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ABSTRACT
BACKGROUND Epidemiological studies show that high circulating cystatin C is associated with risk of cardiovascular

disease (CVD), independent of creatinine-based renal function measurements. It is unclear whether this relationship is

causal, arises from residual confounding, and/or is a consequence of reverse causation.

OBJECTIVES The aim of this study was to use Mendelian randomization to investigate whether cystatin C is causally

related to CVD in the general population.

METHODS We incorporated participant data from 16 prospective cohorts (n ¼ 76,481) with 37,126 measures of cystatin

C and added genetic data from 43 studies (n ¼ 252,216) with 63,292 CVD events. We used the common variant rs911119

in CST3 as an instrumental variable to investigate the causal role of cystatin C in CVD, including coronary heart disease,

ischemic stroke, and heart failure.

RESULTS Cystatin C concentrations were associated with CVD risk after adjusting for age, sex, and traditional risk

factors (relative risk: 1.82 per doubling of cystatin C; 95% confidence interval [CI]: 1.56 to 2.13; p ¼ 2.12 � 10�14). The

minor allele of rs911119 was associated with decreased serum cystatin C (6.13% per allele; 95% CI: 5.75 to 6.50;

p ¼ 5.95 � 10�211), explaining 2.8% of the observed variation in cystatin C. Mendelian randomization analysis did not

provide evidence for a causal role of cystatin C, with a causal relative risk for CVD of 1.00 per doubling cystatin C (95% CI:

0.82 to 1.22; p ¼ 0.994), which was statistically different from the observational estimate (p ¼ 1.6 � 10�5). A causal

effect of cystatin C was not detected for any individual component of CVD.

CONCLUSIONS Mendelian randomization analyses did not support a causal role of cystatin C in the etiology of

CVD. As such, therapeutics targeted at lowering circulating cystatin C are unlikely to be effective in preventing CVD.

(J Am Coll Cardiol 2016;68:934–45) © 2016 The Authors. Published by Elsevier Inc. on behalf of the American College of

Cardiology Foundation. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).
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AB BR E V I A T I O N S

AND ACRONYM S

CHD = coronary heart disease

CST3 = gene encoding for the

protein cystatin C

CVD = cardiovascular disease

HF = heart failure

IS = ischemic stroke

MI = myocardial infarction

SNP = single nucleotide

polymorphism
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C ystatin C (encoded by CST3 on 20p11.21) is a
potent cysteine protease inhibitor that plays
pleiotropic roles in human vascular patho-

physiology, in particular regulating cathepsins S and
K (1–3), and serves as a marker of renal function (4).
Cathepsins are overexpressed in human atheroscle-
rotic and aneurysmal lesions, giving rise to rupture-
prone plaques by degrading the extracellular matrix
(Figure 1) (1). Prospective epidemiological studies
show a strong association between circulating cysta-
tin C and risk of future coronary heart disease
(CHD), ischemic stroke (IS), and heart failure (HF)
(5,6). This association is also present in patients
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and, as such, may be a valid therapeutic target.
However, residual confounding and reverse causality
remain alternative explanations for the strong corre-
lation between cystatin C and CVD, both of which are
difficult to tease apart from traditional observational
studies (16).
SEE PAGE 946
Mendelian randomization harnesses the properties
of the genome to enable causal inference of a
biomarker (16). Specifically, the invariant nature of
the genome and the random distribution of alleles
from parents to offspring at conception mean that
genetic information is not influenced by disease sta-
tus (reverse causality) and should be free from
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FIGURE 1 Presumed Mechanism of Cystatin C in Plaques

In vivo and in vitro animal and human studies have shown elevated levels of cathepsins and lower levels of cystatin C—a potent cathepsin inhibitor—in atherosclerotic

tissue. Cathepsins are thought to degrade the extracellular matrix (ECM), thus facilitating the migration of smooth muscle cells (SMCs) to the plaque core and promoting

the destabilization.
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We robustly associated rs911119 with circulating cys-
tatin C in 9 cohorts (8 of which have not participated
in prior GWAS). Next, we evaluated the association of
serum cystatin C with CVD in observational analyses
of prospective cohorts. Finally, we used rs911119 as
an instrument variable to test the causal effect of
circulating cystatin C on CVD through Mendelian
randomization.

