order to demonstrate the general connection between the nodes.
In Figure 5.2B, we include catalysis in the network structure and use this network
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to simulate artificial data. We chose this network to further investigate our method
performance because it captures several patterns which are commonly observed in
systems biology. First, x1 and x2 are engaged in a mutual activation pattern and
whichever of the two dominates this pattern also dominates the interaction with x3.
Second, a typical motif is presented by the interaction between x3 and x5 for which
there is a direct interaction and at the same time an indirect or lagged interaction
through x4. Finally, we observe both layers to be connected by the key node x3 and
several catalytic connections which contribute to the overall interaction pattern of
the studied network.

We sampled data from the network shown in Figure 5.2B by randomly choosing
initial values x1(0) ∼ U(0,100), . . . ,x5(0) ∼ U(0,100) at equidistant time points
between t0 = 0 and tn = 1 with ti+1−ti = 0.1 and interaction weights from U(−1,1).
We also added normally distributed measurement noise ε ∼ N(0,10) to each sim-
ulated data point as shown in Figure 5.3.
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Figure 5.3: Simulated data from network shown in Figure 5.2B and used for sim-
ulation study in section 5.3.2.

The next step in this simulation was to apply three techniques in order to estimate
the correct catalyst for each interaction. First, we applied a very extensive search
for the best model in which we fitted all possible models. In this case there are
67 ≈ 300000 different models. For each model, we optimized a (log)-likelihood
function. The models were then ordered by the optima of the log-likelihood values
with the most appropriate model having the highest log-likelihood value. Results
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Table 5.1: Results of fitting all possible models for the network shown in Figure
5.2. Here, we see the best six models and the worst model with respect to negative
log-likelihood value. The model used to generate the data is highlighted in red.

rank x1→ x2 x2→ x1 x1→ x3 x2→ x3 x3→ x4 x3→ x5 x4→ x5 -(log-likelihood)
1 x3 x3 x4 x1 x4 x4 x2 324.34
2 x3 x5 x4 x3 x4 x5 x2 325.37
3 x3 x3 x1 x1 x5 x2 1 326.50
4 x3 x4 x1 x1 x5 x2 x2 326.57
5 x3 x1 x5 x3 x5 x5 1 326.75
6 x3 x1 x5 x1 x5 x4 x2 327.65

279936 1 1 1 x2 x1 1 x5 1331.40

of selected models are shown in Table 5.1. Here, we present the seven different
reactions in one column each and show the catalysts of these reactions in the rows.
In this notation, a 1 denotes an uncatalysed, linear reaction. The model used to
generate the data is ranked on the fifth place with other top-ranked models being
very similar in topology.

Second, we applied a greedy forward selection method. Here, the idea is to start
from the null model with no catalysis in the network (Figure 5.2A) and subse-
quently allow for one catalytic reaction after another. For the studied network, it
means that we calculate the log-likelihood of only one model in the first step, then
35 models in the second step (we have 5 possible catalysts for 7 different interac-
tions) with 35 corresponding log-likelihoods. Subsequently, we choose one cata-
lyst for one interaction corresponding to the model with the highest log-likelihood

Table 5.2: Results of applying a forward model selection to the network shown in
Figure 5.2. The best model, corresponding to the highest log-likelihood value, is
achieved in step 2. The data-generating (”true”) model does not equal the chosen
one.

steps x1→ x2 x2→ x1 x1→ x3 x2→ x3 x3→ x4 x3→ x5 x4→ x5 -(log-likelihood)
step 0 1 1 1 1 1 1 1 436.57
step 1 x3 1 1 1 1 1 1 394.10
step 2 x3 1 1 1 x5 1 1 386.92
step 3 x3 1 1 1 x5 1 x2 411.28

value and move on to the third step where another catalyst is selected from 30 dif-
ferent models in the same manner. We stop when the log-likelihood is not longer
increased by a subsequent step. The results of this procedure are shown in Table
5.2. The stepwise model selection stops after inclusion of three catalysed reactions
and fails to identify the correct model by far.

Finally, we applied our method and selected model candidates with threshold
τ = 0.1. With our approach we select 288 model candidates and compute the cor-
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Table 5.3: Results of application of our latent catalyst approach to the network
shown in Figure 5.2. Each reaction has a different number of possible components
which may act as a catalyst. The data generating model is highlighted in red.

x1→ x2 x2→ x1 x1→ x3 x2→ x3 x3→ x4 x3→ x5 x4→ x5
{x3} {x1, x3, x4, x5} {x1, x4, x5} {x1, x3} {x4, x5} {x2, x4, x5} {1, x2}

responding log-likelihood. The component candidates for each model are shown

in Table 5.3. The model used to generate the data is included in these model can-

didates.

Application of the three different model selection techniques revealed different as-

pects. On the one hand, the forward selection is very fast due to the low number

of models being fitted, however it fails in detecting a model that can fit the data

reasonably well. On the other hand, the best subset selection does not only find

the correct model which was used to generate the data shown in Figure 5.3 but

it also finds four models which fit the data more appropriately. This can be ex-

plained by the fact that we added a high amount of measurement noise to the true

ODE solutions and thus created data situations where the data generating model

is not anymore the model that best fits the data. Nevertheless, we believe that

this represents a scenario which is much more realistic for real-world applications

than looking at the true ODE solutions as measurements where the data generat-

ing model will fit the data best by a large margin. The computational cost of this

procedure is very high even for this medium-sized example as it runs a total of

roughly 76 days on a single core machine (faster with parallelisation). Finally, our

approach with modelling latent catalysts also reveals the best model which fit the

data best. This is achieved in a very efficient way by reducing the possible model

candidates to 288, which is a reduction by 99.897%.

