
TITLE: A Whole-Blood Transcriptome Meta-Analysis Identifies Gene Expression Signatures of Cigarette 

Smoking  

 

Tianxiao Huan1,2†, Roby Joehanes1,2,3†, Claudia Schurmann4,5,6†, Katharina Schramm7,8†, Luke C. Pilling9†, 
Marjolein J. Peters10,11†, Reedik Mägi12†, Dawn DeMeo13, George T O'Connor14, Luigi Ferrucci15, 
Alexander Teumer16, Georg Homuth6, Reiner Biffar17, Uwe Völker6, Christian Herder18, 19, Melanie 
Waldenberger20, Annette Peters20,21, Sonja Zeilinger20, Andres Metspalu12, Albert Hofman11,22, André G. 
Uitterlinden10,11,22, Dena G. Hernandez23, Andrew B. Singleton23, Stefania Bandinelli24, Peter J. Munson25, 
Honghuang Lin14, Emelia J. Benjamin1,14, Tõnu Esko12,26,27*, Hans J. Grabe28,29*, Holger Prokisch7,8*, Joyce 
B.J. van Meurs10,11*, David Melzer9*, Daniel Levy1,2* 
 
1 The National Heart, Lung, and Blood Institute's and Boston University’s Framingham Heart Study, 73 
Mt. Wayte Avenue, Framingham, MA, United States; 
2 The Population Sciences Branch, Division of Intramural Research, National Heart, Lung, and Blood 
Institute, Bethesda, MD, United States; 
3 Hebrew SeniorLife, Harvard Medical School, Boston, MA, United States; 
4 The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, 
New York City, New York, United States; 
5 Genetics of Obesity & Related Metabolic Traits Program, Icahn School of Medicine at Mount Sinai, New 
York, New York, United States; 
6 Interfaculty Institute of Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, 
Germany; 
7 Institute of Human Genetics, Helmholz Zentrum München - German Research Center for Environmental 
Health, Neuherberg, Germany; 
8 Institute of Human Genetics, Technical University Munich, Munich, Germany; 
9 Epidemiology and Public Health Group, Institute of Biomedical and Clinical Science, University of 
Exeter Medical School, Exeter, United Kingdom; 
10 Department of Internal Medicine, Erasmus Medical Centre Rotterdam, The Netherlands;  
11 The Netherlands Genomics Initiative-sponsored Netherlands Consortium for Healthy Aging (NGI-
NCHA), Leiden / Rotterdam, the Netherlands; 
12 Estonian Genome Center, University of Tartu, Tartu, Estonia; 
13 Harvard Medical School, Boston, MA, United States; 
14 Boston University School of Medicine and School of Public Health, Boston, MA, United States; 
15 Clinical Research Branch, National Institute on Aging, Baltimore, MD, United States; 
16 Institute for Community Medicine, University of Greifswald, Greifswald, Germany; 
17 Department of Prosthetic Dentistry, Gerostomatology and Dental Materials, Center of Oral Health, 
University Medicine Greifswald, Greifswald, Germany; 
18 Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at 
Heinrich Heine University Düsseldorf, Düsseldorf, Germany; 
19 German Center for Diabetes Research (DZD), München-Neuherberg, Germany; 
20 Research Unit of Molecular Epidemiology, Helmholz Zentrum München - German Research Center for 
Environmental Health, Neuherberg, Germany; 
21 Institute of Epidemiology II, Helmholz Zentrum München - German Research Center for Environmental 
Health, Neuherberg, Germany; 
22 Department of Epidemiology, Erasmus Medical Center Rotterdam, the Netherlands; 
23 Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, 
United States; 
24 Geriatric Unit, Azienda Sanitaria di Firenze, Florence, Italy. 
25 Mathematical and Statistical Computing Laboratory, Center for Information Technology, National 
Institutes of Health, United States; 
26 Division of Endocrinology, Boston Children's Hospital, Boston, MA, United States; 
27 Broad Institute of MIT and Harvard, Cambridge, MA, United States; 
28 Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany; 
29 German Center for Neurodegenerative Diseases DZNE, Site Rostock/ Greifswald, Germany; 

Published by Oxford University Press 2016. This work is written by US Government employees and are in the public domain in the 
US. 

 HMG Advance Access published August 29, 2016
 at H

elm
holtz Z

entrum
 M

uenchen on Septem
ber 1, 2016

http://hm
g.oxfordjournals.org/

D
ow

nloaded from
 

http://hmg.oxfordjournals.org/


 
 

† These authors contribute equally. 

 

* Denoted corresponding authors contribute equally; and the correspondence should be addressed 

to: 

 
Daniel Levy, MD 
Framingham Heart Study 
Population Sciences Branch 
National Heart, Lung, and Blood Institute 
73 Mt. Wayte Avenue, Suite 2 
Framingham, MA 01702 
Email: Levyd@nih.gov 
Phone: 508-935-3458 
Fax: 508-872-2678 
 
 
 
 

  

 at H
elm

holtz Z
entrum

 M
uenchen on Septem

ber 1, 2016
http://hm

g.oxfordjournals.org/
D

ow
nloaded from

 

http://hmg.oxfordjournals.org/


Abstract 

Cigarette smoking is a leading modifiable cause of death worldwide. We hypothesized that cigarette 

smoking induces extensive transcriptomic changes that lead to target-organ damage and smoking-related 

diseases. We performed a meta-analysis of transcriptome-wide gene expression using whole blood-derived 

RNA from 10,233 participants of European ancestry in six cohorts (including 1421 current and 3955 

former smokers) to identify associations between smoking and altered gene expression levels. At a false 

discovery rate (FDR) <0.1, we identified 1270 differentially expressed genes in current vs. never smokers, 

and 39 genes in former vs. never smokers. Expression levels of 12 genes remained elevated up to 30 years 

after smoking cessation, suggesting that molecular consequence of smoking may persist for decades. Gene 

ontology analysis revealed enrichment of smoking-related genes for activation of platelets and 

lymphocytes, immune response, and apoptosis. Many of the top smoking-related differentially expressed 

genes, including LRRN3 and GPR15, have DNA methylation loci in promoter regions that were recently 

reported to be hypomethylated among smokers. By linking differential gene expression with smoking-

related disease phenotypes, we demonstrated that stroke and pulmonary function show enrichment for 

smoking-related gene expression signatures. Mediation analysis revealed expression of several genes (e.g. 