METHODS

We included data from 15 general population–based
cohorts and 1 randomized clinical trial (Table 1, Online
Tables 1 and 2) (detailed study descriptions in Online
Appendix). All participants provided informed con-
sent, and the local ethics committees approved these
studies.

CONSORTIA DATA. We included individual study
summary statistics from the discovery stages of
CARDIoGRAM (Coronary Artery Disease Genome-wide
Replication and Meta-analysis), including 17 studies,
20,251 CHD cases, and 60,183 control subjects (21) and
the METASTROKE collaboration (the first large meta-
analysis of stroke GWAS data), consisting of 15
studies, 12,389 all-cause IS cases, and 62,004 control
subjects (22). We also included the summary statistics
from the C4D (Coronary Artery Disease Genetic Con-
sortium) on CHD (23) (including 4 studies comprising
15,388 cases and 15,040 control subjects) and
CHARGE-HF (Cohorts for Heart and Aging Research in
Genomic Epidemiology–Heart Failure), the CHARGE
GWAS on incident HF, which included 4 studies, 2,526
cases, and 18,400 control subjects from European
descent (24). Additionally, we included consortia data
on a number of cardiovascular traits (Online Table 3).
For the primary outcome (CVD), we meta-analyzed
genetic association results from the 16 individual
cohorts, CARDIoGRAM, C4D, METASTROKE, and

http://dx.doi.org/10.1016/j.jacc.2016.05.092
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TABLE 1 Characteristics of Prospective Cohorts

Study Total SNP* Cystatin C† CVD‡ CHD‡ IS‡ HF‡ MI‡ Male Age (yrs) Cystatin C (mg/dl)

3C 6,440 6,435 1,244 1,717 1,235 459 439 486 39.19 74.30 � 5.52 0.92 � 0.24

EPIC-NL 6,265 5,192 — 1,967 1,430 537 — 1,430 22.39 53.80 � 10.23 —

GOSH 1,478 1,479 — 493 111 235 233 — 42.08 51.08 � 11.86 —

HRS 7,844 5,585 5,777 — — — — — — — 0.64 � 0.34

KORA 4,856 1,867 4,676 540 341 255 — 341 49.53 49.75 � 14.11 0.80 � 0.21

NBS 1,819 1,297 — 66 — 66 — 170 49.48 61.05 � 10.26 —

PIVUS 1,016 949 1,004 255 175 71 75 105 49.90 70.20 � 0.17 0.90 � 0.19

PREVEND 3,245 3,245 3,245 236 190 58 — — 50.26 49.42 � 12.25 0.87 � 0.17

PROSPER§ 5,244 5,150 — 2,561 2,034 779 211 762 48.13 75.34 � 3.35 —

Rotterdam 7,983 5,974 3,906 3,579 1,934 1,328 1,625 1,176 38.90 73.06 � 7.49 1.11 � 0.28