5.4 Application: CD95 apoptosis signalling model

In this section, we apply our method to real-world data collected from the cluster

of differentiation 95 (CD95) signalling pathway (Lavrik et al. [2007]). This path-

way is relevant for regulation of cell death decisions and is mediated via proteins

FADD and procaspase-8 as well as its cleavage products p43/p41 and p18 (see

Figure 5.4). The pathway can be summarized in the following steps: after extra-

cellular binding of the CD95 ligand to its receptor, FADD is recruited to CD95.
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This creates the death inducing signalling complex (DISC), and procaspase-8, c-

FLIP long (c-FLIPL) and c-FLIP short (c-FLIPS) can bind to it. This results in

the formation of different types of dimers: procaspase-8 homodimers (p8hod),

procaspase-8 heterodimer (p8hed) and c-FLIPL heterodimers. Next, the procaspase-

8 part of the dimers is split and is in its active form of p43 homodimer (p43hod)

and p43 heterodimer (p43hed). Finally, p43hod is processed to form the cleavage

product p18. Next, procaspase-8 homo- and hetero- dimers undergo autocatalytic

processing resulting in the formation of the p43 homodimer (p43hom) and p43

heterodimer (p43hod), respectively. The latter along with the cleavage product

of procaspase-8, p43 comprises the cleavage product of c-FLIP, p43-FLIP. All of

the steps described above have been reported in literature ([Fricker et al., 2010;

Kischkel et al., 1995; Lavrik et al., 2007; Neumann et al., 2010]). The last three

reactions highlighted in green in Figure 5.4 are known to be possibly catalysed

(Rickert et al. [2013]). The focus of our work lies in the analysis of a small core

motif containing 5 species and 3 reactions. The experimental data used in this

manuscript provides measurements of the total p43, total p18 and total procaspase-

8 concentration for two time-resolved experiments over a total of 6 time points

each. The two experiments differ from each other in the amount of ligand used.

We modelled both experiments separately thus obtaining two sets of results for the

present data.

Our approach resulted in a very strong reduction of model candidates. Without our

approach, a total of 216 models need to be computed and compared for each of

the two experiments. With our approach, we are able to narrow down the number

of model candidates to 3 and 12 for experiment 1 and 2, respectively. These mod-

els are presented in Table 5.4. Here, we ranked the models by their correspond-

ing negative log-likelihood. For both experiments, we calculated some models

that clearly outperform all others in this measure (candidate 1 for experiment 1

and candidates 1–3 for experiment 2). Furthermore, we make the observation that

there is a large difference of the number of model candidates which were identified

with our method in both experiments. Intriguingly, when more ligand is present

in the system (experiment 2), non-catalysed splitting of procaspase-8 heterodimer

and non-catalysed processing of p43 homodimer are emerging as reactions con-

tributing to the increase of model candidates. This is intuitively understandable

because the more ligand is present at the beginning of the experiment, the more

procaspase-8 and p43 will be produced and thus a catalysis appears less necessary
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Figure 5.4: Data and schematic representation of CD 95 pathway. Dots show three
replicates of two experiments at each time point of procaspase-8 (orange), p43
(blue) and p18 (red). Corresponding lines show the mean spline approximations.
In the pathway, rectangles denote proteins, the extracellular receptor is denoted by
a circle. Coloured rectangles indicate the different experimental measurements:
total amount procaspase-8 (orange), total amount p43 (blue) and total amount p18
(red). The green box indicates the core motif, which is analysed by our method.

123



Table 5.4: Results of application of the latent catalyst approach to CD95 pathway.
The three possibly catalysed reactions are shown on top of the table and the pos-
sible catalysts associated with the respective reactions are shown in the rows. All
suggested model candidates are shown for experiment 1 (low amount of ligand)
and experiment 2 (high amount of ligand). Models are ranked by their negative
log-likelihood.

experiment 1
p8hed→ p43hed p8hod→ p43hod p43hod→ p18 -(log-likelihood)

candidate 1 p8hed 1 p8hed 66.95
candidate 2 p8hed p43hed p8hed 71.05
candidate 3 p8hed p43hod p8hed 71.09

experiment 2
p8hed→ p43hed p8hod→ p43hod p43hod→ p18 -(log-likelihood)

candidate 1 p8hed p43hod p8hed 66.53
candidate 2 p8hed 1 1 68.23
candidate 3 p8hed p43hod 1 69.45
candidate 4 p8hed 1 p8hed 76.00
candidate 5 1 p43hed 1 78.06
candidate 6 p8hed p43hed 1 78.42
candidate 7 1 p43hod 1 78.58
candidate 8 1 p43hed p8hed 78.92
candidate 9 p8hed p43hed p8hed 83.42

candidate 10 1 1 1 84.67
candidate 11 1 1 p8hed 97.86
candidate 12 1 p43hod p8hed 98.13

in the system. The results further suggest four possible catalysts: procaspase-

8 heterodimer as a possible catalyst of the splitting of procaspase-8 heterodimer

(autocatalysis), procaspase-8 homodimer and p43 heterodimer as catalysts for the

splitting of procaspase-8 homodimer and finally procaspase-8 heterodimer as cat-

alyst for the processing of p43 homodimer. These results are in good agreement

with previous analysis of the data (Rickert et al. [2013]), where three of the four

proposed catalysts from our approach are suggested by the authors. The addi-

tional catalysed reaction (procaspase-8 heterodimer catalysing processing of p43

homodimer) was excluded prior to application of the proposed model reduction

scheme. Additionally, we also see model candidates where the reactions are not

catalysed especially for the experiment with high amount of ligand. We can there-

fore conclude that by adding more ligand at the beginning of the experiment cat-

alytic reactions play only a minor role in the CD95 pathway. The presence of a low

amount of ligand, however, enforces catalysis in the studied system. Upon over-

coming the apoptotic threshold and upon high stimulation the additional catalytic

reactions are not required any more.
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5.5 Discussion

