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Abstract

Background—Risk stratification in patients with type 3 long QT syndrome (LQT3) by clinical 

and genetic characteristics and effectiveness of ß-blocker therapy have not been studied 

previously in a large LQT3 population. 

Methods—The study population included 406 LQT3 patients with 51 different sodium-channel 

mutations; 391 patients were known to be event free during the first year of life and were the 

focus of our study. Clinical, electrocardiographic, and genetic parameters were acquired on 

patients from 7 participating LQT3 registries. Cox regression analysis was used to evaluate the 

independent contribution of clinical, genetic, and therapeutic factors to the first occurrence of 

time-dependent cardiac events (CE) from age 1 to 41 years.  

Results—118 (30%) patients (41 males) experienced at least one CE (syncope, aborted cardiac 

arrest [ACA] or LQTS-related sudden death [SD]), and 20% suffered from LQT3-related 

ACA/SD. The risk of a first CE was directly related to the degree of QTc prolongation. Cox 

regression analysis revealed that time-dependent ß-blocker therapy was associated with an 83% 

reduction in CE’s in females (p=0.015) but not in males (who had much fewer events), with a 

significant gender x ß-blocker interaction (p=0.04). Each 10ms increase in QTc duration up to

500ms was associated with a 19% increase in CE’s. Prior syncope doubled the risk for life-

threatening events (p<0.02).

Conclusions—Prolonged QTc and syncope predispose patients with LQT3 to life-threatening

CE’s. ß-blocker therapy reduces this risk in females, but efficacy in males could not be 

conclusively determined due to low number of events. 

Key words: long QT syndrome; SCN5A; genetic testing; sudden cardiac death, arrhythmia; risk 

stratification
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Clinical Perspective

What Is New?

Long QT syndrome type 3 (LQT3) is caused by gain-of-function mutations in the

SCN5A-encoded Nav1.5 sodium channel. The phenotype differs from the more common

potassium channel-mediated forms, among other characteristics, by a more lethal course.

Risk stratification in LQT3 is not well defined and the effectiveness of ß-blocker therapy

has not been studied in a large LQT3 cohort.

In a study of almost 400 LQT3 patients (1-40 years of age) it was demonstrated that the

risk of a cardiac event was directly related to the degree of QTc prolongation. In addition,

the presence of syncope doubled the risk for future life threatening events. ß-blocker

therapy significantly reduced the cardiac event rate in females but in males this effect

could not conclusively be determined due to the low number of events in males.

What Are the Clinical Implications?

The clinical implications of this study are that LQT3 patients can be stratified as to their

risk of life-threatening cardiac events based on clinical and genetic characteristics. A

high-

can be identified, and this population may require adjunctive therapy. ß-blocker therapy

significantly reduced the risk for cardiac events.

could not conclusively be determined due to the low number of events in mamaaleleles.s.

What Are the Clinical Implications?

ThThTheee clclclinii icalal implications of this study are thththat LQT3 patienents canan be stratified as to their

risk of liliife-thtt reeatatatenenenining g g cacacardrdrdiaiaiac evevents bbbaaseded on n n clclclinininicicicalaa aandndnd ggenenete ic ccchahaharararactctctere isstiticscscs. AAA

high-

cacacann n bebebe iiidentntifiedd, anddd ttthihihiss s popopopuulalalatititiononn mmmaay reqqquiuiuirerere aaadjdjdjununnctttivvivee thheerapppy.y.y. ßßß-blblblooco keerr therapapyy

significantly reduced the risk for cardiac events

 by guest on A
ugust 31, 2016

http://circ.ahajournals.org/
D

ow
nloaded from

 

http://circ.ahajournals.org/


10.1161/CIRCULATIONAHA.116.021823

4

Several large studies have described the clinical course of patients with the long QT syndrome 

(LQTS).1,2 Initially regarded as one disease entity, it has become increasingly clear that the 

underlying genetic substrate, now subdividing LQTS into at least 16 genotypes, impacts many 

aspects of the disease phenotype including prognosis and therapy.3 Approximately two-thirds of 

all LQTS patients host loss-of-function mutations in one of two potassium channel genes, 

KCNQ1 (LQT1) or KCNH2 (LQT2).4,5 -blocker therapy or other anti-adrenergic measures are 

effective in the majority of these patients.4-8

LQT3 is caused by gain-of-function mutations in the SCN5A-encoded Nav1.5 sodium 

channel involving a pathological increase in late sodium current, a pathological increase in the 

“window” current (as one of the mechanisms of the late sodium inward current), or both. LQT3 

comprises approximately 5-10% of patients with LQTS. The phenotype differs from the more

common potassium channel-mediated forms in various aspects. Cardiac events in LQT3 

frequently occur at rest or with inactivity and are less likely to be triggered by adrenergic stress 

or emotions.7 Compared to LQT1 and LQT2, patients with LQT3 have more marked resting 

bradycardia and the first cardiac event is more likely to be lethal and seems to occur later in 

childhood, during or after puberty.9,10 Based on these data and in contrast to the well-established 

efficacy of ß-blockers in LQT1 and LQT2, there is anxiety and fear that ß-blockers may not be 

effective in LQT3,6,7 and might, in fact, be pro-arrhythmic.11 This concern has translated into a 

relatively high use of prophylactic implantable cardioverter defibrillators (ICDs) in LQT3 

patients, even those who are asymptomatic.12,13 Patients with defective Nav1.5 channels may 

also manifest other arrhythmia phenotypes (Brugada syndrome, progressive cardiac conduction 

disease, atrial arrhythmias, and sinus node disease), and patients with LQT3 frequently present 

with associated characteristics including discrete conduction disturbances, bradycardia, atrial 

“window” current (as one of the mechanisms of the late sodium inward current), oror bbbototo hhh.. LQLQLQTT3T

comprises approximately 5-10% of patients with LQTS. The phenotype differs from the more

common pppotassium channel-mediated forms in various aspects. Cardiac events in LQT3 
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arrhythmias, or right precordial ST-elevation.14 Indeed, even patients with the “prototype” 

LQT3 mutation, p.K1505_Q1507del ,  have notably longer cardiac conduction intervals 

than patients with either LQT1 or LQT2.15

The current study involves the largest multicenter LQT3 cohort described to date and is

designed to identify the risk and therapeutic factors associated with cardiac events in patients 

with SCN5A-mediated LQT3. The risk factors evaluated include clinical features (age, gender, 

electrocardiographic measurements), the mutation type and topological location of the mutation 

in Nav1.5. The therapeutic effects of ß-blockers therapy, other medications, and ICD on 

outcome were also evaluated. 

