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Abstract 

More than a million childhood diarrhoeal episodes occur worldwide each year, and in developed 

countries a considerable part of them are caused by viral infections. In this study we aimed to 

search for genetic variants associated with diarrhoeal disease in young children by meta-

analyzing genome-wide association studies, and to elucidate plausible biological mechanisms. 

The study was conducted in the context of the Early Genetics and Lifecourse Epidemiology 

(EAGLE) consortium. Data about diarrhoeal disease in two time windows (around one year of 

age and around two years of age) was obtained via parental questionnaires, doctor interviews or 

medical records. Standard quality control and statistical tests were applied to the 1000 Genomes 

imputed genotypic data. 

The meta-analysis (N=5,758) followed by replication (N=3,784) identified a genome-wide 

significant association between rs8111874 and diarrhoea at age one year. Conditional analysis 

suggested that the causal variant could be rs601338 (W154X) in the FUT2 gene. Children with 

the A allele, which results in a truncated FUT2 protein, had lower risk of diarrhoea. FUT2 

participates in the production of histo-blood group antigens and has previously been implicated 

in the susceptibility to infections, including Rotavirus and Norovirus. Gene-set enrichment 

analysis suggested pathways related to the histo-blood group antigen production, and the 

regulation of ion transport and blood pressure. Among others, the gastrointestinal tract, and the 

immune and neuro-secretory systems were detected as relevant organs. 

In summary, this genome-wide association meta-analysis suggests the implication of the FUT2 

gene in diarrhoeal disease in young children from the general population. 
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Introduction 

Diarrhoea, defined as three or more loose stools within the previous 24 hours, is probably one of 

the most common symptoms in children, with an estimated 1,370 million annual episodes in 

children younger than five years in 2010 (1). Two percent of these episodes progress to severe 

disease, and 700,000 episodes lead to death, mainly in low-income countries (1). In developed 

countries, diarrhoeal disease is a common reason for attendance at a general practitioner, 

especially in children under five years of age (2).  

Several pathogens can account for infections associated with diarrhoeal disease, including 

viruses, bacteria and parasites. The GEMS study (Global Enteric Multicenter Study), conducted 

as a case-control study in seven African and Asian sites, identified Rotavirus, Cryptosporidium, 

enterotoxigenic Escherichia coli, and Shigella as most responsible attributable pathogens for 

cases of moderate-to-severe diarrhea (3). In developed countries, improvements in public health 

infrastructure (water and sewage management), has caused a shift in the main causes of acute 

pediatric diarrhoea, moving from bacterial and parasite etiologies to viruses. Rotavirus is the 

primary cause of diarrhoeal disease globally, and is responsible for almost half of the 

gastroenteritis cases requiring hospitalization in Western countries, followed by Norovirus, 

Adenovirus and Salmonella (4). The peak age for infection with Rotavirus is between three 

months and two years, coinciding with reduced protection by transplacental transfer of maternal 

antibodies (5) and the end of the lactation period (6). At the age of five, almost all children have 

been infected with Rotavirus, and progressively develop natural immunity against this virus (7). 

Enteric pathogens damage small bowel enterocytes and cause impaired intestinal absorption, 

low grade fever and watery diarrhoea as a result of the deregulation of ion transport and 

stimulation of the enteric nervous system (8, 9). In children, factors other than enteric pathogens 

can cause diarrhoea, including among others extra-intestinal infections, intolerances or food 

allergies (10), nutrient deficiencies, antimicrobials, or hereditary diseases, such as cystic 

fibrosis, but these represent a small proportion of all cases of diarrhoea. 

The exposure to infectious agents plays a major role in the acquisition of the pathogen and 

development of diarrhoeal disease. However, not all individuals are equally susceptible to 
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infection, and if infected, they may differ in their immunological response. Host genetic factors 

can explain part of the differences in susceptibility and response to infection. In a study on 

families with adopted children, it was shown that premature death due to infection of the 

biological parent, but not of the adopting parent, increased the relative risk of death due to 

infection in the adopted child by 5.8 fold, a higher risk than observed for vascular disease or 

cancer (11). Twin studies on infectious diseases have shown higher correlation between 

monozygotic than dizygotic twins (12-14). Heritability for early childhood diarrhoea was 

estimated to be 54% in a pedigree-based design in Brazil (15). 

Candidate gene studies for infectious gastroenteritis have identified genetic variants in genes 

involved in the innate and acquired immune responses and in genes that participate in the 

production of histo-blood group antigens (HBGAs), which serve as receptors for numerous 

pathogens. In particular, the non-secretor phenotype, associated with null or inactivating 

mutations in FUT2 gene resulting in a lack of certain antigens in secretions and epithelial 

mucosa, confers strain-specific protection against Norovirus (16-18) and Rotavirus (19). A 

review of the associations between enteric pathogens and genetic variants can be found 

elsewhere (20, 21).  

The aims of the present study were: 1) to identify genetic variants that confer susceptibility to 

diarrhoeal disease in young children from the general population of developed countries through 

a genome-wide association meta-analysis, and 2) to elucidate potential biological mechanisms 

involved in diarrhoeal disease using pathway analysis approaches. 

 

  

 at H
elm

holtz Z
entrum

 M
uenchen on A

ugust 31, 2016
http://hm

g.oxfordjournals.org/
D

ow
nloaded from

 

http://hmg.oxfordjournals.org/


 

8 

 

Results 

Sample 

Four different traits, any diarrhoea and doctor’s confirmed diagnosis of diarrhoea around 1 year 

of age (D1Y and DD1Y) and around 2 years of age (D2Y and DD2Y), were explored. Samples 

analyzed for each outcome in the discovery and in the replication phase are shown in Table 1. 

Information on diarrhoea was collected through questionnaires, doctor interviews or medical 

records (see Supplementary Material – Annex A). 