Modelling becomes more complex if catalysis is considered since the number of
model candidates increases exponentially. Depending on the size of the studied
system, available approaches such as best subset model selection or stepwise se-
lection schemes become infeasible due to the high amount of computational time
involved. Additionally, with an increase of model candidates, the hazard of over-
fitting becomes larger. We proposed a novel and efficient method to incorporate
catalysis into the modelling of biological systems. With our approach, we effi-
ciently reduce the number of model candidates to a manageable number with a
low probability of missing the most appropriate model for given data. We do this
by extending the studied system by latent catalyst components. Subsequently, we
estimate those components with a combination of different methods: smoothing
splines, ODE modelling and likelihood estimation. Finally, we compare those
estimates to all other components of the studied system and each comparison is
associated with a score between 0 and 1. This score can then be used to iden-
tify relevant components which may act as catalysts for a given reaction. Another
byproduct of our approach is the automatic identification of model parameters
during the estimation steps.

We studied the proposed method on several simulation settings and noted a sub-
stantial decrease of model candidates and at the same time we were able to re-
cover the true models in almost all performed simulations. The application of our
method to the CD95 apoptosis pathway confirmed previous results in literature
and additionally identified different catalysts for some reactions. We could also
conclude that the presence of ligand at the beginning in this system is also a factor
which seems to drive the importance of catalysis at later stages.

Overall, we are confident that our method is a useful tool which can be used to
gain additional knowledge out of network-based and time-resolved measured data
and allows for different conclusions regarding catalysis. Based on such findings,
we expect additional hypotheses for future research to be generated and thus lead
to a better understanding of the studied system.
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6

Discussion and Outlook

This thesis provides novel statistical methods for the analysis of biological systems

based on functional data. These methods extend the available statistical tools in

two fields. First, we contribute to the field of statistical hypothesis testing by

introducing a novel statistical test for differences in two functional groups with

paired observations. Second, we propose two novel schemes for an systemised

improvement of the topology of a studied system in terms of model fit. In the

following, we briefly summarize the key topics discussed in this thesis and provide

clues as to how to further pursue the presented ideas.

6.1 Summary

We develop a significance test for the difference between two groups of paired

temporal observations in Chapter 3. Other available methods fail to make use of

the full information contained in the data such as the pairing between observations

or the time dependency contained in the data. With the proposed test, we are able

to use the full data information and provide an approximative p-value which can

be used to answer the question of global differences between the two groups. The

test is based on representation of the temporal observations by smooth functions.

The functional mean and functional standard deviation of these smooth functions

are used to compute a test statistic. The distribution of this test statistic is ap-

proximated by sampling from the null hypothesis of no differences between both

groups with preservation of the functional variability. Subsequently, the percentile
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method is applied to approximate the final p-value of the test based on the resam-

pled test statistic distribution.

The method is flexible enough to be applied even on temporal data with a low reso-

lution and is also powerful enough to produce meaningful results e. g. in situations

with low sample sizes per group or high variability. Compared to other available

methods, which do not use the full information of the data, our test is able to

clearly outperform the competitors in almost all considered synthetic examples.

We apply the developed test on two real-world data examples.

First, we analyse a pilot study from the field of nutritional science where two

different meal challenges are posed to the same study participants on two different

days thus incorporating a pairing in the studied data. With our approach we are

able to use the full information in the available data and identify solely one out

of several hundred metabolites which showed significant difference between both

groups. We see this result as a clear indication that meal standardization cannot

reveal substantial differences at least in pilot studies with a low number of samples.

Second, we analyse heterochromatin data, where we are able to show that com-

pared to wild-type cells chromatin accessibility in Atrx knock-out cells is signifi-

cantly increased on IAP elements. This result also demonstrates the role of Atrx

as crucial for fast and efficient establishment of heterochromatin. Overall, our test

provides strong evidence for a general role of Atrx for establishment as well as

robust maintenance of heterochromatin domains.

Next, in Chapter 4, we develop a novel method for the identification of latent

components in biological systems. We target biological systems with a temporal

resolution which can be modelled with ODEs and systematically extend these sys-

tems by the addition of a latent component. We impose hardly any restrictions

concerning the shape of the time course of this component and allow and estimate

interactions between the latent component and all other parts of the biological sys-

tem. Additionally, we also demonstrate the ability of our method to reconstruct a

misspecified structure of a biological system and thus contribute to the identifica-

tion of the correct underlying topology. The method is proposed as a combination

of dynamical modelling in the sense of ODEs and functional data analysis in the

sense of spline approximation of temporal data. Additionally, we estimate system

128



parameters with a likelihood approach and are able to identify existing interactions
with a model selection approach.

Applied on synthetic data, the method is shown to cope with typical difficulties
connected to the analysis of biological systems such as missing data, low tempo-
ral resolution, large fraction of unobserved parts of the studied system, and high
magnitude of noise.

We also apply the method on real-world data arising from the JAK-STAT sig-
nalling pathway. Here, we are able to show that proposed modelling approaches
of the studied pathway are connected to insufficient model performance and pro-
pose to extend the pathway by an additional latent component. We also present
the probable time course of this component and based on its shape we give clues
on the role it might be playing in the studied system. With this information at
hand, guidance for additional future experiments is provided and thus the systems
biology loop can be further advanced for the JAK-STAT signalling pathway.