SHIP 3,224 3,224 3,212 114 19 87 — 134 48.08 54.46 � 15.26 0.88 � 0.30

Tromsø 6,129 — 6,129 1,251 — 494 — 881 47.59 60.59 � 10.25 0.86 � 0.18

TWINGENEk 6,902 6,902 6,740 932 610 287 206 — 47.23 64.83 � 8.26 1.02 � 0.30

ULSAM 1,221 1,107 1,193 503 285 175 220 — 100.00 71.00 � 0.64 1.25 � 0.27

WHI 7,854 7,844 — 4,831 2,934 2,115 — 2,934 0.00 67.97 � 6.58 —

Whitehall II 4,961 5,011 — 349 254 111 — 254 74.58 49.19 � 5.99 —

Overall 76,481 61,261 37,126 19,394 11,552 7,057 3,009 8,673 — — —

Values are n, %, or mean � SD. *Total number of individuals with genotype data. †Genetic data were available in 29,805 of the 37,126 individuals that had values for cystatin C,
which we used to associate rs911119 with circulating cystatin C. For the genetic analysis of CVD, CHD, IS, and HF, cohorts that contributed toward consortia were excluded.
‡Indicates total incident and prevalent cases of disease or composite diseases in the case of CVD. §PROSPER is a randomized clinical trial. kFor the association of SNP with
cystatin C concentrations, 9,488 samples were available in TWINGENE.

CHD ¼ coronary heart disease; CVD ¼ cardiovascular disease; HF ¼ heart failure; IS ¼ ischemic stroke; MI ¼ myocardial infarction; SNP ¼ single-nucleotide polymorphism.
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CHARGE-HF. For all analyses, we excluded over-
lapping cohorts where appropriate (Online Table 3).

SNP SELECTION AND GENOTYPING. We searched
PubMed and identified 5 publications reporting GWAS
conducted for cystatin C or its clinical derivative (i.e.,
estimated glomerular filtration rate [eGFR] on the
basis of cystatin C) (17–20). From these publications, 3
SNPs were identified (rs1158167 [20], rs13038305 [19],
and rs911119 [18]), with rs911119 showing the stron-
gest independent association with cystatin C. We
therefore used rs911119 as our primary SNP of choice.
When this SNP was not available, we used suitable
proxies in linkage disequilibrium with rs911119
(r2 $0.90) (Online Table 4, Online Figure 1).

The genotyping platforms used by the cohorts are
outlined in Online Table 2. All SNPs were in Hardy-
Weinberg Equilibrium (p > 0.067) (Online Table 5)
with a call rate $95% or imputation quality $0.95,
and comparable allele frequencies (Online Figure 2).
Online Tables 6 and 7 describe the SNP characteristics
from the individual study data of the CARDIoGRAM
consortium and METASTROKE collaboration used in
our study (21,22). The genotyping, imputation and
quality control procedures of these and other con-
sortia are described in Online Table 3.

Cystatin C (mg/l) was measured in 10 of the 16
prospective cohorts in a total of 37,126 individuals, of
whom 29,805 had genotype data available. The assays
used to quantify serum cystatin C in each study
together with the assay QC parameters are outlined in
Online Table 8. As cystatin C concentrations were not
normally distributed, we log2 transformed these prior
to analysis, enabling us to express associations as
“per doubling of cystatin C” in observational and
Mendelian randomization analyses.

We queried data from the Genotype-Tissue
Expression Project (GTEx) through the GTEx Portal
for rs911119 and its proxies for an effect on CST3
expression in whole blood (25). Details of the study
design, tissue collection, sample preparation, ribo-
nucleic acid sequencing, genotyping, quality control,
and imputation have been described elsewhere (25).

Other expression quantitative trait locus (eQTL)
datasets we queried have been described before and
pertain to expression in monocytes (26), lympho-
blastoid cell lines (27), fibroblasts, adipocytes, and
lymphoblastoid cell lines from the MuTHER (Multiple
Tissue Human Expression Resource) project (28).

Details on the cardiovascular risk factors and traits
that we assessed are given in the Online Appendix.