In the discovery phase, 46.8% of the children had had at least one diarrhoeal episode around the 

age of one year (D1Y), while this proportion decreased to 21.8% for the cases diagnosed by a 

doctor (DD1Y). The proportions for children around the age of two years were 50.9% for 

diarrhoeal disease (D2Y) and 20.6% for doctor’s diagnosis (DD2Y). Similar frequencies of 

diarrhoea were observed in the replication samples. The number of diarrhoea cases in 

Generation R and CHOP was lower than in other cohorts. For some of the diarrhoeal 

definitions, ALSPAC and GINIplus showed higher proportion of cases among males than 

among females.  

Discovery phase 

The Q-Q plots and the Manhattan plots for each outcome are shown in Figure 1 (D1Y) and in 

the Supplementary Material Figures S1 (DD1Y), S2 (D2Y) and S3 (DD2Y). Genomic inflation 

factor, lambda (λ), ranged from 0.9952 to 1.0031. 

For D1Y, the meta-analysis of 5,758 samples revealed a genome-wide significant variant, 

rs8111874, at 19q13.33 [odds ratio (OR) (95% confidence interval (CI))=1.32 (1.21-1.44); p-

value=1.06E-09] (Table 2, Figure 2). This lead SNP was also nominally associated with DD1Y 

[OR (95%CI)=1.26 (1.14-1.39); p-value=1.05E-05] and with DD2Y [OR (95%CI)=1.32 (1.17-

1.48); p-value=4.6E-07], and with D2Y [OR (95%CI)=1.08 (1.00-1.18); p-value=6.56E-02]. In 

D1Y, the G allele increased the risk of diarrhoeal disease in all the studies (p-value for 

heterogeneity=2.99E-02, Table 2).  

Another locus at 4q21.23, was associated with DD1Y at genome-wide significance [N=6,403, 

OR (95%CI)=1.31 (1.19-1.44); p-value=2.92E-08] (Table S1). The lead variant, rs1481779, was 
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located in an intron of ARHGAP24 gene. This variant was also nominally associated with D1Y 

[OR (95%CI)=1.09 (1.01-1.19); p-value=3.7E-02], but not with D2Y or DD2Y.  

Variants with a p-value<1E-05 are shown in Table 2 (D1Y) and in Supplementary Tables S1 

(DD1Y), S2 (D2Y) and S3 (DD2Y). With the exception of the signal at 19q13.33, no major 

overlap was observed among the suggestive variants for each outcome (data not shown). A 

description of the potential function of the genetic variants and genes in each loci detected at a p 

value < 1E-05 can be found in Supplementary Tables S4-S7. 

Replication phase 

Seventy-two loci (p-value<1E-05 in any of the four diarrhoea definitions) were followed for 

replication in an independent dataset (Table 1). After multiple-testing adjustment, the SNP 

rs8111874 at chromosome 19q13.33 was associated with D1Y [replication: OR (95%CI)=1.25 

(1.13-1.39); p-value=1.69E-05] (Table 2), and it was nominally associated for the other 

diarrhoea outcomes (Figure 2). Other variants at the same locus were also associated with 

DD1Y and DD2Y (Supplementary Tables S1 and S3). None of the variants in other loci 

replicated, and neither of them reached genome-wide significance in the combined analyses. 

Results of the replication phase can be found in Table 2 (D1Y) and in Supplementary Tables S1 

(DD1Y), S2 (D2Y) and S3 (DD2Y). 

Chromosome 19 locus: FUT2 gene 

The regional association plot of rs8111874 at 19q13.33 shows a linkage disequilibrium block 

that overlaps several genes, including FUT2 (Figure 3A). FUT2 participates in the production of 

histo-blood group antigens (HBGAs) and contains a stop mutation (rs601338, W154X) known 

to confer protection against certain infections. We conditioned the top SNP at 19q13.33 

(rs8111874) on the stop mutation (rs601338) and viceversa: the odds ratios from these analyses 

were attenuated (Table 3). After conditioning to rs601338, no secondary signals were observed 

in the region (window size 1 Mb) (Figure 3B).  The forestplots for rs601338 (W154X) are 

shown in Supplementary Figure S4.  

Enrichment analysis 
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Two prediction programs, the Meta-Analysis Gene-set Enrichment of variaNT Associations 

(MAGENTA) and the Data-driven Expression Prioritized Integration for Complex Traits 

(DEPICT)  were used to investigate gene-sets enriched among the variants with the lowest p-

values. Using MAGENTA, the 

“KEGG_GLYCOSPHINGOLIPID_BIOSYNTHESIS_GLOBO_SERIES” gene-set was 

identified in DD2Y at a 5% False Discovery Rate (FDR) (Supplementary Table S8). Six out of 

14 genes of this pathway had SNPs in the 95th percentile of lowest p-values. This gene-set was 

also weakly associated with diarrhoea at age one year (D1Y). Other gene-sets with nominal 

evidence are listed in Supplementary Table S8, including the 

“KEGG_GLYCOSPHINGOLIPID_BIOSYNTHESIS_GANGLIO_SERIES” and the blood 

pressure regulatory gene-set “KEGG_RENIN_ANGIOTENSIN_SYSTEM”. 

The top 10 gene-sets detected with DEPICT for each outcome are shown in Supplementary 

Table S9. The gene-sets “ENSG00000147955 - SIGMAR1 PPI subnetwork” (involved in ion 

channels regulation and modulation of neurotransmitter release), “MP:0001675 - abnormal 

ectoderm development”, “GO:0007492 - endoderm development” and “ENSG00000140612 - 

SEC11A PPI subnetwork” (component of the microsomal signal peptidase complex)  remained 

after multiple-testing for DD1Y. Genetic variants showing suggestive p-values were linked to 

genes with enriched expression in the gastrointestinal tract (D1Y), the immune system (DD1Y) 

and in the neuro-secretory system (D2Y), among others (Supplementary Table S10). Exclusion 

of genetic variants in 1 Mb around the FUT2 locus gave similar gene-sets and tissue/organs, but 

p-values were attenuated (data not shown). 