Finally, in Chapter 5, we introduce a novel way for verification of catalysis in
biological systems. With our approach we aim to investigate possible reactions
being catalysed in already established biological structures. With a growing sys-
tem size, the model space expands exponentially if all combinations of catalytic
and non-catalytic reactions are considered and therefore the computation of all
possible models becomes infeasible for larger systems simply due to the compu-
tational demand. As we show in Chapter 5, greedy algorithms which investigate
only one reaction at a time often fail to find the most appropriate model for given
data. With our approach we are able to reduce the model space significantly and at
the same time do not discard model candidates which present eligible model can-
didates. Hereby, we build up on our latent variable approach from Chapter 4 and
first identify non-linear interactions between established parts of the biological
system and additionally introduced latent components. Once the latent compo-
nents time-courses are estimated, we compare them with the time-courses of the
other components of the system and use a similarity score to decide which latent
component can be replaced by already established components. Overall, we arrive
at a reduced model candidate space by employing a threshold which controls the
magnitude of model reduction.

Synthetic data examples demonstrate an excellent performance of our approach as
opposed to other available methods.
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We apply the identification of catalytic reactions to data arising from the CD95

apoptosis pathway. Here, one of the results is the effective reduction of possible

models by more than 90%. Furthermore, we could also conclude that the presence

of ligand at the beginning in this biological system is also a factor which seems to

drive the importance of catalysis at later stages as our approach shows that even

low amount of stimuli can drive the cell into apoptosis.

6.2 Outlook

This work presents the basis for statistical modelling of functional data in biologi-

cal systems. Furthermore, based on this work additional research questions can be

investigated in future research. We now discuss some of these additional topics.

Concerning the significance test developed in Chapter 3, we identify three further

research questions connected to this topic.

First, note that a major component of the test is the time-course estimation through

splines. We generally recommend the usage of smoothing splines. Here a smooth-

ing parameter is estimated with leave-one-out cross validation. However, other

computationally inexpensive methods such as mixed models (Wood [2004]) or

generalized cross validation (Hastie & Tibshirani [1990]) are also possible estima-

tion techniques and may lead to slightly different results. We performed several ro-

bustness analyses with regard to the smoothness of the approximated time-courses

and found that it did not play a major role for the studied simulations. However,

we can imagine scenarios where the smoothness is of high importance for the suc-

cessful application of TPDT and think that this is one possibility to further study

our method.

Second, one limitation of our method is the unknown distribution of the test statis-

tic. Assessing this distribution through resampling is the computationally most

expensive part of the test. One way of approaching this problem is the extension

of our test to a Bayesian setting where one could impose prior distributions on

the spline parameters (basis coefficients and smoothing parameter). Markov chain

Monte Carlo sampling would then lead to a more efficient estimation of the distri-

bution of the test statistic. Whether this gains computational time can be assessed

in future work, however we think that the test statistic approximation can be made
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more robust in this way. Therefore, this extension presents a promising possibility

in the further development of the proposed test.

Third, a further extension of TPDT is given in the comparison of multiple groups.

In a univariate context and under certain assumptions this question can be an-

swered with ANOVA. Extensions of ANOVA to time-resolved measurements have

been proposed (Cuevas et al. [2004]; González-Rodrı́guez et al. [2012]). However,

the pairing of samples from each group is not considered in any of the proposed

approaches and could be seized by a TPDT extension. More specifically, as the

development of TPDT was motivated towards an extension of a paired samples

t-test, in a setting with multiple groups the appropriate method for an extension

seems to be the repeated measures ANOVA (Gueorguieva & Krystal [2004]).

With regard to our approach of identification of latent components in biological

systems, we again propose three topics, which present targets for future research.

First, it generally holds that a key element in model building is the estimation of

parameters and possibly topology from data. In Chapter 4, we propose to interpret

model estimation as a latent variable problem in a dynamical system. We target

applications in which latent variables are influencing observations but not vice

versa. A coupling in the latent component in the sense of feedback of observed

network components to the latent component is possible; however, we mainly see

two limitations of this approach. First, additional assumptions about the latent

component must be made, and second, including the latent component into the

system of ODEs limits its shape and does not allow for additional flexibility. Nev-

ertheless, inclusion of a feedback to the latent component presents a target for

future research.

Second, we currently limit our method and only allow linear model extensions.

We already partly covered non-linear extensions of this method in Chapter 5.

Nevertheless, further extension of our method to more general settings contains

additional research potential. More specifically, one could consider multiple inde-

pendent latent variables that influence a system of differential equations. In this

scenario, in addition to the estimation of the latent time courses, we study pos-

sible ways of separation of the single variables. Here, blind source separation

techniques (Blöchl & Theis [2009]) present one possible ansatz for this task.
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Third, one might investigate additional model selection methods that are applica-

ble to our method and and compare them to the already implemented ones. Ex-

amples are established methods such as likelihood ratio tests, lasso ([Tibshirani,

1996]), and elastic net ([Zou & Hastie, 2005]). Extending the method to Bayesian

theory would further allow the application of Bayes factors ([Kass & Raftery,

1995]) and thermodynamic integration ([Kirk et al., 2013; Schmidl et al., 2012]).

Finally, in our approach for estimation of catalytic reactions, we see additional

three topics which contain fruitful research potential.