Methods

Study Population

The study population comprised 406 subjects with LQT3 (90 LQT3 probands and their 316 

LQT3-positive family members). The subjects were enrolled from 7 different centers including 

the U.S. Rochester, NY/Cleveland portion of the International LQTS Registry (n=186), the 

Dutch (Amsterdam) LQTS Registry (n=75), the Italian (Pavia) LQTS Registry (n=48), the 

Israeli LQTS Registry (n=30), the Japanese (National Cardiovascular Center) LQTS Registry 

(n=29), the Mayo Clinic LQTS Registry (n=28), and the Denmark LQTS Registry (n=10). In all 

centers IRB approval was obtained for this type of study. Not included in the study population 

were 14 subjects with evidence of mutations involving two or more LQTS genes, and 2 patients 

with multiple SCN5A mutations. In addition, patients/families with clear evidence of an SCN5A-

mediated hybrid/overlapping phenotype (i.e., conduction disease or right precordial ST-

elevation, the so-called overlap syndromes as for example the large Dutch SCN5A-1795insD 

Methods

Study Popupp lation

Thee ststs udy popuuulllatititionoo cccomomomprp isssededed 444060606 suubjb ects wwwithh LQQQT3T3T3 ((9990 0 0 LQLQQT3T3T pprorobandndnds s s ananandd d theieiir r 3131316 6 6
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family16) were not included in this study.  All subjects or their guardians provided informed 

consent for the genetic and clinical studies.

Phenotype Characterization

Routine clinical and electrocardiographic parameters were acquired at the time of enrollment in 

each of the registries. In order to minimize the influence of coronary disease on cardiac events, 

follow-up was censored at age 41. Measured parameters on the first recorded ECG included PR, 

QRS, QT, and R-R intervals in milliseconds, with QT corrected for heart rate by Bazett’s 

formula (QTc). The QTc was expressed in its continuous form and categorized into three

appropriate risk levels as described below. Clinical data were collected on prospectively 

designed forms with information on demographic characteristics, personal and family medical 

history, electrocardiographic findings, therapy, and end points during long-term follow-up.  As 

in the two previous studies in LQT1 and LQT2 subtypes by our group,4, 5 data on patients with 

the LQT3 genotype were merged electronically into a common database.

Genotype Characterization

The SCN5A mutations were identified using standard genetic tests performed in either a

molecular-genetic research laboratory in a participating center or in one of the commercially 

available LQTS genetic-testing laboratories. There were 32 subjects who died of sudden 

unexplained cardiac death who had not been genotyped.  We assumed that the SCN5A mutation,

that was established as LQT3-associated in their respective families, was also present in these 

32 subjects.

Genetic alterations of the amino acid sequence were characterized by location in the 

Nav1.5 channel protein (subdivided into N-terminus; transmembrane spanning domains DI, DII, 

DIII, DIV; their respective inter-domain linkers (IDL); C-terminus; and by the type of mutation 

designed forms with information on demographic characteristics, personal and famamilililyy y memem dididicacacalll

history, electrocardiographic findings, therapy, and end points during long-term follow-up.  As 

n the two pprevious studies in LQT1 and LQT2 subtypes by our group,4, 5 data on patients with 

he LQLQLQT3 genotototypypype ee wewew reree mmmerrrgegegeddd elelelece trrono icallylyly inntoo a cccomomommomom n ddad tatat bab sese.
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(missense, frame shift, and in-frame deletions). The different regions of the SCN5A-encoded 

Nav1.5 channel were defined as the coding sequence involving amino acid (aa) residues from 

N-terminus (aa1-126),  DI (aa127-415), IDL I-II (aa416-711), DII (aa712-939), IDL II-III

(aa940-1200), DIII (aa1201-1470), IDL III-IV (aa1471-1523), DIV (aa1524-1772) and C-

terminus (aa1773-2016). The genetic mutations are presented in Supplementary Table S1 by 

coding effect, location, and frequency. 

Statistical Analysis

The primary end point was the time from age 1 until the first cardiac event (syncope, aborted 

cardiac arrest [ACA], or LQT3-related sudden cardiac death [SCD]), censored at loss to follow-

up, or age 41, whichever occurred first. The restricted, more severe secondary end point was 

ACA or LQT3-related SCD, whichever occurred first. All long-term analyses were conditional 

on cardiac event-free survival to age 1, in order to curtail any potential influence of cardiac 

events in the first year of life on the model for the remaining 39 years.  Accordingly, 391/406 

patients (96%) with LQT3 were eligible for long-term analyses.

Clinical characteristics were described via means and standard deviations for continuous 

variables or proportions and counts for categorical variables. Kaplan-Meier curves were used to 

estimate distributions of censored time-to-event outcomes, with inference based on the logrank 

test. A total of 35 of 391 (8.9%) in the study population older than 1 year of age did not have a 

recorded ECG; 25 of the 35 patients without an ECG died. Missing QTc values were imputed 

based on gender and mutation, using regression imputation. There were 5 prevalent mutations 

(N1325S, K1505_Q1507del, I1768V, E1784K, D1790G ), while the other "rare" mutations (< 

5% prevalence each, together constituting < 41% of all patients) were pooled together to form a 

sixth mutation group. Each of the six mutation groups was stratified by gender, resulting in a 

up, or age 41, whichever occurred first. The restricted, more severe secondary endd pppoioiointntnt wwwasasas 

ACA or LQT3-related SCD, whichever occurred first. All long-term analyses were conditional 

on cardiac event-free survival to age 1, in order to curtail any potential influence of cardiac 

evenenentstst  in the fififirsrsst yeyeyearrr ooff f lililifefef ooon n n thththeee mooded l for r r thtt ee rremamamainininininng g g 3939 yyyeaeae rsr . AAccccororordididingngngly, 3939391/1/1/40404066 6
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total of 12 gender-mutation subgroups. Missing QTc values were imputed as the mean of the 

non-missing QTc values among subjects in the corresponding gender-mutation subgroup. 