ALAS2) to be putative mediators of the associations between smoking and inflammatory biomarkers (IL6 

and C-reactive protein levels). Our transcriptomic study provides potential insights into the effects of 

cigarette smoking on gene expression in whole blood and their relations to smoking-related diseases. The 

results of such analyses may highlight attractive targets for treating or preventing smoking-related health 

effects. 
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Introduction 

For more than a half century, numerous studies have characterized the deleterious health effects of cigarette 

smoking including cancers, cardiovascular disease (CVD), and chronic obstructive pulmonary disease (1). 

Cigarette smoking is the leading cause of preventable death in the United States, accounting for more than 

443,000 deaths each year (2). Cessation campaigns have had an effect; since 2002, the number of former 

smokers in the United States has exceeded the number of current smokers (3), which is estimated at 43.8 

million, or 19% of all adults aged 18 years or older (4). 

 Research also has characterized persisting long-term health risks of cigarette smoking, even 

decades after cessation (5). While the risks for some diseases may quickly return to those of never-smokers, 

risks for some diseases remain elevated for years, including risks for lung cancer (5), many other cancers 

(6), and stroke (7).  

 Previous studies have reported a genetic predisposition (8-11) to cigarette smoking. Other studies 

have reported smoking-related DNA methylation patterns (12-18). Gene expression is under strong genetic 

and epigenetic control (19, 20). Transcriptomic analyses may expand our understanding of molecular 

mechanisms affected by smoking. Several previous studies investigated the associations between cigarette 

smoking and transcriptomic changes in lung tissues (21-23), monocytes (24, 25), and peripheral whole 

blood (26-29). These studies, however, had small sample sizes (<300 current smokers) that limited their 

statistical power to detect modest transcriptomic changes due to tobacco exposure. In addition, most of the 

previously identified smoking-related gene expression signatures have not replicated. For example, only 

four genes (<1%) overlapped between two published studies of smoking-related gene expression signatures 

in lung tissues (21, 23), and 18 genes (~3%) overlapped in any two of the four published studies in whole 

blood (26-29). In addition, the long-term effects of cigarette smoking on the transcriptome remain poorly 

characterized.  

 We conducted a meta-analysis of the associations of cigarette smoking with gene expression in 

whole blood-derived RNA in over 10,000 individuals across six cohort studies, including 1421 current 

smokers and 3955 former smokers. We sought to characterize both the short-term and long-term impact of 
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smoking on the transcriptome, and to identify affected pathways. We also sought to link the transcriptomic 

changes associated with smoking to smoking-related diseases. Understanding the long-term molecular 

consequences of cigarette smoking may identify targets for the treatment and primary prevention of 

smoking-related diseases. 

 

Results 

Study sample characteristics 

Characteristics of the study participants in each cohort are provided in Supplementary Table 1. Among 

the 10,233 participants in the six cohorts, 14% were current smokers (n=1421, mean age ranging from 34 to 

68, 50% were men), 39% were former smokers (n=3955, mean age ranging from 43 to 74, 53% were men), 

47% were never smokers (n=4860, mean age ranging from 38 to 70, 40% were men). The average white 

blood cell counts were 7.2, 6.1, and 5.9 cells per cubic mm in current, former, and never smokers 

respectively. 

Identify and replicate gene expression signatures of cigarette smoking 

At FDR <0.1, we identified 1270 differentially expressed genes in current vs. never smokers 

(Supplementary Table 2). Of the 1270 smoking-related gene expression signatures, 717 (56%) were up-

regulated and 553 (44%) were down-regulated (Figure 1A). The top 25 (by P-value) differentially 

expressed genes are listed in Table 1. Secondary analyses of pack-years smoked yielded about the same 

genes as those for current vs. never smokers (Supplementary Figure 1).  Adjustment for body mass index 

(BMI), coronary heart disease (CHD), forced expiratory volume in 1 second (FEV1), physical activity, and 

alcohol consumption did not significantly alter the differentially expressed genes associated with smoking 

in the FHS. Supplementary Figure 2 shows the correlations of T statistic values with and without 

additional covariate adjustment (Pearson correlation coefficient >0.99). 

 In order to evaluate the replicability of our results, we split the overall samples into discovery (N= 

4610) and replication (N=5623) sets. Samples in the discovery and replication sets were from independent 

studies (see Methods). The T statistics of each gene in the smoking-related gene expression signatures 
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were highly consistent between the discovery and replication sets (Pearson correlation is 0.87, 

Supplementary Figure 3). Sixty-four percent of genes identified in the discovery set at FDR<0.1 

replicated in the replication set at FDR<0.1. 

 By comparing our results with previously reported results, we found that 68 genes identified in our 

study overlapped with previously identified smoking-related gene expression signatures in whole blood 

(enrichment P=5.06 x 10-7) (26-29), 137 genes overlapped with previously identified genes in monocytes 

(enrichment P<1 x 10-32) (24, 25), and 31 genes including CYP1B1, SCNA, and CX3CR1 overlapped with 

previously identified genes in lung tissues (21-23) (enrichment P=0.65, Supplementary Table 3). We also 

found 92 genes with adjacent DNA methylation sites (CpGs) that were reported to be differentially 

methylated in relation to smoking in previous studies (30) (enrichment P=3.4 x 10-4, Supplementary 

Table 4). For example, LRRN3, the top gene in our results, has three DNA methylation loci (cg09837977, 

cg05221370, and cg11556164) in its 5’UTR region that were recently reported to be associated with 

smoking in two studies (12, 14). Another example is GPR15, which has a DNA methylation site 

(cg19859270) that was reported to be associated with smoking in four studies (12, 14-16).   