First, we restricted all analyses and applications to a linear catalysis in the form

of x(t) ·h(t). This can, however, be extended to more general, non-linear settings

in the form of h(x(t)). Furthermore, the generalization of the form of h(t) can

be performed in a shape limitation approach. For example, it is realistic from

a biological point of view to introduce a threshold value for the concentration

of the hidden catalyst which forces the intensity of this catalyst to be 0 if this

threshold value is not reached and to be described by smooth functions only after

the threshold value is reached. This would resemble biological systems where an

external stimulus such as drug intake is added to the system only after a certain

amount of time and not at the beginning of the study or experiment.

Second, we assume that all possible catalysts are already part of the network. This

assumption can be relaxed and we could allow for external catalysts, which were

previously not part of the modelled species. We studied this network extension

in Chapter 4 and a combination of both proposed methods could be a desirable

feature on the method side.

Third, we also see another possible extension within the formulation of the whole

method in Bayesian fashion. Here, we think of formulating multinomial prior

distributions describing the probability of a specific reaction to be catalysed by a

certain component. With proper sampling methods one then could potentially ap-

proximate the distributions of the similarity scores introduced in this manuscript.

In conclusion, understanding biology is a process which is studied in close collab-

oration between experimentalists and method or data scientists for many decades

now. Both, experimental techniques as well as available methods have undergone

an enormous advancement throughout this time. The gain that is provided by bet-

ter methods is two-fold. On the one hand, improved methods allow a more detailed
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insight into various biological processes, on other hand new types of data arising
from better experimental techniques pose new demands for its analysis. With this
work we contribute to the overall advancement on the method side and thus add
significant value to the interpretation of results on the data side.
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A

Further theory and simulations for
latent causes approach

A.1 Log-normally distributed multiplicative noise

Normally distributed error terms, as in (4.10), imply that the noise level is in-

dependent of the magnitude of the measurements. Although this assumption is

commonly made, it is not appropriate for all biological applications, e. g. when

concentrations are measured over time. This assumption is particularly problem-

atic for concentrations close to zero because the model description of xobs
i (t j) can

then easily become negative. This difficulty is avoided by assuming multiplicative

log-normally distributed noise:

xobs
i (t j) = xi(t j) · εi j, εi j

iid∼ LN
(
−σ2

2
,σ2
)
.

The parameter choice of the log-normal distribution is motivated because of the

implication E
(
xobs

i (t j)
∣∣xi(t j)

)
= xi(t j).

The distribution of εi j immediately propagates to the measurements:

xobs
i (t j)

∣∣xi(t j)
iid∼ LN

(
log(xi(t j))−

σ2

2
,σ2
)
.

As discussed in Section 4.3.2 we exploit the ODE structure of our system which
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leads to the approximate distribution

xobs
i (t j)

∣∣x̂ode,aaa
i (t j)

iid∼LN
(

log(x̂ode,aaa
i (t j))−

σ2

2
,σ2
)
.

The parameter σ2 is estimated as

σ̂
2
ML =−2+2

√√√√√√
1+

N
∑

i=1

n
∑
j=0

[
log xobs

i (t j)

x̂ode,aaa
i (t j)

]2

N(n+1)
.

The diagonal elements of the expected Fisher information matrix are derived as

Ik(aaa,σ2)=


1

σ2 ∑
i

∑
j

(
∂

∂ak
x̂ode,aaa

i (t j)

x̂ode,aaa
i (t j)

)2

k ≤ N

N(n+1)
2

(
1

σ4 +
1

2σ2

)
k=N +1.

A.2 Example for parameter uncertainty calculation

In this section we evaluate the goodness of fit for parameters associated with a spe-
cific example. For simplicity, we choose a small network comprising two species
and normally distributed measurement noise. The two parameters of interest are
a1 and σ2. We analytically compute the CRLB for both parameters and examine
whether it is achieved using a simulation with known parameters.

The specific network is described by (4.2) and Figure 4.1B and we consider a
network size N = 2 and linear combinations of the components. Without loss of
generality, we assume a2 = 1−a1 and a1 ∈ (0,1).

The CRLB for parameter a1 involves ∂

∂a1
x̂ode,aaa

i (t j). The value of this term depends
on the numerical method chosen for solving the ODE. If the Euler method is used,
the recursive solution has the form

x̂aaa
1(t j+1) = x̂aaa

1(t j)+∆(c1x̂aaa
1(t j)+c2x̂aaa

2(t j)+a1ĥaaa(t j))

x̂aaa
2(t j+1) = x̂aaa

2(t j)+∆(c3x̂aaa
2(t j)+c4x̂aaa

1(t j)+(1−a1)ĥaaa(t j)),

with c1 =−k2−k1, c2 = k3, c3 =−k4−k3, c4 = k2, ∆ denoting the time step, and
x̂aaa

i being a shortened version of x̂aaa,ode
i . We assume that the initial values xi(t0) do
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not depend on a1. One can then show by full induction that, for j = 1, . . . ,n,

∂x1(t j)

∂a1
=

F1(t j)

(1−a1)2 −
F2(t j)

a2
1

∂x2(t j)

∂a1
=

F3(t j)

a2
1

+
F4(t j)

(1−a1)2 ,

(A.1)

with

FFF(t j+1) = FFF(t j)+∆


c1F1(t j)+ c2F4(t j)+

1
2 ĥ0

2(t j)
c1F2(t j)− c2F3(t j)

c3F3(t j)− c4F2(t j)− 1
2 ĥ0

1(t j)
c3F4(t j)+ c4F1(t j)


and FFF(t0) = (0,0,0,0)T . ĥ0

i (t) are the unweighted estimates of the time course of

the hidden component, as described in (4.7). The entries of FFF(t j) are independent

of a1. For given σ2, kkk, a1, spline approximations of xxx(t) and data dimensions,

Equation (A.1) allows the analytical computation of the expected Fisher infor-

mation I(a1), and hence that of the CRLB I−1(a1). For this specific example,

the expected Fisher information matrix has a diagonal form and I−1(σ2) equals
2σ4

N(n+1) .