The Cox model17 was used to evaluate the independent contribution of clinical, 

therapeutic, and genetic factors to the risk of the first occurrence of time-dependent cardiac 

events from age 1 year through age 40 years. Cox models were stratified by gender to relax the 

assumption of proportional hazards by allowing gender-specific nonparametric baseline hazard 

functions for males and females. The effect of ß-blocker therapy was modeled via a time-

dependent indicator for being on versus off ß-blockers at each point in time, allowing for the 

fact that subjects may start and stop ß-blockers at different ages. Interacting time-dependent ß-

blocker status with gender allowed estimation of gender-specific hazard ratios for ß-blockers, as 

well as a test of equality of the effect of ß-blockers for males versus females. 

The effect of syncope on the risk of aborted cardiac arrest or death was similarly 

modeled via a time-dependent indicator for having had at least one syncopal event. There was 

insufficient evidence that risk differed for those whose first syncopal event occurred on versus 

off ß-blockers, though power to test this was limited. 

Effects of the five most common mutations (each 5-18% prevalent) were modeled by 

comparing each to the pooled set of all infrequent mutations (<5% prevalent each, but totaling 

41% of all subjects), and then further pooling the three non-significantly different common 

mutations (I1768V, K1505_Q1507del, N1325S) with the infrequent mutations to estimate the 

hazard ratios for E1784K and D1790G relative to all others.  

Effects of QTc and birthdate were modeled via continuous piecewise linear splines to 

account for their significantly nonlinear effects that could not be well modeled via discrete 

groups. In particular, the log-hazard increased linearly for QTc up to 500 ms but then leveled 

blocker status with gender allowed estimation of gender-specific hazard ratios forr ßßß-b-b-blololockckckerere sssrr , aas 

well as a test of equality of the effect of ß-blockersf for males versus females. 

The effect of syncope on the risk of aborted cardiac arrest or death was similarly 

modedeeled via a tiitimemee-d- epepe enenendedd ntntnt iiindndndicicicatoror for havava ingg had d d atatat lleaeaeasts oonenene ssynyncoc paaalll evevevenenent.tt  Thehehererere wwwasasas 

nsuuufffff icient evivividedd ncnce ththat riiskk k differed foor thoseses wwhhosesese fffiririrstst ssyyncooppal evevennnt t occurredede oonn versusus 
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off. For Kaplan-Meier curve estimation, QTc was categorized into 3 groups: <450ms, 450-

490ms, and 500ms. The log-hazard was constant until 1955, but then increased linearly with 

birthdate after 1955. 

Proportional hazards assumptions were tested by interacting predictors with follow-up 

time, with stratification used to extend the model to remedy violations.  All two-way 

interactions between pairs of predictors in the model were considered for inclusion, one at a 

time. Frailties (non-significant) and robust group jackknife inference (yielding generally smaller 

not larger standard errors) for family membership were considered, but were found unnecessary 

after adjusting for mutation. SAS version 9.3 (SAS Institute Inc, Cary, NC) was used for all 

analyses, and a 2-sided significance level of 0.05 was used for hypothesis testing. See comments 

in the Supplementary Appendix regarding relevant interpretation of multivariate Cox model 

analyses and associated predicted survival analyses for males and females hypothesized to be 

always on and always off ß-blockers. 

Results

First Year of Life

The LQT3 study population involved 406 patients. Twelve patients were symptomatic in the 

first year of their life: 7 had unexplained syncope thought to be related to LQT3, 6 had ACA (4 

of them died in the first year of life while receiving what was thought to be appropriate LQTS 

therapy), and one had documented Torsades de Pointes (published case, ref 18). It is generally 

appreciated that LQTS patients who are symptomatic in their first year of life have a poor 

prognosis,19,20 and for this reason we excluded these patients in the subsequent analyses that 

begin at age 1 year. Three patients had no follow-up after 1 year of age, and they were also 

analyses, and a 2-sided significance level of 0.05 was used for hypothesis testing.. SSSeeeeee cccomomommememenntn s

n the Supplementary Appendix regarding relevant interpretation of multivariate Cox model r

analyses and associated predicted survival analyses for males and females hypothesized to be

alwawawayyys on and dd aaalwawawayss ooffffff ßßß-bbblololockckckererers.s  

Results
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excluded from the long-term follow-up study. See Supplementary Appendix Table S2 for 

clinical and genetic details on these 15 patients.  

Study Population Beginning at Age 1 year (n=391)

Baseline Characteristics

The clinical characteristics of the 391 remaining LQT3 subjects are summarized in Table 1.

Baseline patient characteristics, electrocardiographic parameters, and genetic variables were 

similar in the three geographic sources of the subjects. The use of ß-blockers was less frequent 

in Japan (p<0.01), but other modalities of treatment were similar by geographic region. For the 

82 LQT3 probands and their 309 mutation-positive family members, 51 distinct LQT3-

associated mutations were identified including 47 missense mutations in 322 patients (82%) and 

4 deletion/insertion/frameshift mutations in 69 patients (18%). Overall, 275 patients (70%) had 

mutations located in either the transmembrane spanning domains or the interdomain linkers, 115 

patients (29%) had mutations located in the C-terminus, and only 1 patient had a mutation 

located in the N-terminus region.