 In turn, we checked the adjacent genes of previously reported smoking-induced DNA methylation 

loci (30) for differential expression effects at a nominal P<0.05. Supplementary Table 5 provides the full 

list of genes and CpGs. 

Long-term effects of cigarette smoking on whole blood gene expression levels  

Thirty-nine genes were statistically significant (FDR<0.1) in analyses contrasting former vs. never smokers 

(Supplementary Table 6, and Table 2 shows the top 25 genes), including 14 up-regulated and 25 down-

regulated genes (Figure 1B). As shown in Supplementary Figure 4, 35 of the 39 gene expression 

signatures (87%) in analysis of former vs. never smokers show the same directionality in analysis of current 

vs. never smokers (i.e. when the gene was upregulated in former smokers vs. never smokers is was also 

upregulated in current smokers vs. never smokers.). Of these 35 overlapping genes, 19 including LRRN3, 

GPR15, and CLDND1, were statistically significant (FDR<0.1) in analyses of current vs. never smokers. Of 

the 39 genes, one (GNLY) showed differential expression in relation to smoking in lung tissues (21), and 

five genes (LRRN3, GPR15, CLDND1, STAT3, and PTGDR) harbor CpGs that were previously reported to 
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be differentially methylated in relation to smoking in whole blood (30). To further investigate the long-term 

effects of these genes, we performed an in-depth analysis of 39 gene transcript levels in relation to the time 

since smoking cessation among former smokers. Twelve genes including LRRN3, GPR15, and CLDND1, 

remained differentially expressed in former vs. never-smoker 30 years following smoking cessation (see 

Methods section and Figure 2). 

Coexpression network analysis of smoking genes 

To understand the molecular mechanisms by which cigarette smoking are associated with the whole blood 

transcriptome, we performed a coexpression network analysis of the 1290 smoking gene expression 

signatures (unique set of 1270 genes for current vs. never smokers plus 39 genes for former vs. never 

smokers). We discovered five major coexpression network modules (coEMs for short; coEMs named using 

different colors; Supplementary Figure 5). Genes in each coEM formed a tightly co-regulated network 

structure that we hypothesize is functionally related to tobacco exposure. Gene ontology enrichment 

analyses were then performed on each coEM (Table 3).  

 Three coEMs are enriched for genes involved in immune response-related pathways, including the 

Turquoise coEM (for platelet activation; corrected P=3.1e-3, and inflammatory response, corrected P=3.7e-

2), the Blue coEM (for lymphocyte activation, corrected P=3.9e-7), and the Brown coEM (for immune cell 

mediated cytotoxicity, corrected P=3.9e-8). The Green coEM is enriched for genes involved in protein 

biosynthesis (corrected P=6.3e-3).  

Smoking-related gene expression signatures in association with human complex diseases and traits  

Cigarette smoking has been recognized as a key causal risk factor for multiple complex diseases and traits 

(1). Our results suggest that smoking may disturbs the expression levels of many genes across multiple 

critical pathways in whole blood that may relate to many disease phenotypes. To test this hypothesis, we 

further determined if the identified smoking-related gene expression signatures in whole blood are enriched 

GWAS SNPs associated with smoking-related diseases and traits. 

 We linked the 1290 smoking-related gene expression signatures with whole blood gene 

expression-associated SNPs (eSNPs) (31) (Joehanes R, PhD, unpublished data, 2016), and then cross 

referenced the eSNPs with NHGRI GWAS Catalog SNPs (32). We identified 536 smoking-related gene 
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expression signatures having at least one eSNP associated with human complex diseases or traits reported 

in the NHGRI GWAS Catalog (Supplementary Table 7). Recent research suggests that using eSNPs and 

GWAS mapping may permit the linking of gene transcripts with diseases or traits (33). Therefore, the 536 

genes having blood eSNPs linked with GWAS SNPs for diseases or traits can be considered a set of 

putative blood gene expression signatures of the diseases or traits even though the associations of these 

genes with diseases or traits were not directly measured. Smoking-related gene expression signatures as a 

set show enrichment for disease- and trait-associated genes (enrichment P<1x10-32, by Fisher’s exact test), 

indicating that smoking-induced gene expression changes may be associated with a wide range of clinical 

traits.  

We further focused the search on diseases and traits known to be associated with cigarette 

smoking, including cardiovascular diseases, obesity-related traits, inflammatory biomarkers, pulmonary 

function, and various lung diseases including chronic obstructive pulmonary disease and asthma. 

Enrichment tests were performed for the traits or diseases that overlapped with smoking-related gene 

expression signatures for at least five genes. As shown in Table 4, the smoking-related gene expression 

signatures as a set were enriched for genes having cis-eSNPs that were also GWAS SNPs for stroke 

(enrichment P=4.5e-5) and pulmonary function (enrichment P=3.7e-3), and for BMI-related traits and 

asthma (enrichment P<0.05). Smoking-related gene expression signatures were also enriched for genes 

having trans-eSNPs that were also GWAS SNPs for weight, asthma, and coronary heart disease 

(enrichment P<0.05; details regarding correlated eSNPs are provided in Supplementary Table 7).  