Overlap with known variants and genes for related diseases 

We compared the results from this study with variants reported in the literature as associated 

with inflammatory bowel disease (IBD) risk (22) and with viral infection and response to 

vaccination (23-36). Nine out of the 162 variants identified in IBD were nominally associated 

with D1Y (Supplementary Table S11). Two of these variants passed the multiple-testing 

correction: one of them located in the FUT2 gene (p-value=4.67E-09, opposite effect direction), 

and the other one in CARD11 locus (p-value=1.52E-05, same effect direction). In addition, one 
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out of 139 variants associated with infections was also associated with D2Y after correction for 

multiple-testing (Supplementary Table S12). Specifically, the A allele of rs17793829, located in 

TTC7B gene, was associated with higher anti Cytomegalovirus IgG titer (31) and higher risk for 

D2Y (p value=2.12E-04). Finally, we evaluated 86 genes retrieved from OMIM (Online 

Mendelian Inheritance in Man) with the entry “diarrhea”. None of them was associated with 

childhood diarrhoeal disease after multipletesting correction (Supplementary Table S13).  
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Discussion 

This study suggested the implication of the FUT2 locus in the diarrhoeal risk and provided 

evidences supporting the role of the histo-blood group antigen (HBGA) production and the 

regulation of ion transport pathways. The gastrointestinal tract, and the immune and neuro-

secretory systems were detected as relevant organs. 

The genome-wide association meta-analysis followed by replication identified an association 

between rs8111874 mapping to the 19q13.33 locus and diarrhoea around one year of age 

(D1Y). Although with different strength, the association was also observed in all the different 

diarrhoeal outcomes investigated. The rs8111874 variant is located in an intronic region of the 

NTN5 (Netrin 5) and SEC1P (Secretory Blood Group 1, Pseudogene) genes and close to FUT2, 

previously associated with susceptibility to infection. FUT2 encodes the Fucosyltransferase 2 

enzyme that participates in the production of histo-blood group antigens (HBGAs) by catalyzing 

the addition of a fucose residue in α1,2 linkage to the galactose of O- or N-glycoproteins and 

globo-, ganglio- or lacto-series of glycolipids (37). The FUT2 enzymatic activity is 

polymorphic, exhibiting the non-secretor phenotype (lack of certain antigens in the gut and 

epithelial mucosa) when inactivating mutations are present in the FUT2 gene. The most 

common FUT2 inactivating variant in Caucasians (Europeans and Iranians) and in Africans, is 

the stop mutation W154X (rs601338), while in Asians it is the missense variant A385T 

(rs1047781) (38). In order to investigate whether the signal observed at 19q13.33 locus could be 

caused by the stop mutation W154X (rs601338), the lead SNP in the region (rs8111874) was 

conditioned to the inactivating mutation and viceversa. The magnitudes of the effects of the 

conditional analyses were substantially attenuated, suggesting the presence of one single 

association signal. Children with the A allele at rs601338 (W154X), which results in a truncated 

FUT2 protein and the non-secretor phenotype, had lower risk of diarrhoeal disease during the 

first years of life. In agreement with our results from a population-based design, the non-

secretor phenotype has been associated with protection against Rotavirus (19), Norovirus (16-

18) and Helicobacter pylori (39, 40) in small settings of very well characterized hospitalized 

subjects. It is known that Norovirus (41) and Rotavirus (42-44) bind to the antigen associated 
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with the FUT2 secretor phenotype to enter the cells. In contrast, the FUT2 non-secretor 

phenotype has been associated with higher risk of urinary tract infections (45), acute 

pyelonephritis (46), oral or vaginal Candida infections (12, 47, 48), Haemophilus influenza 

(49), Neisseria  meningitides and Streptococcus pneumoniae infections (50). In addition, non-

secretor individuals are at a higher risk of developing autoimmune diseases such 

as inflammatory bowel disease (22, 51), psoriasis (52, 53), and Behcet’s disease (54) and they 

also have higher vitamin B12 plasma levels (55, 56). Recently, the non-secretor phenotype has 

been associated with gut microbiota at both the compositional and functional level (57). Non-

secretors have lower species richness than the secretors (58), and the secretion status is a 

modifying factor for gut microbiota composition in Chron’s disease (59). Fucose from 

fucosylated proteins synthesized by FUT2 in response to the activation of the innate immunity 

can be used by microbes as an energy source, and this has been shown to reduce bacterial 

infection and downregulate the expression of virulence genes (60, 61). Fucosylation appears to 

be a protective mechanism to maintain host-microbial interactions during pathogen-induced 

stress, but on the other hand it facilitates viral entrance into the cells. 

Although the non-secretor phenotype related mutation in FUT2 (W154X, rs601338) is the most 

likely causal variant of childhood diarrhoeal disease at 19q13.33 locus, the functional role of 

other variants in the region cannot be completely ruled out based on statistical analysis. Another 

variant, located in an intron of the ARHGAP24 gene (rs1481779), reached genome-wide 

significance in DD1Y, but it could not be replicated. ARHGAP24 codes a Rho GTPase-

activating protein involved in cell polarity, cell morphology and cytoskeletal organization; and 

SNPs in it have been reported to be associated with blood pressure regulation (62). 

In order to gain insight into potential molecular mechanisms underlying diarrhoeal disease in 

young children, we performed enrichment studies. The analysis using two different programs 

identified several gene-sets at 5% FDR. The 

“KEGG_GLYCOSPHINGOLIPID_BIOSYNTHESIS-GLOBO_SERIES” gene-set contains 

genes related to the production of histo-blood group antigens (HBGAs) from globo-series 

glycolipids and was at least nominally associated with several definitions of diarrhoea (D1Y and 
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DD2Y). Apart from FUT2, already discussed above, A4GALT (Alpha 1,4-

Galactosyltransferase) in the gene-set also showed some evidence of association with D2Y. A 

similar gene-set, “KEGG_GLYCOSPHINGOLIPID_BIOSYNTHESIS-GANGLIO_SERIES”, 

was also identified.     