Clinical Outcome: Univariate Analyses (unadjusted)  

One hundred eighteen (41 males, 77 females) patients (30%) experienced at least one suspected 

LQT3-triggered cardiac event of syncope, ACA, or SCD by age 40. The cumulative 

probabilities of a first cardiac event for syncope, ACA, or SCD; for ACA or SCD; and for SCD 

as the first event as a function of age for the 391 subjects are presented in Figure 1, with 

cumulative event rates of 38%, 20%, and 14%, respectively. The risk of a first cardiac event was 

related directly to the degree of QTc prolongation, at least between the ages of 16-26 (Figure 

2). Females had a higher probability of a first cardiac event than males, especially in the 30 to 

40-year age range (Figure 3). The duration of the QRS interval was not associated with an

associated mutations were identified including 47 missense mutations in 322 patienenntststs (((828282%)%)%) aaandnn  

4 deletion/insertion/frameshift mutations in 69 patients (18%). Overall, 275 patients (70%) had 

mutations located in either the transmembrane spanning domains or the interdomain linkers, 115 

patiienenents (29%))) hhhaddd mututu atatatioioionsnss lllocococatatatedee  in n the C---tet rmminususus, ,, ananand d d ononlylyy 111 ppattieient hhhadadad aaa mmmutatata ioioion n n

ocaaateteted in the NNN-teerrmininus regegegion.
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increased probability of cardiac events (data not shown).  Removing patients with imputed data,

including the 25 individuals who died without known QTc, did not essentially change the 

obtained results (data not shown). 

Various therapies were used in the treatment of these LQT3 subjects. There were 69 

patients (17.6%) who received an ICD during follow-up. Unfortunately, we have only limited 

documentation about the indication for ICD implantation or the frequency of interrogation-

recorded ICD therapy for ventricular tachyarrhythmic events. No patient who had received an 

ICD died during a median follow-up of 36 months. A total of 111 patients (28.3%) were started 

on ß-blockers, and because of the time-dependent use of ß-blockers, i.e., when they were on and 

off of ß-blockers, and the influence of various risk factors influencing ß-blocker efficacy, the 

appropriate effectiveness of ß-blockers can only be evaluated in the multivariate analyses. The 

efficacy of other therapies (flecainide, mexiletine, ranolazine, and left cardiac sympathetic 

denervation) could not be judged because of the relatively small number of patients so treated 

(in addition to lack of data) and few events.   

Clinical Outcome: Multivariate Analyses    

Findings from the multivariate Cox regression analyses for the end point of syncope, ACA, or 

SCD, whichever came first, are presented in Table 2. Contrary to the speculated pro-arrhythmic 

risk of ß-blocker therapy in LQT3, time-dependent ß-blocker use was associated with a

reduction in cardiac events of 83% in females whereas in males a non-significant 6% decrease 

was observed (Table 2). Hence, there appeared to be a significant gender x ß-blocker interaction 

(p<0.04). Each 10ms increase in QTc duration up to 500ms was associated with a 19% increase 

in the risk for cardiac events, and patients born after 1955 had a 5% annual increase in the risk 

for cardiac events. There is no apparent increase in risk for QT when greater than 500ms. It 

off of ß-blockers, and the influence of various risk factors influencing ß-blocker efeffifificacacacycycy,,, thththeee

appropriate effectiveness of ß-blockersf can only be evaluated in the multivariate analyses. The 

efficacy of other therapies (flecainide, mexiletine, ranolazine, and left cardiac sympathetic 

denenenerrrvation) ccouououlddd nototot bbbee e jujuudgdgdgededed bbbecee auuses  of thhhee reellativevevelylyly sssmamm llll nnnumumu beber r offf pppatata ieieientntn s sooo tttrerereatatatededed 

in adadaddition to lalaackk of f ddata) aana d few evvents.   
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appears that this is due, at least in part, to the difference between the adjusted versus unadjusted 

effects of QTc. In our multivariable Cox models, there is insufficient evidence that risk 

increases with QTc beyond about 500ms (see Methods for the multivariable Cox model 

approach). Two mutations, E1784K and D1790G, were relatively benign with hazard ratios for 

cardiac events significantly less than 1.0. 

When the end point was restricted to ACA or SCD (Table 3), time-dependent syncope 

doubled the risk for the more malignant cardiac events (p=0.02), while the other risk variable 

effects were similar to those presented in Table 2. ß-blockers reduced the risk of ACA/SCD by 

80% among females (p=0.03) and by 49% among males (NS). 

The numbers of patients with cardiac events by time-dependent ß-blocker status are 

provided in Supplementary Table S3, and the numbers of subjects with cardiac events while 

on ß-blocker therapy are provided in Table 4. All together during a median FU of over 7 years 5 

patients developed life threatening arrhythmias on ß-blocker therapy (3 died). Figures 4A and

4B show Cox model-based predicted distributions of the age at first ACA or SCD, conditional 

on event-free survival to age 1, by ß-blocker status and gender for asymptomatic subjects (no 

prior syncope) born in 1971 (median) with a QTc of 470ms (median risk, Figure 4A) and a QTc 

of 500ms (high risk, Figure 4B) and neither lower risk mutation (not E1784K nor D1790G). As 

is shown, ß-blockers appear clearly effective in females. In males, the number of cardiac events 

is much lower precluding the ability to detect a further attenuation of risk by ß-blocker therapy.  

However, a pro-arrhythmic signal is absent.  Again, the importance of baseline QTc is evident.  

As one may argue that PM/ICD therapy may protect against the possible detrimental effects of 

ß-blockers we ran additional analyses where we censored patients at the time of pacemaker or

ICD implantation, and found similar results for ß-blocker efficacy among those without a 

The numbers of patients with cardiac events by time-dependent ß-blockerr ststtatatatususus aarerere 

provided in Supplementary Table S3, and the numbers of subjects with cardiac events while 

on ß-blocker therapy are provided in Table 4. All together during a median FU of over 7 years 5

patiienenents developopopeddd liffe e e ththhrerer atateneneninining g g araa rhhyty hmiaaass onn ßß-blololockckc ererer ttheerrar pypyp  (33 dieddd).).). FFFigigiguru esss 444AAA anananddd
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pacemaker or ICD: HR = 0.22 (p = 0.035) and 0.25 (p = 0.059) for females, and HR = 1.03 (p = 

0.94) and 0.60 (p = 0.52) for males.