 We analyzed the association of smoking-related gene expression signatures with two 

inflammatory biomarkers (serum concentrations of IL6 and CRP) and with pulmonary function (FEV1, 

FVC, and the FEV1/ FVC ratio) in FHS participants. IL6, CRP, and FEV1, were significantly associated 

with smoking status (Supplementary Table 8). We identified 3, 55, and 7 smoking gene-expression 

signatures that were differentially expressed in relation to IL6, and CRP, and FEV1, respectively, at 

Bonferroni corrected P<0.05. The overlapping genes that were significantly associated with smoking and 

with IL6, CRP, and FEV1, were further tested to determine if their gene expression levels mediated the 

association of smoking on these phenotypes (IL6, CRP, and FEV1). At Bonferroni corrected P<0.05 (by 
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the Sobel test), we identified 1 gene (ALAS2) that appears to be a mediator of the association between 

smoking and IL6, and seven genes including ALAS2 that were mediators for CRP (Table 5). 

Discussion 

By meta-analyzing gene expression data from 10,233 individuals from six cohort studies, we identified 

1270 genes that were differentially expressed in current vs. never cigarette smokers, and 39 genes that were 

differentially expressed in former vs. never smokers, including 12 genes with persistent gene expression 

changes up to 30 years following smoking cessation.  

 In contrast to previous smaller studies of smoking-related gene expression signatures (21-29), we 

were able to replicate our findings by splitting the overall study samples into discovery and replication sets. 

The samples in discovery (n=4610) and replication (n=5623) sets were from independent cohorts and used 

different microarray platforms. We found that sixty-four percent of smoking-related differentially 

expressed genes identified in the discovery set replicated in the replication set. 

 Pathway and coexpression network analysis identified four coEMs related to smoking representing 

many critical pathways including platelets activation, lymphocyte activation, inflammatory response, and 

protein biosynthesis. Smoking induces aberrant platelet activation (34, 35), which may increase the risk of 

thrombotic events including atherothrombotic cardiovascular disease (36). Three coEMs are enriched for 

immune function-related genes, including DUSP1 and FOS (Supplementary Table 9), consistent with the 

findings that serum concentrations of CRP and IL6 are significantly higher in current vs. never smokers(37, 

38)(Supplementary Table 8) and pointing toward putative mechanisms by which smoking may cause 

systemic inflammation. Two of the three smoking-related immune function coEMs were significantly 

associated with CRP (e.g., Turquoise coEM at P=0.02 and Blue coEM at P=0.03). Based on these findings, 

we hypothesize that the association of smoking on inflammation is mediated by gene expression changes, 

although further functional validation is required to establish precise mechanisms. Previous studies showed 

effects of nicotine on protein biosynthesis in muscle (39), brain, and liver (40). We identified one smoking-

related coEM that was enriched for protein biosynthesis, providing evidence that smoking may affect 

protein biosynthesis in whole blood. 
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 Epigenetic studies have shown that smoking is an important epigenetic modifier that affects the 

DNA methylation pattern of thousands of CpGs (30). By overlapping our transcriptomic results with 

previous epigenetic findings (30), we found 92 genes with altered expression and DNA methylation in 

relation to smoking status (Supplementary Table 4). Most notable among these are LRRN3 and GPR15, 

which were upregulated in current and former smokers (vs. never smokers) and displayed long-term 

persistent associations of smoking with mRNA expression levels. The differential expression of LRRN3 

and GPR15 in smokers was also reported by Tsaprouni et al (12). These two genes have nearby CpGs that 

were reported to be significantly hypomethylated in cigarette smokers (12, 14, 16, 41). Three CpGs, 

cg09837977, cg05221370, and cg11556164, located in the 5’UTR region of LRRN3 and cg19859270 

located in the first exon of GPR15 are located in active gene promoter regions. This is consistent with the 

concept that DNA methylation in gene promotor regions may inhibit gene transcription (42). Therefore, we 

speculate that many of the identified smoking-related gene expression signatures are mediated by smoking-

induced epigenetic changes. However, we cannot exclude the possibility that the overlap of gene 

expression and DNA methylation change in relation to smoking may be due to changes in white blood cell 

types. A recent study by Bauer et al suggested that smoking-related differential methylation and expression 

of GPR15 results from the enrichment of a smoking-induced lymphocyte population (43). 

 Smoking is one of the most important causal lifestyle risk factors for a wide range of diseases, 

although the molecular underpinnings of smoking-related risks remain largely unknown. In an attempt to 

link smoking-related gene expression signatures to disease phenotypes, we used GWAS results from the 

NHGRI GWAS Catalog (32). By cross referencing eSNPs of genes that are differentially expressed in 

relation to smoking status with GWAS SNPs associated with various smoking-related diseases, we sought 

to obtain insights into the potential roles of smoking-related differentially expressed genes in a variety of 

smoking-related health outcomes. We observed that (as a set) gene expression signatures of smoking show 

enrichment for cis- and trans- eSNPs that are also GWAS SNPs for smoking-related diseases and clinical 

traits such as stroke and pulmonary function (Table 4), suggesting that smoking-induced transcriptomic 

changes are linked to smoking-related diseases. Without any experimental validation, however, we cannot 

prove causal mechanistic links of smoking to gene expression and smoking-related diseases. 
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We further tested if any NHGRI GWAS Catalog SNPs showed an interaction with smoking that 

may affect gene expression levels in FHS samples. We did not find any significant cis-eSNP showing SNP-

by-smoking interaction on corresponding transcripts levels, but several trans-eSNPs (Supplementary 

Table 10) displayed interactions. The trans-eSNP results need to be replicated. We acknowledge that our 

study may still lack power to identify SNP-by-smoking interaction on gene expression levels.  