The just derived CRLBs are lower bounds for the MSE of the maximum likeli-

hood estimates. Our estimation procedure, however, consists of two steps: spline

approximation and maximum likelihood estimation, each entailing uncertainty in

the parameter estimates. We hence computed Monte Carlo estimates for the MSE

of a1 and σ2 using two different approaches. First, we used the true hidden time

course during the estimation procedure. The resulting empirical MSE is the one

resulting from the maximum likelihood step and is bounded below by I−1. Sec-

ond, we estimated the hidden time course as well. The resulting MSE is slightly

larger and accounts for the uncertainty of the overall estimation procedure.

Results of the simulation are shown in Table A.1. We examine different combi-

nations of σ2 and aaa. For each combination, we simulate 500 time courses at 100

time points and estimate the parameters. We numerically compute the MSE of

these 500 estimates. In the table, we show this MSE and the corresponding CRLB

for a given parameter combination.

The results of Table A.1 show that the CRLB is achieved for σ2 if we consider
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Table A.1: Results of the parameter uncertainty simulation. MSE and correspond-
ing CRLB (in parentheses) for the two parameters of interest.

MSE (CRLB)

aaa =

(
.5
.5

)
aaa =

(
.9
.1

)
maximum likelihood approximation

σ = 1
a1 9.90×10−6(1.63×10−6) 3.73×10−9(9.27×10−10)
σ2 1.07×10−2(1.00×10−2) 1.02×10−2(1.00×10−2)

σ = .5
a1 2.33×10−6(4.08×10−7) 9.04×10−10(2.32×10−10)
σ2 6.19×10−4(6.25×10−4) 6.38×10−4(6.25×10−4)

σ = .1
a1 9.06×10−8(1.62×10−8) 3.54×10−11(9.27×10−12)
σ2 1.04×10−6(1.00×10−6) 9.83×10−7(1.00×10−6)

maximum likelihood and spline approximation

σ = 1
a1 1.55×10−4(1.24×10−5) 5.23×10−6(1.13×10−7)
σ2 7.59×10−2(1.00×10−2) 1.33×10−1(1.00×10−2)

σ = .5
a1 1.62×10−5(3.13×10−6) 9.57×10−7(3.44×10−8)
σ2 4.29×10−3(6.25×10−4) 5.44×10−3(6.25×10−4)

σ = .1
a1 6.22×10−7(1.25×10−7) 2.69×10−8(1.08×10−9)
σ2 6.24×10−6(1.00×10−6) 4.31×10−6(1.00×10−6)

only maximum likelihood approximation. If we additionally consider the uncer-
tainty introduced by the spline approximation, the ratio between MSE and CRLB
increases slightly. For a1, we observe a similar result in that the ratio increases
if we consider spline approximation, while, nevertheless, providing MSE values
that are very close to the corresponding CRLB. Another interesting result is the in-
crease in fit quality for smaller σ2 values, as we already discussed in Section 4.3.3.
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B

Additional TPDT examples

In this chapter, we will show additional information about the studied nutritional

challenges in Section 3.5.1. Recall that overall we have four different challenges:

Non-standardized Western Diet (NWD), Standardized Western Diet (SWD), Healthy

Breakfast (HB) and Oral Lipid Test (OLT).

In the main part of the manuscript we investigated one of the six challenge com-

parisons in detail. Here, we show the results of TPDT applied on the other five

challenge comparisons. For these additional comparisons we found a large num-

ber of metabolites which showed significant differences in both groups. Table

B.1 summarizes the number of significant metabolites for each challenge. Table

B.2 – Table B.6 show the specific metabolites for each challenge as well as the

corresponding p-values.

Table B.1: Number of significant (after multiple testing correction) metabolites
per challenge.

Challenge Number of significant metabolites Detailed information
NWD vs. SWD 1 Chapter 3
NWD vs. HB 7 Table B.2
NWD vs. OLT 8 Table B.3
SWD vs. HB 10 Table B.4
SWD vs. OLT 13 Table B.5
HB vs. OLT 18 Table B.6
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Non-standardized Western Diet vs. Healthy Breakfast

For the comparison of NWD and HB challenges we identified 7 metabolite time-
courses which showed significant differences after FDR correction. The results
are shown in Table B.2.

Table B.2: Metabolites with significant differences found with TPDT for challenge
comparison NWD vs. HB.

metabolite name u-statistic p-value adjusted p-value
CMPF 6.13 0.00 0.01
isoleucine 4.14 0.00 0.01
N-methyl proline 7.26 0.00 0.00
stachydrine 8.35 0.00 0.00
X - 09789 6.38 0.00 0.01
X - 11360 4.51 0.00 0.01
X - 18913 4.45 0.00 0.05

Non-standardized Western Diet vs. Oral Lipid Test

For the comparison of NWD and OLT challenges we identified 8 metabolite time-
courses which showed significant differences after FDR correction. The results
are shown in Table B.3.

Table B.3: Metabolites with significant differences found with TPDT for challenge
comparison NWD vs. OLT.

metabolite name u-statistic p-value adjusted p-value
C18.2 5.98 0.00 0.00
3-methylxanthine 5.31 0.00 0.02
pro-hydroxy-pro 4.43 0.00 0.04
theobromine 7.48 0.00 0.00
X - 11261 5.06 0.00 0.02
X - 11360 4.52 0.00 0.01
X - 12850 6.00 0.00 0.02
X - 13429 4.97 0.00 0.01

Standardized Western Diet vs. Healthy Breakfast

For the comparison of SWD and HB challenges we identified 10 metabolite time-
courses which showed significant differences after FDR correction. The results
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are shown in Table B.4.