Discussion

We studied 391 LQT3 patients, asymptomatic during the first year of life, and found that the 

degree of QT prolongation and history of syncope were the major risk factors for an LQT3-

related cardiac event including ACA or SCD. The risk for a first event increases rapidly during 

adolescence and continued to increase in both genders, though more slowly, during the adult 

years. ß-blocker therapy significantly reduced the risk for cardiac events in treated individuals, 

in particularly in females.

Clinical risk factors

In the present study, we were able to confirm the age-dependent occurrence of cardiac events; 

1 year of age; these 12 patients were 

excluded in the long-term follow-up analyses. The number of individuals who experienced a 

sentinel cardiac event increased rapidly between age 10 and age 20, and by the age of 40 almost 

40% of patients had experienced a first cardiac event. Among those experiencing a LQT3-

related cardiac event, about 50% were ACA or SCD (Fig. 1). As in other LQTS subtypes,4,5

probands were at higher risk than family members (not shown), probably reflecting a referral

bias based on earlier or more severe first symptoms than in affected family members and also 

the fact that the proband’s QTc values were greater than the QTc values of the affected family 

members since the length of the QTc was an independent  predictor of cardiac events (Figure 

2). Females had a greater risk than males, especially in the older age group (Figure 3).

However, unlike in LQT1 and LQT2 where the risk in males is predominantly pre-puberty, the 

n particularly in females.

Clinical risk factors

n the present study, we were able to confirm the age-dependent occurrence of cardiac events; 
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risk of an LQT3-triggered event in males shifts to post-puberty and continues throughout 

adulthood. Unfortunately, no 24-hr Holter monitoring data were available for analysis, nor were 

data on the circumstances leading to cardiac events.

Mutation type and mutation location 

Mutation type and mutation location did not have a significant effect on outcome, although 

patients with some particular mutations (E1784K, D1790G; Tables 2 and 3) had a rather benign 

clinical course.

Therapy for LQT3

ß-blocker therapy reduces the risk for cardiac events in patients with LQT1 by >95% and in 

patients with LQT2 by 70-80%.4,5 In contrast, the early genotype-phenotype studies showed no 

demonstrable ß-blocker efficacy for LQT3.6,7 Subsequent cellular in vitro studies raised 

concerns regarding the possible pro-arrhythmic effect of  ß-blockers for LQT3,11 which got 

translated prematurely to the bed side with an unproven view that ß-blockers might be 

contraindicated in LQT3. For the last decade this notion has resulted in a fairly high rate of 

prophylactic ICD therapy in LQT3.12,13 The theoretical arguments, based on just a few cases,

suggested that ß-blockers should not be used in LQT3, especially in patients with longer QT 

intervals at low heart rates with associated events during sleep or rest.7 Atrioventricular block,21

bradycardia,22 sinus pauses,23 and sinus arrest were thought to be possible mechanisms of death 

in LQT3.23,24  

Our large study provides evidence that ß-blocker therapy is not pro-arrhythmic. In 

contrast, a clear and significant protective effect for cardiac events was demonstrated. The effect 

was clear in females, whereas in males, their lower event rate precluded a demonstration of 

efficacy. However, a detrimental effect of ß-blocker therapy in males with LQT3 is absent 

patients with LQT2 by 70-80%.4,5 In contrast, the early genotype-phenotype studiiesess ssshohohowewewed d d nonono 

demonstrable ß-blocker efficacy for LQT3.6,7 Subsequent cellular in vitro studies raised 

concerns regarding the possible pro-arrhythmic effect of ß-blockers for LQT3,11 which got 
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(Tables 2 and 3, suppl. Figures 4A and 4B). Only 3 patients (3%) died on ß-blocker therapy 

during a median FU of over 7 years (table 4). 

The absolute risk of dying from LQT3-related arrhythmias (in individuals asymptomatic 

up till age 1) is <15% by the age of 40 (Figure 1). QTc and the presence of symptoms are 

strong modifiers of this risk (Tables 2 and 3), and it is likely that high-risk patients with prior 

syncope or ACA and/or QTc in the 500 ms range may require adjunctive therapy such as left 

cardiac sympathetic denervation,25-27 ICD,12,13,28 or LQT3-directed pharmacotherapy with 

medications like mexiletine, flecainide,  and more specific late sodium current blockers 

including ranolazine and some experimental drugs.29-34 However, the current study cannot 

address precisely when these therapies should be used. Treatment in high-risk patients requires 

clinical judgment with balance of the disease risk versus the risk/benefit related to the selected 

therapy in each patient based on age, gender, QTc duration, and prior symptoms as well as 

tolerance and clinical response to ß-blocker therapy.  

Study Limitations 

Although this is the largest study for this 3rd most common subtype (LQT3) of LQTS, an 

inherent limitation of this study is still the relatively small number of cardiac events, in 

particular in males, and the small number of patients receiving therapies despite an international 

collaboration. The assumption that the deceased young individuals carried the familial mutation 

is reasonable but not certified. Yet removing them from the analysis did not change the results. 

In addition, the generalizability even within LQT3 is limited somewhat as the study population 

was dominated by 5 specific mutations. Although an attempt was made to exclude families with 

obvious evidence of an overlap syndrome, any of the 36 functionally uncharacterized SCN5A

mutations (out of the 51 LQT3-associated mutations represented in this study) might potentially 

address precisely when these therapies should be used. Treatment in high-risk patitienenentststs rrreqeqequiuiuirereresss

clinical judgment with balance of the disease risk versus the risk/benefit/ related to the selected 

herapy in each patient based on age, gender, QTc duration, and prior symptoms as well as 
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exhibit an expressed phenotype of overlap if the families were large enough or followed for 

longer durations. The E1784K mutation is an example of this,35 but we would like to stress that 

patients with an overt overlap syndrome (i.e. signs of right precordial ST-elevation) have been 

excluded. Another limitation was the non-randomized use of ß-blockers and that less than one-

third of the patients in this cohort were ever treated with ß-blockers. Finally, follow-up was

censored at age 41, and cardiac events may continue later in life in LQT3, especially if the 

patient acquires concomitant coronary artery disease.