CLINICAL OUTCOMES. Our primary outcome was
CVD, a composite of CHD, IS, and HF. We defined
CHD as morbidity or mortality from myocardial
infarction (MI) (International Classification of Dis-
ease, 10th Revision [ICD-10] codes I21 and I22), acute
coronary syndrome, unstable angina, >50% coronary

http://dx.doi.org/10.1016/j.jacc.2016.05.092
http://dx.doi.org/10.1016/j.jacc.2016.05.092
http://dx.doi.org/10.1016/j.jacc.2016.05.092
http://dx.doi.org/10.1016/j.jacc.2016.05.092
http://dx.doi.org/10.1016/j.jacc.2016.05.092
http://dx.doi.org/10.1016/j.jacc.2016.05.092
http://dx.doi.org/10.1016/j.jacc.2016.05.092
http://dx.doi.org/10.1016/j.jacc.2016.05.092
http://dx.doi.org/10.1016/j.jacc.2016.05.092
http://dx.doi.org/10.1016/j.jacc.2016.05.092


J A C C V O L . 6 8 , N O . 9 , 2 0 1 6 van der Laan et al.
A U G U S T 3 0 , 2 0 1 6 : 9 3 4 – 4 5 Cystatin C and Cardiovascular Disease

939
artery stenosis on angiography, and/or having an
intervention by percutaneous coronary angioplasty
or coronary artery bypass graft (ICD-10 codes: I20.0,
I21, and I22; surgical codes: FNG02, FNG05, FNC,
FND, and FNE). IS was defined as morbidity or
mortality originating from occlusion and stenosis of
cerebral and pre-cerebral arteries; this includes large
artery stroke, small vessel disease, and car-
dioembolic stroke (ICD-10: I63). HF was defined as
left ventricular failure, (combined) diastolic or sys-
tolic HF, and unspecified HF, excluding cardiac ar-
rest (ICD-10 code I50).

We further defined secondary outcomes as CHD, IS,
HF, and MI. Clinical outcome data were obtained
from the patient and from cause of death registries or
validated events. An overview of outcome definitions
for each study is provided in Online Table 9.

STATISTICAL ANALYSIS. To standardize the analysis
procedure, a pre-specified script was used in every
study with access to participant data. We conducted
observational analysis, genetic analysis, and Mende-
lian randomization analysis. Detailed information is
included in the Online Appendix.

Meta-analyses estimates were pooled using a fixed-
effects model with between-study heterogeneity
quantified using the I2 statistic (29). Random effects
modeling was used as a sensitivity analysis. The total
sample size used in each analysis depended on the
covariates available and the type of case (incident-
only or incident plus prevalent) (Online Table 10).
Effect estimates from logistic and Cox-regression
analyses are referred to as relative risks (RRs).

We applied Bonferroni correction for multiple
testing in the genetic association analyses, and we
thus set a p value threshold of 0.05/(5 outcomes þ 32
cardiovascular traits) ¼ 0.0014. When appropriate, we
adjusted for the relatedness among samples. For
Mendelian randomization analyses of clinical events,
we estimated the post hoc power as described previ-
ously (30). We used the genetic sample size and case/
control ratios for each outcome trait in this study,
together with the proportion of variance of cystatin C
explained by the genetic variant (r2 ¼ 0.0275). We
calculated the existing power to detect an effect using
a Bonferroni-adjusted 2-sided type 1 error (a) of
0.05/5 ¼ 0.01 (corrected for testing 5 clinical out-
comes) (Online Figure 3).

Analyses were conducted in Stata Statistical Soft-
ware Release 13, version 13.1 (StataCorp LP, College
Station, Texas) and R version 3.2.3 “Wooden Christ-
mas-Tree” (R Foundation for Statistical Computing,
Vienna, Austria) with R Studio version 0.99.983
(RStudio, Inc., Boston, Massachusetts).
RESULTS

The Cystatin C Mendelian Randomization Consortium
comprises 15 general population–based prospective
cohorts and 1 randomized clinical trial including up to
76,481 individuals from European descent (Table 1,
Online Tables 1 and 2). In total, 19,394 cardiovascular
events were recorded comprising 11,552 CHD events,
7,057 IS cases, 3,009 HF events, and 8,673 MIs
(Table 1). A total of 37,126 individuals had measures of
serum cystatin C (Table 1, Online Table 8). To maxi-
mize power (Online Figure 3) for the genetic analyses
of risk factors and clinical outcomes, we added data
from relevant consortia, while excluding overlapping
data from the 16 participating studies (Online
Table 3). The baseline characteristics of the consor-
tia were published previously (21–24,31–43).