Table B.4: Metabolites with significant differences found with TPDT for challenge
comparison SWD vs. HB.

metabolite name u-statistic p-value adjusted p-value
C3 4.71 0.00 0.04
2-hydroxydecanoic acid 5.42 0.00 0.00
CMPF 5.74 0.00 0.01
caprate (10:0) 4.64 0.00 0.01
catechol sulfate 7.55 0.00 0.01
glycocholate 4.76 0.00 0.01
hippurate 4.46 0.00 0.02
N-methyl proline 6.06 0.00 0.00
pro-hydroxy-pro 5.36 0.00 0.01
stachydrine 12.97 0.00 0.00

Standardized Western Diet vs. Oral Lipid Test

For the comparison of SWD and OLT challenges we identified 13 metabolite time-

courses which showed significant differences after FDR correction. The results are

shown in Table B.5.

Table B.5: Metabolites with significant differences found with TPDT for challenge
comparison SWD vs. OLT.

metabolite name u-statistic p-value adjusted p-value
C18.2 4.89 0.00 0.01
PC.ae.C40.2 3.98 0.00 0.04
lysoPC.a.C17.0 4.40 0.00 0.03
3-indoxyl sulfate 4.12 0.00 0.02
oleoylcarnitine 3.94 0.00 0.02
phenol sulfate 4.35 0.00 0.02
pro-hydroxy-pro 5.99 0.00 0.01
theobromine 9.77 0.00 0.00
X - 11261 6.10 0.00 0.01
X - 11529 3.66 0.00 0.04
X - 11538 3.73 0.00 0.03
X - 13429 5.02 0.00 0.03
X - 13871 5.21 0.00 0.00
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Healthy Breakfast vs. Oral Lipid Test

For the comparison of HB and OLT challenges we identified 18 metabolite time-
courses which showed significant differences after FDR correction. The results
are shown in Table B.6.

Table B.6: Metabolites with significant differences found with TPDT for challenge
comparison HB vs. OLT.

metabolite name u-statistic p-value adjusted p-value
C18.1 4.26 0.00 0.01
C18.2 5.11 0.00 0.03
Asn 4.22 0.00 0.04
Cit 5.16 0.00 0.00
Thr 5.75 0.00 0.01
1-oleoylglycerophosphocholine 3.88 0.00 0.01
2-hydroxydecanoic acid 7.10 0.00 0.00
arginine 3.05 0.00 0.02
citrulline 4.32 0.00 0.04
linoleate (18:2n6) 3.36 0.00 0.05
N-methyl proline 7.47 0.00 0.00
oleoylcarnitine 3.72 0.00 0.02
phenol sulfate 4.21 0.00 0.02
stachydrine 7.18 0.00 0.02
theobromine 7.90 0.00 0.00
X - 11261 6.03 0.00 0.02
X - 11470 3.42 0.00 0.05
X - 16480 6.86 0.00 0.00
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large-scale organization of metabolic networks. Nature, 407, 651–654. 35, 109

JESS, T., ZIMMERMANN, E., KRING, S.I.I., BERENTZEN, T., HOLST, C., TOUBRO,
S., ASTRUP, A., HANSEN, T., PEDERSEN, O. & SØRENSEN, T.I. (2008). Impact on
weight dynamics and general growth of the common FTO rs9939609: a longitudinal
Danish cohort study. International journal of obesity, 32, 1388–1394. 40

KASS, R.E. & RAFTERY, A.E. (1995). Bayes factors. Journal of the American Statistical
Association, 90, 773–795. 132

KELL, D.B. (2006). Systems biology, metabolic modelling and metabolomics in drug
discovery and development. Drug discovery today, 11, 1085–1092. 34

KHOLODENKO, B.N. (2006). Cell-signalling dynamics in time and space. Nature reviews
Molecular cell biology, 7, 165–176. 40

KIRK, P., THORNE, T. & STUMPF, M.P. (2013). Model selection in systems and synthetic
biology. Current Opinion in Biotechnology, 24, 767 – 774. 132

KISCHKEL, F., HELLBARDT, S., BEHRMANN, I., GERMER, M., PAWLITA, M., KRAM-
MER, P. & PETER, M. (1995). Cytotoxicity-dependent APO-1 (Fas/CD95)-associated
proteins form a death-inducing signaling complex (DISC) with the receptor. The EMBO
journal, 14, 5579. 122

KITANO, H. (2002a). Computational systems biology. Nature, 420, 206–210. 3, 108

KITANO, H. (2002b). Systems biology: a brief overview. Science, 295, 1662–1664. 3
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äquidistanten ordinaten. Zeitschrift für Mathematik und Physik, 46, 20. 13

SCHIKOWSKI, T., SCHAFFNER, E., MEIER, F., PHULERIA, H.C., VIERKÖTTER, A.,
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SLEZAK, D.F., SUÁREZ, C., CECCHI, G.A., MARSHALL, G. & STOLOVITZKY, G.
(2010). When the optimal is not the best: parameter estimation in complex biological
models. PloS one, 5, e13283. 108

SMITH, M.J., MARSHALL, C.B., THEILLET, F.X., BINOLFI, A., SELENKO, P. &
IKURA, M. (2015). Real-time NMR monitoring of biological activities in complex
physiological environments. Current opinion in structural biology, 32, 39–47. 40