Conclusions

Patients with LQT3 can be stratified as to their risk of life-threatening cardiac events based on

clinical and genetic characteristics. A high-

ms and a history of syncope can be identified, and this population may require adjunctive 

therapy. ß-blocker therapy significantly reduced the risk for cardiac events.
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Table 1. Clinical characteristics of 391 LQT3 patients, event-free at age 1 year. 

Characteristics US Europe Japan missing Total
No of Patients 208 155 28 - 391
Male, #(%) 85(41) 72(46) 17(61) - 174(45)
Proband #(%) 37(18) 34(22) 11(39) - 82(21)
Age at ECG, yr 26±19 31±20 25±19 33 28±20
ECG, mean±sd
RR, msec 865±240 896±206 946±213 33 884±225
PR, msec 159±36 162±28 165±30 84 161±33
QRS, msec 83±13 104±112 87±16 35 92±73
QTp, msec 353±78 362±70 387±81 36 359±75
QT, msec 442±87 443±84 473±89 35 445±86
QTc, msec 479±50 471±63 487±62 35 476±57
QTc Males, msec 487±52 475±60 487±69 9 482±57
QTc Females, msec 473±48 466±67 486±51 26 471±56
Treatment, #(%)
ß-blockers 77(38) 31(21) 3(11) 8 111(29)
LCTSD 1(0) 5(3) 0(0) 3 6(2)
Pacemaker 13(6) 6(4) 0(0) 3 19(5)
ICD 49(24) 16(10) 4(14) - 69(18)
Location, #(%)
N-Terminus 1(0) 0(0) 0(0) - 1(0)
Transmembrane 77(37) 77(50) 15(54) - 169(43)
C-Term 59(28) 44(28) 12(43) - 115(29)
Intra 71(34) 34(22) 1(4) - 106(27)
Mutation Type, #(%)
Missense 153(74) 147(95) 22(79) - 322(82)
Deletions 55(26) 8(5) 6(21) - 69(18)
E1784K 47(23) 10(6) 12(43) - 69(18)
D1790G 0(0) 29(19) 0(0) - 29(7)
First Cardiac Event
Syncope 51(25) 28(18) 7(25) - 86(22)
ACA 4(2) 3(2) 0(0) - 7(2)
Sudden Cardiac Death 19(9) 6(4) 0(0) - 25(6)
Ever Cardiac Events
Syncope 51(25) 28(18) 7(25) 1 86(22)
ACA 8(4) 8(5) 6(21) - 22(6)
Sudden Cardiac Death 27(13) 11(7) 2(7) 1 40(10)
Appropriate Shock 4(2) 0(0) 1(4) 1 5(1)

Abbreviations: QTp: QT peak interval, LCSD: Left cardiac sympathetic denervation, ICD: Internal Cardiac 
Defibrillator. Information on the use of mexiletine and flecainide was not uniformly collected in Europe and Japan.

ß-blockers 77(38) 31(21) 3(11) 8 11111(1(1(292929))
LCTSD 1(0) 5(3) 0(0) 3 6(6(6(2)2)2)
Pacemaker 13(6) 6(4) 0(0) 3 19(5)
ICD 49(24) 16(10) 4(14) - 69(18)
Location, #(%)
N-Teeermrmrminininususus 1(0) 0(0((0) 0(0)0) - 1(0)
Tranananssmembrananane 77(3(37) 777((50))) 15(5(554)4)4) - 16161 9(9(9 434343)))
C--TTTerm 5595 (2(28) 444((28)8)8) 1121 (443) - 1111115(2999)
Inttrt aaa 71(3(34) 344((22)2)2) 1(44) - 1106(277)
Mutatatatitit onoo TTypypypee,e ##(%%))
MiMissense 15153(3(7747 ) 141447(7(7 9595) 222222(7(799)9 - 32323 2(2(82822)

l i ( ) ( ) ( ) ( )

 by guest on A
ugust 31, 2016

http://circ.ahajournals.org/
D

ow
nloaded from

 

http://circ.ahajournals.org/


10.1161/CIRCULATIONAHA.116.021823

22

Table 2. Multivariate Cox Model Analyses for Risk of Cardiac Events: First Cardiac Event
(Syncope, Aborted Cardiac Arrest [ACA], or LQT3 related Sudden Cardiac Death [SCD]).  

Endpoint = Cardiac Event (118 CE: 25 
SCD + 7 ACA + 86 syncope)

Parameter p-value
Hazard
Ratio

95% Conf Int
LCL UCL

ß-blockers among females* 0.014 0.17 0.04 0.70
ß-blockers among males* 0.895 0.94 0.40 2.21
E1784K mutation < 0.001 0.35 0.19 0.62
D1790G mutation 0.007 0.32 0.14 0.73
QTc per 10 ms (up to 500 ms) <0.0001 1.18 1.11 1.26
Year of birth (>1955) <0.0001 1.05 1.04 1.07
*Test for ß-blockers x sex interaction:
ß-blockers for males vs females 0.039

Table 3. Multivariate Cox Model Analyses for Risk of Cardiac Events: First Aborted Cardiac 
Arrest [ACA] or LQT3 related Sudden Cardiac Death [SCD].

Endpoint = ACA/SCD (56 ACA/SCD: 
34 SCD + 22 ACA)

Parameter p-value
Hazard
Ratio

95% Conf Int
LCL UCL

Syncope 0.023 2.03 1.10 3.72
ß-blockers among females* 0.032 0.20 0.05 0.87
ß-blockers among males* 0.308 0.51 0.14 1.88
E1784K mutation 0.001 0.09 0.02 0.37
D1790G mutation 0.049 0.30 0.09 0.99
QTc per 10 ms (up to 500 ms) <0.001 1.33 1.19 1.48
Year of birth (after 1955) <0.001 1.06 1.03 1.09
*Test for ß-blockers x sex interaction:
ß-blockers for males vs females 0.353

Table 3. Multivariate Cox Model Analyses for Risk of Cardiac Events: First Abortet dd d CaC drddiaii c 
Arrest [ACA] or LQT3 related Sudden Cardiac Death [SCD].