A second gene-set consisting of a SIGMAR1 protein interaction network (“ENSG00000147955 

- SIGMAR1 PPI subnetwork”) was detected for DD1Y. SIGMAR1 is an endoplasmic reticulum-

resident two-transmembrane chaperone that regulates voltage-gated ion channels including 

calcium, sodium, and potassium channels (63). We also identified other pathways related to 

hydro-electrolytic balance such as the “KEGG_RENIN_ANGIOTENSIN_SYSTEM”, the 

“GO:0005227 – calcium activated cation channel activity”, the “GO:0015299  - solute:hydrogen 

antiporter activity”, and the “ENSG00000187446 - ENSG00000187446 PPI subnetwork”, 

related to cell pH regulation by controlling plasma membrane-type Na(+)/H(+) exchange 

activity (64).  Deregulation of transport of ions is a central mechanism in the pathophysiology 

of enteric pathogens (8, 9). Host genetic variants might compensate or accelerate watery stools 

after enteric infection.  

Other gene-sets related to ectoderm and endoderm development were observed for DD1Y: 

“MP:0001675 - abnormal ectoderm development” and “GO:0007492 - endoderm 

development”. The endoderm is the inner most germ layer that develops into the gastrointestinal 

tract, the lungs and associated tissues. Finally, the “ENSG00000140612 – SEC11A PPI 

subnetwork” was also identified. SEC11A is a component of the microsomal signal peptidase 

complex which removes signal peptides from nascent proteins as they are translocated into the 

lumen of the endoplasmic reticulum. 

As expected, the gastrointestinal tract and the immune system were detected as relevant organs 

for diarrhoeal disease. The gastrointestinal tract was identified with the general definition of 

diarrhoea around one year of age (D1Y); while doctor diagnosis of diarrhoeal disease (DD1Y), 

probably more related to severe cases, highlighted the immune system. In addition, the neuro-

secretory system was found to be associated with diarrhoea around two years of age (D2Y). The 

central nervous system communicates with the intestine through the hypothalamic-pituitary-
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adrenal axis. The autonomic enteric nervous system regulates gastrointestinal motility, 

secretion, barrier function, and inflammatory response at the mucosa (65). Indeed, gene-sets 

related to neurotransmission were also identified: “Panther - 

Nicotinic_acetylcholine_receptor_signaling_pathway”, “GO:0090278 - negative regulation of 

peptide hormone secretion” or a protein network regulating neurotransmitter release 

“ENSG00000147955 - SIGMAR1 PPI subnetwork”. Several organs, such as the urogenital and 

musculoskeletal systems, not a priori of relevance for diarrhoeal disease, were identified for 

DD2Y. 

Finally, given the known opposite effect of the FUT2 locus in infectious diseases compared to 

autoimmune diseases, we decided to compare our GWAS results with the results reported in the 

largest GWAS of IBD, for which an infectious component has been suspected (22). Besides the 

FUT2 locus, where we confirmed the opposite direction of the association, the same allele in a 

SNP at CARD11 locus, was associated with higher risk of IBD and higher risk of D1Y. 

CARD11 (Caspase Recruitment Domain Family, Member 11) is involved in the co-stimulatory 

signal essential for T-cell receptor (TCR)-mediated T-cell activation. We also compared our 

results with several GWAS of viral infections and response to vaccination (23-36). The TTC7B 

(Tetratricopeptide Repeat Domain 7B) locus, associated with higher anti Cytomegalovirus IgG 

titer (31), a marker of either new infection or frequent viral reactivation, was associated with 

higher risk for D2Y. Other studies have reported the participation of TTC7B in Chikungunya 

virus infection (66), and a paralog of TTC7B, TTC7A, has been implicated in a rare hereditary 

disease characterized by intestinal obstructions and profound immune defects (67). 

The main limitations of the study are the low specificity of the phenotype definition, and the 

lack of underlying etiological information for the defined episodes. Information on diarrhoeal 

disease was retrieved using standard epidemiological tools for population-based birth cohort 

studies: questionnaires (ALSPAC, Generation R, GINIplus and LISAplus, INMA_VAL and 

INMA_SAB and MoBa), medical interviews (COSPAC) and medical records (CHOP). Apart 

from medical record definitions, the most specific assessment of infectious gastroenteritis was 

in Generation R and in MoBa studies, where the questionnaires included the following 
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statement: “infections of the stomach/intestine or gastric flu”. In fact, Generation R showed a 

low number of diarrhoeal disease cases and a high effect of the variant at FUT2 locus, 

suggesting less misclassification problems. We acknowledge that misclassification and 

heterogeneity (i.e. infection by different underlying etiologies, bacterial species or viral strains 

or seasonality) may have decreased the statistical power in the discovery phase and might 

explain the lack of replication of suggestive hits besides the FUT2 locus. Furthermore, cohorts 

with different study designs participated in the analyses: mainly population-based birth cohorts, 

but also a random collection of pediatric children from a hospital centre (CHOP, replication), 

and a population-based birth cohort of infants born to mothers with a history of asthma 

(COPSAC2000, discovery). The potential relationship between asthma and infection diseases 

might have affected the associations. To our knowledge there are no population-based studies of 

this sample size with molecular diagnosis of infectious gastroenteritis. Although we analyzed all 

available samples from the EArly Genetics and Life course Epidemiology (EAGLE) consortium 

following a flexible inclusion criteria the sample size is still intermediate for genome-wide scale 

studies. Therefore, increasing the specificity of the outcome and the sample size in population-

based designs might reveal novel loci for childhood diarrhoeal disease and confirm the role of 

host genetics in infectious diseases during the first years of life. Finally, although diarrhoeal 

disease in young children is mainly caused by Rotavirus, which is a wide-spread virus 

producing seasonal break-outs in all the countries included in this study, we cannot completely 

exclude the possibility that the identified variants reflect different levels of exposure to the 

virus, rather than a higher susceptibility to infection. 