ASSOCIATION AND SPECIFICITY OF THE GENETIC

INSTRUMENT FOR CYSTATIN C CONCENTRATIONS. The
genetic instrument (rs911119, or its proxies) (Online
Table 4, Online Figure 1) had similar allele frequencies
among the cohorts (Online Figure 2) and showed a
strong association with circulating cystatin C. In data
from 29,805 individuals (who were genotyped of
the 37,126 in whom cystatin C was measured), each
additional copy of the minor allele was associated
with a 6.13% reduction in cystatin C (95% confidence
interval [CI]: 5.75 to 6.50; p ¼ 5.95 � 10�211) and
explained 2.75% (95% CI: 0.75 to 4.76) of the pheno-
typic variation (F-statistic ¼ 961) (Online Appendix,
Online Figure 4). We queried various eQTL sources
and confirmed that rs911119 only associated with
expression of CST3 and not with that of other genes
in the region �500 kb surrounding rs911119 (Online
Appendix, Online Figure 5, Online Table 12).

We replicated the association of rs911119 (or its
proxies) with cystatin C–based eGFR (0.08 SD per
allele; 95% CI: 0.07 to 0.08; p ¼ 4.00 � 10�124) (Online
Figure 6) (17–20). We further confirmed a lack of asso-
ciation with creatinine-based eGFR (0.21 SD per allele;
95%CI:�0.11 to 0.52; p¼0.21) (Online Figure 6) (17–20).

OBSERVATIONAL ASSOCIATIONS OF CIRCULATING

CYSTATIN C. In linear regression analyses adjusted
for age and sex, higher serum cystatin C concentra-
tions were associated with several cardiovascular risk
factors and traits (Online Figure 7). In contrast,
rs911119 showed no significant association with these
traits after corrections for multiple testing (Online
Figure 6). Use of fixed or random effects modeling
did not alter summary estimates derived from meta-
analysis (Online Figure 8).

An observational meta-analysis adjusted for age
and sex showed a strong dose-dependent relation
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between cystatin C concentrations and CVD (Figure 2,
Online Figure 9). Per doubling of cystatin C concen-
trations, the risk of CVD increased (RR: 2.33; 95% CI:
2.08 to 2.62; p ¼ 1.28 � 10�47; 6,220 cases and 25,777
control subjects), with the relationship being log-
linear (Online Figure 9). Although adjustment for
additional confounders diminished the association,
an independent relation between cystatin C and
CVD persisted (RR: 1.82; 95% CI: 1.56 to 2.13;
p ¼ 2.12 � 10�14) after adjustment for age, sex,
high-density lipoprotein cholesterol, body mass in-
dex, systolic blood pressure, eGFR, and smoking
status (Figure 2, Online Figure 10, Online Table 11).
Adjusting for additional potential confounders (high-
sensitivity C-reactive protein, total cholesterol, and
glucose) did not further diminish the association
(Online Table 11), nor did confining the analysis to
incident-only cases (Figure 2, Online Figure 10). In
the fully adjusted observational analysis, cystatin C
was also associated with an increased risk of CHD, IS,
and HF, but not with MI (Figure 3, Online Figure 11,
Online Table 11).