Endpdpdpoioiointntt === AAACAAA/S// CD (56 ACA/SCD: 
344 SSSCCDC  + 2222 ACAACA)

Paaarrar meter pp-vavaluuueee
HHHazzard
Ratitio

95% % % CoConfnfnf Intt
LCL UCLL

Syncope 0.020 3 2.2 033 1.100 3.72
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Table 4. Numbers of Subjects and Events While on Beta-Blocker Therapy.

Beta-blocker 
Therapy

Number of 
Patients 

Treated with 
ß-blockers

Follow-up
Duration in 

Months After 
Treatment

25th-75th

Quartile;
median

Syncope, 
Aborted 
Cardiac 

Arrest, or 
Death

# (% of 
treated)

Death
# (% of 
treated)

ACA/SCD
# (% of 
treated)

All patients 111 36-161;
87

15
(14)

3
(3)

5
(5)

Male 
patients

51 40-180;
92

8
(16)

2
(4)

2
(4)

Female 
patients

60 34-144;
86

7
(12)

1
(2)

3
(5)

Figure Legends

Figure 1. Kaplan-Meier Cumulative Probability of First LQT3-Triggered Cardiac Event for 

Combinations of Syncope, Aborted Cardiac Arrest (ACA), and Sudden Cardiac Death (SCD), 

Conditional on Event-Free Survival to Age 1-year.

Figure 2. Kaplan-Meier Cumulative Probability of Cardiac Events (Syncope/Aborted Cardiac 

Arrest/LQT3-related Sudden Cardiac Death, whichever comes first) for Three QTc Ranges, 

Conditional on Event-Free Survival to Age 1-year.

Figure 3. Kaplan-Meier Cumulative Probability of Cardiac Events (Syncope/Aborted Cardiac 

Arrest/LQT3-related Sudden Cardiac Death, whichever comes first) for Females and Males, 

Conditional on Event-Free Survival to Age 1-year.

Figure Legends

Figugugurrer  1. Kaplpllaaan--MeMM ieiei r r r CuCuC mumumulalalatititiveveve Prorobabiliiityty oof f Firsrsr t t t LQLQLQT3TT --TTrTrigigi gegerered CaCaCardrdrdiaiaiacc c Evenenent t t fofofor rr 

Combmbmbinations oooff SySynccoope, AAAbob rted CCaarddiac AAArrresst (AAACACACA))), aannd SSuuddenn Caaarrdr iac DeDeeaata hh (SCD)), 

Conditional on Event-Free Survival to Age 1-year.
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Figure 4. A (Plot for Medium-Risk Patients). Cox model-based predicted distributions of the age 

at first aborted cardiac arrest (ACA) or sudden cardiac death (SCD), conditional on event-free 

survival to age 1, by ß-blocker status (BB) and gender for asymptomatic subjects (no prior 

syncope) born in 1971 (median) with a QTc of 470 ms (median) and neither lower risk mutation 

(not E1784K nor D1790G). B (Plot for High-Risk Patients). Cox model-based predicted 

distributions of the age at first aborted cardiac arrest (ACA) or sudden cardiac death (SCD), 

conditional on event-free survival to age 1, by ß-blocker status (BB) and gender for 

asymptomatic subjects (no prior syncope) born in 1971 (median) with a QTc > 500 ms and 

neither lower risk mutation (not E1784K nor D1790G). See supplement for additional 

explanation.explanation.
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SUPPLEMENTAL MATERIAL 
 
SUPPLEMENTAL TABLES 
 
Table S1: List of Mutations by Coding Effect, Location, and Frequency in 406 
LQT3 Patients. The different regions of the SCN5A-encoded Nav1.5 channel 
were defined as the coding sequence involving amino acid (aa) residues from N-
terminus (aa1-126),  DI (aa127-415), IDL I-II (aa416-711), DII (aa712-939), IDL II-

III (aa940-1200), DIII (aa1201-1470), IDL III-IV (aa1471-1523), DIV (aa1524-1772) 

and C-terminus (aa1773-2016). 
 

Coding Effect Location COUNT 

V125L N-term 1 

Q245K DI-S4/S5 3 

R340W DI-S4/S5 7 

T370M DI-S5/S6 9 

N406K DI-S6 1 

V411M DI-S6 7 

A413T DI-S6 3 

L604V DI/DII 2 

G615E DI/DII 2 

P627L DI/DII 2 

Q692K DI/DII 1 

S941N DII/DIII 1 

R971C DII/DIII 1 

P1008S DII/DIII 1 

P1021S DII/DIII 5 

T1069M DII/DIII 1 

D1114E DII/DIII 15 

E1208K DIII-S1 1 

N1269S DIII-S2/S3 6 

I1278N DIII-S3 5 

T1304M DIII-S4 9 

N1325S DIII-S4/S5 21 

A1330D DIII-S4/S5 1 

A1330T DIII-S4/S5 5 

I1448L DIII-S6 1 

L1501V DIII/DIV 13 

K1505_Q1507del DIII/DIV 9 

Q1507_P1509del DIII/DIV 55 

L1560F DIV-S2 1 

F1596I DIV-S3 5 

F1617del DIV-S3/S4 5 

R1623L DIV-S4 3 



Coding Effect Location COUNT 

R1623Q DIV-S4 1 

G1631D DIV-S4 2 

R1644H DIV-S4 2 

V1667I DIV-S5 2 

A1746T DIV-S6 4 

I1762del DIV-S6 1 

V1763M DIV-S6 2 

M1766L DIV-S6 1 

M1766V DIV-S6 10 

Y1767C DIV-S6 4 

I1768V DIV-S6 58 

V1777M Cterm 2 

T1779M C-term 5 

E1781G C-term 3 

E1784K C-term 70 

L1786Q C-term 3 

D1790G C-term 30 

Y1795C C-term 3 

R1991Q C-term 1 

TOTAL  406 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
Supplemental Table S2. LQT3 subjects with events before age 1 or no 
follow-up after Age 1.  
 