In summary, the genome-wide association meta-analysis of diarrhoeal disease in children 

suggested the implication of the FUT2 locus at the population level, and has pointed to W154X 

(rs601338) as the most likely causal variant. The histo-blood group antigen (HBGA) production 

and the regulation of ion transport were plausible underlying biological mechanisms accounting 

for part of the host genetic variability of diarrhoeal disease.  
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Material and Methods 

Sample and diarrhoeal disease definition 

This study was performed within the framework of the Early Genetics and Life course 

Epidemiology (EAGLE) Consortium (http://www.wikigenes.org/e/art/e/348.html) and it was 

divided in two phases: discovery and replication. The following population-based birth cohorts 

or studies settled up in developed countries participated in the discovery and/or replication 

phases (Table 1): the Avon Longitudinal Study of Parents And Children (ALSPAC), the 

Children's Hospital of Philadelphia (CHOP) study, the Copenhagen prospective studies on 

asthma in childhood (COPSAC2000 and COPSAC2010), the Generation R study, the Influence 

of Life-style related factors on the development of the Immune System and Allergies in East 

and West Germany plus the influence of traffic emissions and genetics (LISAplus) study, the 

Study on the influence of Nutrition Intervention plus Air pollution and Genetic on Allergy 

development (GINIplus), the Infancia y Medio Ambiente (INMA) project, and the national 

Norwegian Mother and Child Cohort Study (MoBa). Cohorts were allocated in the discovery or 

in the replication set with the aim of making both sets comparable. Diarrhoeal disease was 

defined in two different time windows: around age 1 year (from 0 months to 18 months) and 

around age 2 years (from 12 to 30 months). At each time point diarrhoea (D1Y and D2Y) and 

doctor diagnosis of diarrhoea (DD1Y and DD2Y) were studied. Data were collected from 

parental questionnaires, doctor interviews or medical records. A detailed description of 

diarrhoeal disease definitions in each cohort at each time point is described in the 

Supplementary Material – Annex A. A comparison of the year of initiation of the cohort vs. the 

year of introduction of Rotavirus vaccination in each country can be seen in Supplementary 

Material – Annex B. The vaccine was introduced in the USA at the time when children from 

CHOP study were enrolled, and thus we excluded vaccinated children, identified through 

medical records, from the analysis.  

Each cohort obtained the ethical approval from the respective Ethical Committees and a written 

consent including permission to perform GWAS analyses was obtained from participating 

parents. 
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Genotyping, quality control and imputation 

Genotypes within each cohort were collected using high-density SNP arrays on Illumina 

(ALSPAC, CHOP, COPSAC2000, COPSAC2010, Generation R, INMA_SAB, INMA_VAL, 

MoBa) and Affymetrix (GINIplus and LISAplus) platforms. Each cohort imputed up to ~30 M 

variants using MACH (68) or IMPUTE2 (69) considering the 1000 Genomes Project CEU 

release March 2012 

(http://mathgen.stats.ox.ac.uk/impute/ALL_1000G_phase1integrated_v3_impute.tgz) as the 

reference population panel. More details on the process followed by each cohort are described 

in Supplementary Material – Annex A. 

Analysis, meta-analysis and replication 

The study included only at term Caucasian singletons and children with congenital anomalies 

were excluded. The association between diarrhoeal disease and the variant dose was assessed in 

each study using logistic regression analyses assuming an additive genetic model. Sex and 

principal components accounting for genetic sub-stratification were added as covariates. 

Chromosome X was analysed under the same statistical model but without sex adjustment. 

More details on the programs used by each study to perform the analysis can be found in 

Supplementary Material – Annex A. 

Only variants with a Minor Allele Frequency (MAF) ≥0.01 and with a quality of imputation ≥ 

0.4 (INFO) or ≥ 0.3 (R2) were considered. Due to the limited sample size of some cohorts, an 

additional filtering based on expected minor allele counts (EMAC) was performed. This 

parameter is related to both the sample size and the quality of imputation (2*N*MAF*quality of 

imputation). Variants that did not reach an EMAC≥50 were excluded. After quality control, 

from 5.4 to 8.7 million variants were kept for the analysis in each cohort. The genomic inflation 

factor lambda (λ) was calculated for each study. A summary of the quality control procedure is 

shown in Supplementary Table S14. Marker names and alleles were harmonized among studies. 

A fixed effect meta-analysis weighted by inverse variance was conducted using GWAMA (70). 

The genomic control approach was applied to the meta-analysis results. Only variants with data 

for at least 5,000 samples were considered. Genome-wide level of significance was defined at p-
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value≤5E-08 and suggestive associations at p-value ≤1E-05. Quantile-quantile (Q-Q) plots, 

calculation of lambda (λ) and Manhattan plots were performed in R software environment 

version 3.2.3 (71). Regional association plots were performed with Locus Zoom (72). 

In total seventy-two variants were followed for replication in an independent dataset. They were 

selected among the four outcomes based on the statistical significance (p-value<1E-05). 

Association p-values from the replication phase were corrected for multiple testing using 

Bonferroni correction (for each trait independently). Exclusion of CHOP cohort, as it comprises 

potentially vaccinated children, from the replication phase did not revealed any new replicated 

genetic variant, and the association of replicated variants was maintained (data not shown). 

Conditional analysis  

We conditioned the analysis of the leading SNP identified at 19q13.33 (rs8111874) to a stop 

mutation situated 37.7 kb apart (rs601338, W154X) using the GCTA program (73). As 

reference we used the INMA 1000 Genomes imputation (restricted to variants with MAF>0.01 

and imputation quality (INFO) >0.8).  

A similar analysis was performed to search for secondary signals in +/- 500 kb surrounding the 

stop mutation (rs601338) or the top SNP at 19q13.33 (rs8111874). In this case, the significance 

threshold was calculated by Bonferroni correction, where the number of independent tests was 

the effective number of variants in this region estimated using Nyholt’s procedure and the 

1000G reference data for Europeans (74). 