We meta-analyzed genetic data from 43 studies
with 63,292 CVD cases (including 20,251 CHD cases
from CARDIoGRAM, 15,388 CHD cases from C4D,
12,389 IS cases from METASTROKE, and 2,526 HF
cases from CHARGE) and a total of 188,924 control
subjects (Online Table 10), but found no associa-
tion of rs911119 with CVD (RR per minor allele:
1.00; 95% CI: 0.98 to 1.02; p ¼ 0.994) (Online
Figure 12). Likewise, we found no association of
the genetic variant with CHD, IS, HF, or MI (Online
Figure 12).
2 Estimates of the Association of Circulating Cystatin C With CVD Risk
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MENDELIAN RANDOMIZATION ANALYSIS. In Men-
delian randomization analysis, taking into account
both the genetic association with cystatin C
(Online Figure 4) and CVD (Online Figure 12) to
triangulate the underlying causal effect, we detec-
ted no evidence for a causal relation between
circulating cystatin C and CVD (odds ratio [OR]:
1.00 per doubling of cystatin C; 95% CI: 0.82 to
1.22; p ¼ 0.994) (Figure 2). This was statistically
different from the observational estimate obtained
from the fully-adjusted model using incident-only
events (p for heterogeneity ¼ 1.6 � 10�5). Like-
wise, no causal association of cystatin C was
detected for any individual subtype of vascular
disease (Figure 3).

POWER. With a combined sample size of 63,292 CVD
events, 43,068 CHD events, 16,784 IS events, and
3,440 HF cases (Online Figure 12), we estimated to
have >80% power to detect an OR >1.10 per doubling
cystatin C for CVD, 1.13 for CHD, 1.19 for IS, and 1.45
for HF (Online Figure 3).

DISCUSSION

In this first, large-scale Mendelian randomization
analysis, we investigated whether the previously
reported robust association between circulating
cystatin C and risk of CHD and ischemic stroke
(5,6) was likely to be causal. In our model, adjusted
for traditional risk factors, cystatin C indeed was
strongly associated with CVD risk (Figure 2) in a
dose-dependent manner (Online Figures 9 and 11).
Even when limited to incident-only cases and in
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FIGURE 3 Estimates of the Association of Circulating Cystatin C on Other Cardiovascular Outcomes
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a fully adjusted analysis, cystatin C had an inde-
pendent association with clinical events. However,
in an adequately powered Mendelian randomiza-
tion approach, we did not identify evidence of
a causal relationship between circulating cystatin C
and CVD or any individual cardiovascular
component.

Our Mendelian randomization analyses confirmed
and extended findings from a recent report
analyzing data from the population-based Malmö
Diet and Cancer study as well as the CARDIOGRAM
meta-analysis, suggesting a lack of association be-
tween an SNP (rs13038305, linkage disequilibrium
r2 ¼ 0.99 with rs911119) (Online Table 3) in CST3 and
the risk of CHD (44). However, in that large analysis,
a formal instrumental variable estimate was not
synthesized, nor was the association of the SNP with
IS or HF investigated. Our meta-analysis, on the
basis of data from 43 cohort studies including more
than 250,000 individuals with more than 63,000
cardiovascular events, is by far the largest and most
comprehensive study to date to examine these
associations.

For Mendelian randomization to generate a valid
causal estimate, several assumptions needed to be
fulfilled. One such assumption was sufficient statis-
tical power. We estimated to have >80% power to
detect ORs smaller than the lower limit of the
observed association of cystatin C with CVD from
multivariate analyses (Online Figure 3).
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(A) Epidemiological evidence shows that increased levels of circulating cystatin C are associated with increased risk of disease. Whether this relation is truly causal or is a

consequence of confounding or reverse causality is hard to determine. Our study replicated the strong observational associations between circulating concentrations of

cystatin C and risk of cardiovascular diseases (CVDs), but also showed that cystatin C was associated with many potential confounders. (B) We used a genetic variant

(rs911119) in the gene CST3, which associates with CST3 gene expression and directly encodes cystatin C. The genetic variant showed a very strong association with

circulating cystatin C concentrations, but not with potential confounders. In Mendelian randomization analysis, no evidence for a causal association with CVD was

identified. Thus, our study provides no evidence in support of a causal role for circulating cystatin C in the etiology of atherosclerotic vascular disease. HDL ¼ high-

density lipoprotein; LDL ¼ low-density lipoprotein; SNP ¼ single nucleotide polymorphism.
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Another assumption was that the instrument is
strongly associated with the biomarker of interest.
Indeed, common variation in the CST3 locus
almost exclusively associated with cystatin C (and
thus eGFR on the basis of cystatin C) in both previous
studies (18) and ours (Online Figures 4 and 6).
Convincingly, eQTL analyses confirmed that rs911119
was strongly associated with CST3 expression, but
not with the nearby gene CST9, arguing against
a potential pleotropic effect (Online Appendix,
Online Figure 5). Although we found nominally
significant associations with diastolic blood pres-
sure, waist circumference, and smoking, these
associations did not persist after correction for
multiple testing.