 One limitation of our study is that we used whole blood for expression profiling. Whole blood is 

easy to obtain in population-based studies but may not be the primary tissue for many smoking-related 

diseases, such as lung cancer and chronic obstructive pulmonary disease. By comparing our results with 

previously reported lung tissue-based results, we found 31 smoking gene signatures that also showed 

differential expression in relation to cigarette smoking in lung tissue. For example, CYP1B1 was 

significantly upregulated in whole blood of current smokers at FDR=7.6e-7 in our study and was reported 

to be significantly upregulated in non-tumor lung tissue (21) and in the bronchial mucosa of smokers(44). 

This finding suggests that whole blood may partially capture smoking-induced pathological molecular 

changes occurring in targeted tissues. In addition, peripheral whole blood expression patterns can be linked 

to many other diseases including systemic inflammatory and immune-related disorders(45) and metabolic 

and cardiovascular diseases (46, 47), which are smoking-related. We explored the relationship of smoking 

to two inflammatory biomarkers, serum concentration of IL6 and CRP. Previous studies showed that 

smoking induces systemic inflammation, which is reflected in elevated levels of IL6 (37) and CRP (38). 

We similarly observed that IL6 and CRP were significantly higher in current smokers (Supplementary 

Table 8). We further identified three smoking-related gene expression signatures in association with IL6 

and 55 with CRP, even after adjusting for smoking status. Among these genes, we detected one that was a 

mediator of the association of smoking with IL6 concentration, and seven genes mediating the association 

of smoking with CRP. ALAS2 emerged as a gene mediator for both IL6 and CRP. ALAS2 (5'-

aminolevulinate synthase 2) codes for a mitochondrial enzyme that is erythroid-specific. We speculate that 

ALAS2 expression might be related to smoking-induced inflammation, but experimental validation is 

needed to support this hypothesis.  

 Another limitation of our study is its cross-sectional nature. We cannot prove causal relations 

between smoking and gene expression. We were able, however, to include longitudinal analyses of time 

 at H
elm

holtz Z
entrum

 M
uenchen on Septem

ber 1, 2016
http://hm

g.oxfordjournals.org/
D

ow
nloaded from

 

http://hmg.oxfordjournals.org/


since smoking cessation. Further longitudinal studies of smoking-induced gene expression effects on 

downstream disease phenotypes are warranted. Last, our study included six large epidemiologic studies that 

all rely on questionnaire-reported ascertainment of smoking status. Self-reported smoking status is 

imperfect as subjects may not report their status correctly. 

 In conclusion, we identified transcriptomic signatures of cigarette smoking in a well-powered 

population-based meta-analysis. Our results suggest that smoking induces global gene expression changes 

that may involve multiple critical pathways. By linking gene expression signatures with multiple smoking-

related diseases, we demonstrated that smoking-related gene expression changes are associated with many 

smoking-related diseases. Our list of smoking-related gene expression signatures may serve as a 

compelling resource for future studies. 

 

Materials and Methods 

Study participants 

Our study included samples from six studies: the Framingham Heart Study (FHS) (48-50), the Rotterdam 

Study (RS) (51), the Cooperative Health Research in the Region of Augsburg (KORA F4) Study (52), the 

InCHIANTI Study (53), the Study of Health in Pomerania (SHIP-TREND) (54), and the Estonian Biobank 

(EGCUT) (55). Each of the six studies followed the recommendations of the Declaration of Helsinki. 

Informed consent was obtained from each study participant. 

 Smoking status was ascertained by questionnaire. Current smoking was defined as smoking on 

average at least one cigarette per day during the past 12 months. Former smoking was defined previously 

having smoked on average at least one cigarette per day, but having quit for at least 12 months. Never 

smokers were those who reported having never smoked on average a least one cigarette per day for at least 

one year. Smoking pack-years was computed by multiplying the average number of cigarettes smoked per 

day by the number of years smoked, divided by 20. For studies with longitudinal data and with missing or 

inconsistent pack-years data, pack-years were calculated based on the mean of the reported average number 

of cigarettes smoked per day using data from all available examinations. 
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Gene expression profiling 

RNA was isolated from whole blood samples.  FHS, RS, KORA F4, InCHIANTI and SHIP-TREND 

collected RNA using PaxGene tubes (Becton Dickinson, Breda, the Netherlands; PreAnalytiX, 

Hombrechtikon, Switzerland). EGCUT collected RNA using Blood RNA Tubes (Life Technologies, NY, 

USA). Gene expression in the FHS samples used the Affymetrix Exon Array ST 1.0. RS, KORA F4, 

InCHANTI, SHIP-TREND, and EGCUT used the Illumina HumanHT12 v3 (KORA F4, InCHANTI, 

SHIP-TREND, and EGCUT) or v4 (RS) array. The details of sample collection, microarrays, and data 

processing and normalization in each cohort are provided in the Supplementary Materials. 

Identification of differentially expressed genes associated with cigarette smoking  

Linear regression models were used to test the associations of gene expression with smoking status in each 

cohort respectively. Smoking status was coded as current=1, never=0, and former=1, and never=0; smoking 

status was the independent variables and expression of each gene was the outcome. Analyses were 

conducted for current vs. never and former vs. never smokers. For cohorts without pedigree information, 

we performed statistical analysis using the lme4 (56) package of R version 3.0.1, adjusting for age, sex, 

blood cell counts, and applicable technical covariates (e.g., batch). For cohorts with pedigree information, 

we performed statistical analysis using the pedigreemm package(57) of R, accounting for the reported 

familial relationship in addition to the aforementioned factors.  