Annotation and enrichment analysis 

Genetic variants annotation (nearest gene, eQTLs, protein binding, and regulatory features) was 

done with the HaploReg v4.1 program (75). In addition, a second search for eQTLs and for 

expression levels in tissues was performed with Genotype-Tissue Expression (GTEx) data 

(http://www.gtexportal.org/). GeneCard (http://www.genecards.org) and the USC genome 

browser (http://genome.ucsc.edu/) were used to search for gene functions and GWAS signals, 

respectively. 

Two different tools were used to explore gene-set enrichment analysis. We performed an 

analysis with MAGENTA software that uses genome-wide summary statistics (76). Briefly, 
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first, the program links variants to genes considering flanking regions and then computes the 

gene-set enrichment comparing the variants with the lowest p-values (95th percentile) versus the 

rest. Gene-set databases evaluated in MAGENTA were Panther, KEGG (Kyoto Encyclopaedia 

of Genes and Genomes) and Ingenuity. In addition, we used DEPICT to identify enriched 

genes-sets as well as tissues/cell types where genes from associated loci are highly expressed 

(77). In this case, only variants associated with diarrhoea with a p-value≤ 1E-05 and a sample 

size >5,000 were considered. Both programs estimate adjusted p-values using the FDR method. 

In the case of MAGENTA, FDR was applied within each database. 

Overlap with known variants and genes for related diseases 

We investigated the association between diarrhoea and known variants for inflammatory bowel 

disease (IBD) (22). We also looked at variants associated with viral infection susceptibility, 

disease progression and response to vaccination against different viruses (23-26). Variants were 

selected from GWAS retrieved from the GWAS catalog (http://www.ebi.ac.uk/gwas/, date: 

April 2015). All variants reported in European populations, regardless of their statistical 

significance, and their replication status, were evaluated. Finally, we evaluated 86 genes 

retrieved from OMIM (Online Mendelian Inheritance in Man; date: July 2016) with the entry 

“diarrhea”. To test the association of these “candidate” genes, we performed a gene-based 

analysis using VEGAS2 (Versatile Gene based Association Study, 

http://vegas2.qimrberghofer.edu.au/) (78), considering linkage disequilibrium patterns described 

in European populations and a flanking region of +/- 50 kb around the gene. The corrected 

statistical significance level was calculated using Bonferroni correction accounting for the 

number of variants/genes within each analysis (inflammatory bowel disease, viral infection, or 

hereditary diarrhoeal diseases) as independent tests. 

Genome-wide summarized results of the discovery phase can be found at INMA’s web page 

(Infancia and Medio Ambiente project, http://www.proyectoinma.org/) and at the EAGLE 

consortium web page (http://www.wikigenes.org/e/art/e/348.html).”  
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Legends to Figures 

 

Figure 1.A) Quantile-quantile (Q-Q) plots showing the probability values from GWAS meta-

analysis of diarrhoeal disease at age 1y (D1Y). The line indicates the distribution under the null 

hypothesis. Lambda value is shown. B) Manhattan plot of the GWAS meta-analysis of 

diarrhoeal disease at age 1y (D1Y). The x-axis represents the autosomal chromosomes and the 

y-axis represents–log10(p).The dotted line indicates genome-wide significance (p=5.00E-08), 

and the dashed line indicates suggestive genome-wide significance (p=1.00E-05).  

 

Figure 2. Forest plots for rs8111874 at 19q13.33 for the four diarrhoeal outcomes: A) 

Diarrhoea at age one year (D1Y); B) Doctor diagnosis of diarrhoea at age one year (DD1Y); C) 

Diarrhoea at age two years (D2Y); D) Doctor diagnosis of diarrhoea at age two years (DD2Y). 

In the vertical panel, the studies participating in the discovery or replication phase are presented. 

In the horizontal lines, the sizes of the boxes represent precision and the lines the confidence 

intervals. The diamond shapes represent the pooled effect estimates, for both the fixed- and 

random-effect models. The horizontal axis shows the scale of the effect estimates. The effect 

allele is G, and the other allele is A. 

 

Figure 3. A) Regional association of 19q13.33 locus (top SNP: rs8111874, chr19:49168942) 

with diarrhoeal disease at age one year (D1Y) (N= 5,758). The top variant is indicated with a 

diamond in purple and the flanking variants in circles, colored according to their linkage 

disequilibrium (LD). Variant rs601338 is shown in a black circle. The plot was constructed 

using the 1000 Genomes CEU population (Northern and Western European ancestry). B) 

Regional association of 19q13.33 locus (top SNP: rs8111874, chr19:49168942) with diarrhoeal 

disease at age one year (D1Y) conditioned to rs601338 (N= 5,758). The associations of the 

genetic variants in the region were attenuated. 
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Tables 

Table 1. Samples included in the study at age 1 year and at age 2 years by diarrhoeal disease definition and study phase.       

 
Age 1 year 

 
Diarrhoea (D1Y) 

 
Doctor diagnosis of diarrhoea (DD1Y) 

  Cohort Assessment (period in months)a 
N 

total 

N 

cases 

% 

cases  
Cohort Assessment (period in months)a 

N 

total 

N 

cases 

% 

cases 

Discovery 

ALSPAC (Disc)d Questionnaire (6-18) 3363 2001 59.5 

 
ALSPAC (Disc)d Questionnaire (6-18) 3363 893 26.6 

Generation R Questionnaire (6-12)c 2033 469 23.1 

 
Generation R Questionnaire (6-12)c 2033 179 8.8 

INMA_SAB Questionnaire (6-14) 362 223 61.6 

 
COPSAC2000 Doctor interview (6-12) 345 81 23.5 

      
LISAplus Questionnaire (6-12) 662 186 28.1 

TOTAL   5758 2693 46.8 

 
TOTAL   6403 1339 21.8 

Replication 

ALSPAC (Repl) Questionnaire (6-18) 3361 2047 60.9 

 
ALSPAC (Repl) Questionnaire (6-18) 3361 871 25.9 

MoBa Questionnaire (6-18)c 407 255 62.6 

 
COPSAC2010 Doctor interview (6-12) 547 244 44.6 

      
INMA_VAL Questionnaire (0-12) 334 149 44.6 

      
CHOPb Medical records (6-18) 3223 147 4.6 

TOTAL   3768 2302 61.1   TOTAL   7465 1411 18.9 

 
Age 2 years 

 
Diarrhoea (D2Y) 