STUDY LIMITATIONS. In any Mendelian randomiza-
tion study, the genetic instrument (in this case
rs911119) should not experience “weak instrument
bias” (43). In our study, this seemed very unlikely,
given the strong association with cystatin C (F-sta-
tistic of 961). Furthermore, weak instrument bias
would bias the causal estimate toward the observa-
tional estimate; in contrast, the causal estimates that
we reported were statistically different from the
observed estimates and consistently null.

Our study relied on the ability of the assay to
quantify serum concentrations of cystatin C with
sufficient accuracy and precision. Recent studies
have shown that genetic variants can change the
epitope measured by the assay (44,45). We cannot
rule out the possibility that our instrument (rs911119)
or its proxies altered the epitope (versus actually
changing the quantity of circulating cystatin C), nor
can we be certain to what extent such a change would
affect the ability to detect an association with cystatin
C concentrations. Last, in principle, the assay type
and the time period of measurement could have
influenced our findings, although in our studies, the
mean cystatin C concentrations were comparable
(Table 1) and we found consistent associations be-
tween our genetic variant and cystatin C (Online
Figure 4) and between cystatin C and risk of CVD
across studies.

Although we fitted a multivariate model that
extensively adjusted for confounders for observa-
tional analyses, residual confounding may still exist,
which is a classic challenge for conventional obser-
vational epidemiology. Specifically, as no gold
standard measurements of renal function (such as
inulin-based GFR measurements) were quantified in
studies contributing to this analysis, it remains
possible that residual confounding by impaired kid-
ney function remained and was not fully accounted
for by adjustments in our observational analyses. As
a biomarker for kidney function, cystatin C has
proven its value and represents a stronger predictor
for CVD risk than does creatinine (4). Thus, although
our analyses provided no evidence for a causal as-
sociation between cystatin C and CVD, it did
not preclude the use of cystatin C in disease
prediction.

We should note that considerable heterogeneity
(I2) existed in our observational analysis (Online
Figure 7). This might have been due to the number
of studies included (up to 8) in our observational
analysis (as compared with the genetic analysis).
Conversely, little heterogeneity existed in our ge-
netic analysis (Online Figure 6). Adding more studies
to the observational analysis (46) or stratifying on the
basis of these subgroups (29) might reduce hetero-
geneity and/or identify potential characteristics that
account for heterogeneity. Also, a more uniform
definition of clinical outcomes across studies
contributing toward the observational analysis of
cystatin C and event risk might reduce the hetero-
geneity further.

CONCLUSIONS

We conducted a comprehensive Mendelian randomi-
zation of circulating cystatin C in the development of
CVD in the general population. Our findings suggest
that residual confounding (e.g., by impaired renal
function) and/or reverse causality, rather than a
causal effect of cystatin C per se, likely explained the
observational relationship between cystatin C and
clinical events (Central Illustration). As such, in-
terventions aimed at lowering circulating cystatin C
are unlikely to represent an effective means to pre-
vent CVD.
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PERSPECTIVES

COMPETENCY IN MEDICAL KNOWLEDGE: Epide-

miological studies show a strong association between

circulating cystatin C concentrations and cardiovascular

risk, independent of renal function, but the results of a

large Mendelian randomization study do not support a

causal relationship.

TRANSLATIONAL OUTLOOK: Investigators should

consider whether the available data are sufficient to forego

prospective studies of measures that lower circulating cys-

tatin C to prevent CVD.
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