 Measured blood cell counts (billion cells/L) including white blood cells, neutrophils, lymphocytes, 

monocytes, eosinophils, and basophils were available in EGCUT, RS (only white blood cell, lymphocytes, 

and monocytes available), InCHIANTI, KORA F4 (only white blood cell available), and SHIP-TREND. In 

FHS, blood cell counts were measured in 2138 FHS Third Generation cohort participants, but not in the 

Offspring cohort. We estimated the cell counts in all FHS samples by partial least squares regression (58) 

based on mRNA levels using a model based on the 2138 subjects with both gene expression profiling and 

differential cell counts. The estimated cell counts values were highly consistent with the measured cell 

counts (details in Supplementary Methods). We collected the effect estimate (β), standard errors, T-

statistics, R2, and P-values. We performed a dose-response analysis by using pack-years of cigarette 
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smoking as an independent variable and gene expression as the outcome. Covariates and a statistical model 

for the dose-response analysis were the same as those described above. 

Evaluate the reproducibility of smoking-related gene transcripts 

We conducted meta-analysis of all six cohorts to assess smoking-related gene expression signatures (See 

Methods, Meta-analysis). In order to evaluate the reproducibility of smoking-related gene transcripts, we 

split the overall sample into independent discovery and replication sets. Our overall analysis framework is 

presented in Supplementary Figure 6. The meta-analysis results from RS, EGCUT, InCHIANTI, KORA 

F4, and SHIP-TREND samples (N=4610) were used as the discovery set. Results from FHS samples (N= 

5623) were used for replication purposes. Because discovery and replication sets used different gene 

profiling platforms, this analysis evaluated the reproducibility of gene expression signatures in independent 

cohorts and for different expression array platforms. We at first identified differentially expressed genes for 

smoking in the discovery set at FDR<0.1, and then attempted replication in the replication set. The 

replication ratio is defined as the proportion of differentially expressed genes for smoking in the discovery 

set at FDR<0.1 that could be replicated in the replication set at FDR<0.1.  

Meta-analysis 

We estimated the heterogeneity of each gene across the six studies. Since, we found <5% of genes with 

heterogeneity I2>75%, we performed a meta-analysis using a fixed effect restricted maximum likelihood 

model (rma method, using default weighting) provided by the metafor package(59) of R. To overcome 

expression platform differences, the meta-analysis was performed on all transcripts with matching gene 

Entrez IDs (16,866 unique genes). Meta-analysis was performed across all six studies. For discovery and 

replication purposes, meta-analysis was also performed for the five Illumina cohorts (RS, EGCUT, 

InCHIANTI, KORA F4, and SHIP-TREND). We compared the meta-analysis results of the Illumina 

cohorts with the results of the FHS. We computed the Benjamini-Hochberg false discovery rate (FDR) (60) 

on the resulting P-values by correcting for the number of transcripts that were present in all gene 

expression microarray platforms (n=16,866).  The significant threshold for the identification of smoking-

related gene expression signatures was FDR<0.1. 
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Supplementary Table 11 reports smoking-related gene expression signatures from the final meta-

analysis that were associated with measured blood cell types, PC1, and Batch_lump using 1298 never-

smokers whose cell types were measured in the FHS. 

Identification of long-term persistent associations of cigarette smoking with gene expression levels 

A long-term gene expression persistence analysis was performed on FHS participants since it is the only 

cohort with longitudinal data on smoking cessation status for 35 years. The analysis was performed on a 

series of six dichotomous variables indicating smoking cessation of at least 5, 10, 15, 20, 25, and 30 years, 

using a linear mixed model in the pedigreemm package (57) with the same set of covariates as in the 

primary analysis. We used the T-statistics value that defined statistical significance in the current vs. never 

smoker analysis (|T|>3.0, corresponding to P<0.002). Transcripts with |T|>3.0 across all six time points are 

deemed to be statistically significant compared to never-smoker levels. 

Gene coexpression network analysis 

For the smoking-related gene expression signatures (current vs. never, and former vs. never at FDR<0.1), 

we performed a gene coexpression network analysis using FHS gene expression data. Gene coexpression 

networks were constructed using weighted gene coexpression network analysis (WGCNA) (61, 62). The 

WGCNA R package uses a fitting index to evaluate a scale-free network structure built upon Pearson gene-

gene correlations from gene expression variance among individuals (61). Genes were grouped based on the 

topological overlap of their connectivity using average linkage hierarchical clustering (61), followed by a 

dynamic cut-tree algorithm to dynamically cut the clustering dendrogram branches into gene coexpression 

network modules (coEMs) (63). 

 We first adjusted for sex, age, blood count proportions, and technical covariates from the 

expression data using linear mixed models (lme4 package (56) in R) in order to minimize confounding of 

other smoking-related covariates. The residuals were kept for the coexpression network construction.  First, 

we built weighted gene coexpression networks and identified coEMs that fit a scale-free topological 

structure by fitting the index R2>0.8 of the linear model that regressed log(p(k)) on log(k), where k is the 

connectivity of every node (gene) in the network and p(k) is the frequency distribution of connectivity. The 

fitting index of a perfect scale-free network is 1.  
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 We tested the association of each smoking-related coEM (using the first principle components of 

each coEM) with each cell types.  As shown in Supplementary Figure 7 the coEMs were not associated 

with cell types. We further tested the associations of each coEM with two inflammatory biomarkers (i.e., 

serum concentrations of Interleukin 6 [IL6] and C-reactive protein [CRP]). We calculated the first principal 

component (eigengene) of each coEM, then used a linear mixed model implemented in the kinship package 

in R (64), to test the association between a module’s eigengene and IL6 and CRP, modeling covariates 

(including BMI and smoking status). IL6 and CRP related coEMs were identified at P<0.05. 

Gene ontology enrichment analysis 

Each smoking-related gene coexpression network module was classified using Gene Ontology - biology 

process (GO-BP) categories to define biological process enrichment (65). Fisher’s exact test was used to 

calculate enrichment P values. The P value was further corrected by the number of unique GO-BP terms 

(N=825). A threshold of P<6e-5 (0.05/825) was considered significant.  