 
Doctor diagnosis of diarrhoea (DD2Y) 

 
Cohort Assessment (period in months)a 

N 

total 

N 

cases 

% 

cases  
Cohort Assessment (period in months)a 

N 

total 

N 

cases 

% 

cases 

Discovery ALSPAC (Disc)d Questionnaire (18-30) 3189 1746 54.8 

 
ALSPAC (Disc) Questionnaire (18-30) 3189 514 16.1 
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Generation R Questionnaire (18-24)c 2058 943 45.8 

 
Generation R Questionnaire (18-24)c 2058 190 9.2 

INMA_SAB Questionnaire (12-24) 361 166 46 

 
COPSAC2000 Doctor interview (18-24) 319 86 27 

      
LISAplus Questionnaire (18-24) 667 200 30 

TOTAL   5608 2855 50.9   TOTAL   6233 990 20.6 

Replication 

ALSPAC (Repl)d Questionnaire (18-30) 3187 1759 55.2 

 
ALSPAC (Repl) Questionnaire (18-30) 3187 485 15.2 

INMA_VAL Questionnaire (12-14) 329 213 64.7 

 
COPSAC2010 Doctor interview (18-24) 518 271 52.3 

      
GINIplusd Questionnaire (12-24) 794 328 41.3 

      
CHOPb Medical records (18-30) 3223 190 5.9 

TOTAL   3516 1972 56.1   TOTAL   7722 1274 16.5 

aPeriod refered in the questionnaire, medical record or doctor interview 

        
bOnly children not vaccinated against Rotavirus were included 

         
cIt refers specifically to gastric flu or gastroenteritis 

         
dStatistically significant differences in the proportions of diarrhoeal disease among males and females (p-value < 0.05) [ALSPAC- D1Y-Discovery: 61.2% males vs 57.7% females; ALSPAC--DD1Y-

Discovery: 29.2% vs. 23.8%; ALSPAC-D2Y-Discovery: 56.6% vs. 52.8%; ASLPAC -D2Y-Replication: 58.5% vs. 51.7%;  and GINIplus- DD2Y- Replication: 46.7% vs. 36.0%]. 

Cohort designs: ALSPAC, COPSAC2010, Generation R, INMA_VAL, INMA_GIP, LISAplus, GINIplus, and MOBA are unselected population-based birth cohorts. COPSAC2000 is a prospective clinical 

study of a birth cohort of infants born to mothers with a history of asthma. CHOP is a random collection of paediatric patients from a hospital centre. 
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Table 2. Results from the fixed effect meta-analysis for diarrhoeal disease at age one year (D1Y) by discovery and replication phase. Variants with a p-value<1.E-05 in the discovery phase are shown.     

        Discoverya Replicationb Combined 

Marker rs_number Chr Pos EA NEA EAF N OR lCI uCI p-value 

p-value 

het Effects 

N 

variants/ 

locus Gene N OR lCI UCI p-value N OR lCI UCI p-value 

19:49168942:SNP rs8111874 19 49168942 G A 0.57 5758 1.32 1.21 1.44 1.06E-09 2.99E-02 +++ 71 

NTN5 and SEC1P 

(intronic) 
3768 1.25 1.13 1.39 1.69E-05 

 
9526 1.29 1.21 1.38 8.05E-14 

15:50562847:SNP rs62020330 15 50562847 A G 0.97 5396 2.16 1.61 2.88 2.02E-07 5.05E-02 ++? 2 4.7kb 5' of HDC 3195 0.99 0.69 1.43 9.72E-01 
 

8591 1.60 1.27 2.00 4.97E-05 

7:2930941:SNP rs1713926 7 2930941 C T 0.69 5758 1.37 1.21 1.55 8.06E-07 5.68E-01 +++ 1 

15kb 3' of 

CARD11 
1956 1.07 0.92 1.25 3.58E-01 

 
7714 1.24 1.13 1.37 1.04E-05 

7:63621349:SNP rs139755348 7 63621349 C T 0.73 5758 0.79 0.71 0.87 1.14E-06 9.29E-01 --- 89 46kb 5' of ZNF735 3768 1.06 0.95 1.19 2.96E-01 
 

9526 0.89 0.83 0.96 2.59E-03 

7:1599067:SNP rs112411182 7 1599067 T C 0.95 5396 1.7 1.36 2.13 4.10E-06 8.75E-01 ++? 1 

3kb 5' of 

TMEM184A 
3768 0.78 0.60 1.02 7.26E-02 

 
9164 1.23 1.04 1.46 1.76E-02 

12:130325960:SNP rs34180477 12 130325960 G A 0.93 5396 0.58 0.46 0.73 4.30E-06 4.93E-01 --? 1 

TMEM132D 

(intronic) 
3009 1.21 0.96 1.53 1.04E-01 

 
8405 0.84 0.71 0.98 3.24E-02 

14:38210286:SNP rs74731421 14 38210286 G A 0.97 5396 1.81 1.4 2.33 4.87E-06 8.07E-01 ++? 1 

146kb 5' of 

FOXA1 
3768 0.91 0.69 1.22 5.42E-01 

 
9164 1.34 1.11 1.63 2.32E-03 

12:106438211:INDELc 12 106438211 R D 0.52 5758 1.26 1.14 1.39 4.95E-06 8.07E-01 +++ 1 19kb of 3' NUAK1 407 1.20 0.85 1.68 3.01E-01 
 