 

Center Gender 

QTc 

(ms) 
Syncope 

(Age) 
ACA 

(Age) 

Sudden 
Cardiac 

Death (Age) 
Coding 
Effect 

Mutation 
Location 

Denmark Male No ECG No No No R340W IS5-IS6 

Mayo Clinic Female 460 Yes (0) No No N406K IS6 

Italy  Male 442 No No No A413T IS6 

Italy  Male 550 No Yes (0) Yes (4) S941N IIS6-IIIS1 

Rochester Male 380 Yes (0) No No T1304M IIIS4 

Italy  Male 520 Yes (0) Yes (0) Yes (0) A1330D IIIS4-IIIS5 

Rochester Female 440 Yes (0) No No Q1507-
P1509del 

IIIS6-IVS1 

Rochester Female 590 Yes (0) Yes (0) No R1623Q IVS4 

Italy  Male 520 No Yes (0) No G1631D IVS4 

Japan Male 550 Yes (0) Yes (0) No G1631D IVS4 

Italy  Male No ECG No Yes (0) Yes (0) V1763M IVS6 

Mayo Clinic Male 490 No Yes (1.5) Yes (1.5) M1766L DIV-S6 

Netherlands Female 420 No No No I1768V IVS6 

Rochester Female 510 Yes (0) No No E1784K C-TERM 

Israel  Male 470 No No Yes (0) D1790G C-TERM 

 
 
 
  



Supplemental Table S3. Numbers of Subjects and Events by Time-
Dependent ß-Blocker Status (BB).   
 

 

No CE  
(no ACA/SCD) 

1st CE on BB  
(1st ACA/SCD on BB) 

1st CE off BB  
(1st ACA/SCD off BB) Total 

All Patients     
Never on BB during follow-up 
to 1st CE (1st ACA/SCD) 205 (241) 0 (0) 107 (49) 

312 
(290) 

Ever on BB during follow-up to 
1st CE (1st ACA/SCD) 69 (95) 9 (5) 2 (2) 

80 
(102) 

Total # Subjects 274 (336) 9 (5) 109 (51) 
392 

(392) 

     Males 
    Never on BB during follow-up 

  to 1st CE (1st ACA/SCD) 100 (112) 0 (0) 32 (14) 
132 

(126) 
Ever on BB during follow-up to 
  1st CE (1st ACA/SCD) 33 (45) 7 (3) 2 (0) 

43 
(48) 

Total # Male Subjects 133 (157) 7 (3) 34 (14) 
174 

(174) 

     Females 
    Never on BB during follow-up 

  to 1st CE (1st ACA/SCD) 105 (129) 0 (0) 75 (35) 
180 

(164) 
Ever on BB during follow-up to 
   1st CE (1st ACA/SCD) 36 (50) 2 (2) 0 (2) 

38 
(54) 

Total # Female Subjects 141 (179) 2 (2) 75 (37) 
218 

(218) 

 

Note: numbers not in parentheses refer to cardiac events (CE) including syncope, 
aborted cardiac arrest (ACA), or sudden cardiac death (SCD) whichever came 
first as categorized as No CE, 1st CE on BB, and 1st CE off BB. Numbers in 
parentheses refer to ACA or SCD whichever occurred first as categorized as No 
ACA/SCD, 1st ACA/SCD on BB, and 1st ACA/SCD off BB. This table provides rough 
background information on numbers of patients in the time-dependent ß-
blocker Cox multivariate analyses by gender. See Table 2 in the main manuscript 
for specific hazard ratios, confidence intervals, and p-values. 
 
 
 
  



 
Supplemental Comment Regarding Interpretation of the Cox Model and the 
Derived Figures 4A and 4B. 

This was a focused, pre-specified analysis with only a small number of 
candidate predictors, all of which were included in the final Cox models, 
irrespective of statistical significance.  

In Cox analyses, if properly specified, adjusting for QTc, birth year, gender, 

mutation and time-dependent syncope means that comparisons between patients on 

versus off beta-blockers are only made between matched subgroups of patients with 

identical QTc values, birth year, age (since age is the time scale), gender, mutation, 

and syncopal history. For example, female patients with the I1768V mutation and a 

QTc of 470 ms who were born in 1971 who are asymptomatic and on ß-blockers at 

age 29 are effectively matched and compared to female patients with the I1768V 

mutation and a QTc of 470 ms who were born in 1971 who are asymptomatic and off 

ß-blockers at age 29. This is what is meant by the covariate-adjusted hazard ratio for 

beta-blockers. Thus, one need not be concerned with any potential differences -- at 

baseline or at any other point during follow-up -- in QTc, birth year, gender, mutation, 

or syncopal history when the model is properly specified.  

The figures shown here are not Kaplan-Meier curves, but rather predicted 

event rates. Each male contributes information to both "always on" and "never on" ß-

blocker curves, as does each female. Furthermore, predicted event rates depend 

strongly on all significant risk factors in the Cox model (Table 2). As shown in Figure 

4B, QTc > 500 ms approximately doubles the 40-year event rates to >70% for 

females never on BB and about 25% for others. Prior syncope, especially at a young 

age, would further increase the event rates. On the other hand, 40-year event rates for 

those with the lower risk D1790G mutation are < 5% for most subjects and < 15% 

even for females never on ß-blockers, while event rates are even lower among those 

with the E1784K mutation.  

 

An example on how these curves can be used and interpreted is provided in the 
following description: the absolute risk predicted by the model for an 
asymptomatic woman age 25 in the medium risk profile group off ß-blockers 
(figure 4a) is ±20% and in the high-risk group ±40% (figure 4b). ß-blocker 
therapy would reduce that risk to ±5% and ±10% in the medium- and high-risk 
groups, respectively. 
 