SOETAERT, K., PETZOLDT, T. & SETZER, R.W. (2010). Solving differential equations
in R: package deSolve. Journal of Statistical Software, 33. 29, 116

STEPHENS, Z.D., LEE, S.Y., FAGHRI, F., CAMPBELL, R.H., ZHAI, C., EFRON, M.J.,
IYER, R., SCHATZ, M.C., SINHA, S. & ROBINSON, G.E. (2015). Big data: Astro-
nomical or genomical? PLoS Biol, 13, e1002195. 1, 2

STOREY, J.D., XIAO, W., LEEK, J.T., TOMPKINS, R.G. & DAVIS, R.W. (2005). Sig-
nificance analysis of time course microarray experiments. Proceedings of the National
Academy of Sciences of the United States of America, 102, 12837–12842. 41

STUDENT (1908). The probable error of a mean. Biometrika, 1–25. 5, 60
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TIMMER, J., MÜLLER, T., SWAMEYE, I., SANDRA, O. & KLINGMÜLLER, U. (2004).
Modeling the nonlinear dynamics of cellular signal transduction. International Journal
of Bifurcation and Chaos in Applied Sciences and Engineering, 14, 2069–2080. 100

TONI, T. & STUMPF, M. (2010). Simulation-based model selection for dynamical sys-
tems in systems and population biology. Bioinformatics, 26, 104–110. 100

TOUTENBURG, H. (1992). Lineare modelle. Springer. 20

TRUJILLO, E., DAVIS, C. & MILNER, J. (2006). Nutrigenomics, proteomics,
metabolomics, and the practice of dietetics. Journal of the American dietetic associ-
ation, 106, 403–413. 34

VOGEL, V. & SHEETZ, M.P. (2009). Cell fate regulation by coupling mechanical cycles
to biochemical signaling pathways. Current opinion in cell biology, 21, 38–46. 109

VOLTERRA, V. (1928). Variations and fluctuations of the number of individuals in animal
species living together. J. Cons. Int. Explor. Mer, 3, 3–51. 27

WALSH, M.C., BRENNAN, L., MALTHOUSE, J.P.G., ROCHE, H.M. & GIBNEY, M.J.
(2006). Effect of acute dietary standardization on the urinary, plasma, and salivary
metabolomic profiles of healthy humans. The American journal of clinical nutrition,
84, 531–539. 68

WANG, B. & ENRIGHT, W. (2013). Parameter estimation for ODEs using a cross-entropy
approach. SIAM Journal on Scientific Computing, 35, A2718–A2737. 31

WATSON, J.D. et al. (1970). Molecular biology of the gene. Molecular biology of the
gene.. 33

WEBER, M., WU, T., HANSON, J.E., ALAM, N.M., SOLANOY, H., NGU, H., LAUF-
FER, B.E., LIN, H.H., DOMINGUEZ, S.L., REEDER, J. et al. (2015). Cognitive
deficits, changes in synaptic function, and brain pathology in a mouse model of nor-
mal aging. eNeuro, 2, ENEURO.0047. 40

WETTERSTRAND, K. (2015). DNA sequencing costs: Data from the NHGRI genome
sequencing program (GSP). available at: www.genome.gov/sequencingcosts. accessed
[18.09.2015]. 2

WILKINS, A.S. (2010). The enemy within: an epigenetic role of retrotransposons in can-
cer initiation. Bioessays, 32, 856–865. 70

WINNIKE, J.H., BUSBY, M.G., WATKINS, P.B. & O’CONNELL, T.M. (2009). Effects
of a prolonged standardized diet on normalizing the human metabolome. The American
journal of clinical nutrition, 90, 1496–1501. 68

156



WISHART, D.S. (2007). Current progress in computational metabolomics. Briefings in
Bioinformatics, 8, 279–293. 34

WOLD, S. (1974). Spline functions in data analysis. Technometrics, 16, 1–11. 19

WOOD, S.N. (2000). Modelling and smoothing parameter estimation with multiple
quadratic penalties. Journal of the Royal Statistical Society. Series B, Statistical
Methodology, 413–428. 24

WOOD, S.N. (2004). Stable and efficient multiple smoothing parameter estimation for
generalized additive models. Journal of the American Statistical Association, 99. 24,
130

WOOD, S.N. (2013). On p-values for smooth components of an extended generalized
additive model. Biometrika, 100, 221–228. 61

WOOD, S.N. & AUGUSTIN, N.H. (2002). GAMs with integrated model selection using
penalized regression splines and applications to environmental modelling. Ecological
modelling, 157, 157–177. 24

WOTHKE, W. (2000). Longitudinal and multigroup modeling with missing data. 95

ZACKS, S. (1971). The theory of statistical inference, vol. 34. Wiley New York. 86

ZHANG, Y., WOLF-YADLIN, A., ROSS, P.L., PAPPIN, D.J., RUSH, J., LAUFFEN-
BURGER, D.A. & WHITE, F.M. (2005). Time-resolved mass spectrometry of tyrosine
phosphorylation sites in the epidermal growth factor receptor signaling network reveals
dynamic modules. Molecular & Cellular Proteomics, 4, 1240–1250. 40

ZHOU, J. & LU, J.A. (2007). Topology identification of weighted complex dynamical
networks. Physica A: Statistical Mechanics and Its Applications, 386, 481–491. 5

ZOU, H. & HASTIE, T. (2005). Regularization and variable selection via the elastic net.
Journal of the Royal Statistical Society: Series B (Statistical Methodology), 67, 301–
320. 23, 132

ZUKUNFT, S., SORGENFREI, M., PREHN, C., MÖLLER, G. & ADAMSKI, J. (2013).
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