6165 1.26 1.14 1.38 2.73E-06 

7:96366342:SNP rs12704876 7 96366342 T C 0.51 5758 0.83 0.77 0.9 5.04E-06 8.45E-01 --- 1 27kb 5' of SHFM1 3768 1.10 1.00 1.20 4.94E-02 
 

9526 0.93 0.88 0.99 2.74E-02 

5:1695532:SNP rs79411306 5 1695532 C T 0.95 5396 0.55 0.42 0.71 6.17E-06 4.86E-01 --? 1 

13kb 3' of 

MIR4277 
3136 0.89 0.71 1.13 3.55E-01 

 
8532 0.72 0.60 0.85 1.79E-04 

5:40474267:SNP rs116560909 5 40474267 C T 0.97 5396 1.9 1.44 2.52 6.90E-06 5.52E-01 ++? 2 

206kb 5' of 

PTGER4 
3768 1.08 0.78 1.49 6.63E-01 

 
9164 1.50 1.21 1.85 2.03E-04 

17:52598239:INDELc 17 52598239 R D 0.94 5396 1.57 1.29 1.92 6.90E-06 6.76E-01 ++? 1 

380kb 5' of 

TOM1L1 
407 1.29 0.59 2.80 5.20E-01 

 
5803 1.56 1.28 1.88 6.00E-06 

2:116776614:SNP rs12615869 2 116776614 A G 0.94 5396 1.54 1.28 1.87 7.02E-06 5.62E-01 ++? 2 

174kb 3' of 

DPP10 
3768 1.11 0.90 1.37 3.38E-01 

 
9164 1.33 1.16 1.53 6.57E-05 

4:184501675:SNP rs7662749 4 184501675 C T 0.72 5758 0.81 0.74 0.89 7.24E-06 8.53E-01 --- 1 

59kb 3' of 

RWDD4 
3768 1.02 0.92 1.14 6.55E-01 

 
9526 0.90 0.84 0.96 1.69E-03 
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22:49732481:SNP rs5770255 22 49732481 G A 0.76 5758 1.23 1.12 1.35 8.77E-06 7.32E-01 +++ 2 

281kb 3' of 

C22orf34   
3768 0.94 0.84 1.05 2.83E-01   9526 1.10 1.03 1.19 5.95E-03 

Only the most significant variant per locus is shown. Variants in the same locus are defined in a 1 Mb window. N variants/locus indicates the number of SNPs in the locus with a p-value < 1E-05 

Only genetic variants with a minimal of 5,000 samples are shown 

EA: effect allele; NEA: non effect allele; EAF: effect allele frequency; N: sample size; OR: odds ratio; lCI: 95% lower confidence interval; uCI: 95% upper confidence interval; p-value het: p-value for the heterogeneity test 

aCohorts in the discovery phase are included in alphabetical order: ALSPAC (Disc), Generation R and INMA_SAB 

bCohorts included in the replication phase are: ALSPAC (Repl) and MoBa 

cALSPAC (Repl) has no data for these markers 

Bonferroni correction for 15 variants considered in the replication phase: p-value = 3.33E-03 
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Table 3. Conditional analysis at 19q13.33 locus (rs8111874 and rs601338).                   

Crude results for rs8111874 

Results for rs8111874 conditioned to 

rs601338 

Marker rs_number EA NEA EAF IMP  Outcome OR lCI uCI p-value   N OR lCI uCI p-value 

19:49168942:SNP rs8111874 G A 0.57 
0.82-

0.93 

D1Y 1.32 1.21 1.44 1.06E-09   5214.7 1.08 1.01 1.14 1.40E-02 

DD1Y 1.26 1.13 1.39 1.17E-05 5576.7 1.05 0.98 1.12 2.00E-01 

D2Y 1.08 0.99 1.18 6.56E-02 5385.9 1.00 0.95 1.06 9.12E-01 

DD2Y 1.32 1.17 1.48 2.74E-06   5672.7 1.08 1.00 1.17 4.77E-02 

Crude results for rs601338 

Results for rs601338 conditioned to 

rs8111874 

Marker rs_number EA NEA EAF IMP  Outcome OR lCI uCI p-value     OR lCI uCI p-value 

19:49206674:SNP rs601338 
G 

(W) 

A 

(X) 
0.52 1 

D1Y 1.28 1.18 1.39 2.74E-09   6224.8 1.06 1.00 1.12 3.93E-02 

DD1Y 1.25 1.14 1.37 1.99E-06 6872.8 1.07 1.01 1.14 2.48E-02 

D2Y 1.10 1.02 1.18 1.84E-02 6471.1 1.04 0.99 1.09 1.40E-01 

DD2Y 1.27 1.14 1.4 5.90E-06   6976.7 1.06 0.99 1.13 1.16E-01 

EA: effect allele; NEA: non effect allele; EAF: effect allele frequency; IMP: imputation quality (from - to); D1Y: any diarrhoea at age one year; DD1Y: doctor’s 

confirmed diagnosis of diarrhoea at age one year; D2Y any diarrhoea at age two years; DD2y doctor’s confirmed diagnosis of diarrhoea at age two years 

Distance between SNPs is 37.7 kb 
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Abbreviations 

CI: confidence interval 

D1Y: diarrhoea at age one year 

DD1Y: doctor diagnosis of diarrhoea at age one year 

D2y: diarrhoea at age two years 

DD2Y: doctor diagnosis of diarrhoea at age two years 

EA: effect allele 

EAF: effect allele frequency 

EMAC: expected minor allele counts 

eQTL: expression quantitative trait 

HWE: Hardy-Weinberg Equilibrium 

MAF: minor allele frequency 

NEA: non effect allele 

OR: odds ratio 

SNP: single nucleotide polymorphism 
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Figure 1 
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Figure 2 
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Figure 3 
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