Linking smoking-related gene expression signatures to complex diseases and traits 

We looked up the relations of smoking-related gene expression signatures to disease phenotypes and traits 

using two resources. First, we used the NHGRI GWAS catalog (assessed July, 2015)(32), which collected 

the associations of SNPs with hundreds of disease and trait phenotypes (P<1e-5). We linked smoking-

related gene expression signatures to gene expression-associated SNPs (eSNPs), and then cross-referenced 

the eSNPs with NHGRI GWAS catalog SNPs. In doing so, we were able to explore the associations of 

smoking-related gene expression signatures with a large disease-related GWAS SNP sets. cis-/trans- eSNPs 

(i.e. SNPs associated with expression level of a gene) were identified in whole blood based on expression 

in the FHS using Affymetrix exon array (n~5600)  (Joehanes R, PhD, unpublished data, 2016) and a meta-

analysis of seven cohorts using Illumina arrays (n~5300) (31). A cis-eSNP was defined as a SNP residing 

within 1Mb of the transcript start site (TSS) for the corresponding gene. eSNPs that were remote from the 

TSS were defined as trans-eSNPs. All eSNPs used in this study passed FDR<0.1. Enrichment analysis was 

performed using Fisher’s exact test by testing enrichment of the intersecting number of genes (i.e., M∩N) 

in the NHGRI GWAS catalog having eSNPs (M) and smoking-related gene expression signatures having 

eSNPs (N) with a background of the total number of genes having eSNPs (T). 
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 Second, we looked at the associations of smoking-related gene expression signatures with 

pulmonary function and two inflammatory biomarkers (CRP and IL6, nature log-transformation) that are 

related to cigarette smoking(66, 67) and were measured in FHS at the same visit as the gene expression 

blood sample collection. Pulmonary function measures included forced expiratory volume at one second 

(FEV1), forced vital capacity (FVC), and the FEV1/FVC ratio. FEV1 and FVC were measured on the FHS 

Offspring cohort at Examination 8 and on the FHS Third Generation cohort at Examination 2 using a 

Collins CPL dry rolling-seal spirometer and Collins 2000 Plus/SQL software (Collins Medical, Inc., 

Braintree, MA). The highest value among acceptable efforts was used, as per the American Thoracic 

Society-European Respiratory Society guidelines(68). CRP was measured on the FHS Offspring cohort at 

Examination 8 and the Third Generation cohort at Examination 2 using a high sensitivity Dade-Behring BN 

100 nephelometer. Serum IL6 was measured in FHS Offspring cohort participants at Examination 8 using 

the Quantikine HS IL6 Immunoassay kit (R/D Systems, Minneapolis, MN). Intra-assay coefficients of 

variation for inflammatory marker measurements were <9.2%. 

 Residuals for genes after adjusting for technical covariates (as independent variables) were used to 

identify differentially expressed genes associated with CRP, IL6, and pulmonary function phenotypes (as 

outcomes) using linear mixed models implemented in the kinship R package (64). The covariates for 

analyzing pulmonary function include age, sex, height, weight, smoking statues, imputed differential white 

blood cell proportions, and family structure. The covariates for analyzing CRP and IL6 included age, sex, 

BMI, smoking status, imputed differential white blood cell proportions, and family structure. Statistical 

significance was based on Bonferroni correction (P<0.05/1270) for the number of smoking-related gene 

signatures (n=1270). 

Mediation analysis 

For the overlapping gene expression signatures of smoking and smoking-related phenotypes (including 

natural log transformed [log-transformed] CRP, log-transformed IL6, and FEV1), we tested if gene 

expression signatures mediated the associations of smoking with the smoking-related phenotypes. 

Mediation analysis was performed in individuals whose gene expression and phenotype data were both 
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available (n=5615 for CRP analysis, n=2422 for IL6, and n= 5199 for FEV1). Supplementary Figure 8 

shows the distribution of log-transformed CRP, log-transformed IL6, and FEV1 values. 

Mediation was considered to be present when there was a significant decrease in the association of smoking 

with downstream phenotypes (Model 1) after adjusting for gene expression signatures (Model 2). The 

Sobel test was used to evaluate mediation effects, and the significance level was a Bonferroni corrected 

P<0.05 (0.05/ the number of genes in the overlapping gene expression signatures for smoking and 

smoking-related phenotypes).  

Model 1:  Outcome ~ β1 (Smoking) + covariates 

Model 2:  Outcome ~ β1’ (Smoking) + β2 (Gene) + covariates 

In Model 1 and Model 2, the “outcomes” were log-transformed CRP, log-transformed IL6, and FEV1. For 

genes showing mediation, the mediation proportion was defined as (β1- β1’) / β1. Covariates included age, 

sex, technical covariates, blood cell counts and family structure. The analysis for FEV1, additional 

adjustment included height and weight.  

Test SNP-by-Smoking interaction on gene expression levels 

SNP-by-smoking interaction in relation to expression of each gene was tested in ~5300 FHS participants 

with gene expression and genotyping data by utilizing the following model using the kinship package in 

R(64): 

 geneExp ~ β1 (SNP) + β2 (Smoking) + β3 (SNP x Smoking) + covariates 

where β1 and β2 are the regression coefficients for the SNP (additive model) and smoking status (current 

vs. never), respectively. β3 is the regression coefficients for the SNP-by-smoking status interaction. 

geneExp is the gene expression residual after adjusting for technical covariates (age, sex and white blood 

cell types as fixed effects, and family structure as a random effect). The interaction tests were limited to the 

SNPs in the NHGRI GWAS catalog that overlapped with SNPs genotyped or imputed in the FHS at minor 

allele frequency >1% (15,579 SNPs), and smoking gene expression signatures (1290 unique genes from 

among 1270 genes for current vs. never smokers plus 39 genes for former vs. never smokers). The 

Benjamini-Hochberg method(60) was used to calculate false discovery rate (FDR).  
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Smoking-related genes and DNA methylation loci from published literatures 

To compare the smoking-related gene expression signatures identified in this study with previous studies, 

we collected previously reported smoking-related gene expression signatures in whole blood (529 genes) 

(26-29), monocytes (311 genes) (24, 25), and lung tissues (479 genes) (21-23). In addition, a list of genes 

whose CpGs were reported to be differentially methylated in relation to smoking was download from a 

review article (30). In the review article, the authors collected the gene list by reviewing 14 published 

epigenome-wide association studies including 1460 unique CpGs for 939 unique genes. All the previously 

identified genes and CpGs were available within the results of our analysis of current vs. never smokers. 

Fisher’s exact test was used to test if the smoking-related gene expression signatures identified in our study 

were enriched for previously identified smoking-related gene expression signatures or DNA methylation 

signatures. 

Data Availability 

Raw gene expression profiling data are available online (FHS [http://www.ncbi.nlm.nih.gov/gap; accession 

number phs000007], RS [GSE33828], KORA F4 [E-MTAB-1708], InCHIANTI [GSE48152], SHIP-

TREND [GSE36382] and EGCUT [GSE48348]). 
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Figure Legends 

 
Figure 1: Volcano plots of meta-analysis of differentially expressed for smoking.  A) Current vs. Never 

Smokers; B) Former vs. Never Smokers.  

Figure 2: Twelve genes do not return to never smoker levels at 35 years after cessation. X axis denotes 

the time after cessation. Y axis denotes the T-statistics between former smokers that quit at a certain period 

or longer vs. never smokers. Dotted lines indicate threshold of never smoker levels. 
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Table 1: Top 25 smoking gene signatures for current vs. never smokers based on meta-analysis of six 

studies 

Entrez Gene ID Gene Symbol Chr Beta Std.Err P.Value FDR 

54674 LRRN3 7 0.64 0.02 1.17E-281 2.94E-277 
23328 SASH1 6 0.18 0.01 1.09E-98 1.36E-94 
56650 CLDND1 3 0.18 0.01 1.00E-66 8.40E-63 
55022 PID1 2 0.25 0.02 1.67E-53 1.05E-49 
10462 CLEC10A 17 0.09 0.01 6.00E-51 3.01E-47 
4118 MAL 2 0.17 0.01 9.34E-35 3.91E-31 
149628 PYHIN1 1 -0.10 0.01 2.42E-34 8.68E-31 
1524 CX3CR1 3 -0.16 0.01 9.49E-33 2.98E-29 
2838 GPR15 3 0.09 0.01 3.15E-30 7.91E-27 
55020 TTC38 22 -0.16 0.01 2.86E-30 7.91E-27 
5729 PTGDR 14 -0.11 0.01 2.15E-29 4.91E-26 
51176 LEF1 4 0.15 0.01 5.41E-25 1.13E-21 
1028 CDKN1C 11 -0.20 0.02 2.28E-24 4.40E-21 
53637 S1PR5 19 -0.24 0.02 5.09E-24 9.12E-21 
9788 MTSS1 8 -0.10 0.01 9.61E-24 1.61E-20 
154075 SAMD3 6 -0.07 0.01 2.52E-22 3.72E-19 
4050 LTB 6 0.10 0.01 4.31E-21 6.01E-18 
23178 PASK 2 0.13 0.01 6.34E-21 8.37E-18 
2359 FPR3 19 0.09 0.01 8.30E-21 1.04E-17 
2517 FUCA1 1 0.13 0.01 6.30E-20 7.53E-17 
389 RHOC 1 -0.11 0.01 1.53E-19 1.75E-16 
51348 KLRF1 12 -0.14 0.02 1.99E-19 2.17E-16 
114879 OSBPL5 11 -0.11 0.01 2.09E-19 2.19E-16 
146330 FBXL16 16 0.12 0.01 4.82E-19 4.84E-16 
5243 ABCB1 7 -0.08 0.01 6.33E-19 6.11E-16 
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Table 2: Top 25 smoking gene signatures for former vs. never smokers based on meta-analysis of six 

studies 

Entrez Gene ID Gene Symbol Chr Beta Std.Err P.Value FDR 

54674 LRRN3 7 0.100 0.013 3.27E-14 8.21E-10 
11186 RASSF1 3 -0.025 0.004 6.13E-09 7.69E-05 
284207 METRNL 17 -0.026 0.005 1.99E-08 1.66E-04 
55020 TTC38 22 -0.059 0.012 7.76E-07 4.87E-03 
4118 MAL 2 0.060 0.012 9.85E-07 4.94E-03 
10578 GNLY 2 -0.053 0.011 1.94E-06 8.14E-03 
7102 TSPAN7 X 0.036 0.008 3.61E-06 0.01 
29992 PILRA 7 -0.034 0.007 5.49E-06 0.02 
10023 FRAT1 10 -0.038 0.009 1.07E-05 0.03 
25829 TMEM184B 22 -0.054 0.012 1.30E-05 0.03 
6352 CCL5 17 -0.056 0.013 1.66E-05 0.04 
27202 C5AR2 19 -0.029 0.007 3.50E-05 0.06 
5729 PTGDR 14 -0.037 0.009 3.77E-05 0.06 
4145 MATK 19 -0.025 0.006 4.08E-05 0.06 
8745 ADAM23 2 0.033 0.008 4.16E-05 0.06 
6774 STAT3 17 -0.029 0.007 4.28E-05 0.06 
7462 LAT2 7 -0.025 0.006 4.30E-05 0.06 
56979 PRDM9 5 0.019 0.005 4.46E-05 0.06 
51176 LEF1 4 0.050 0.012 4.72E-05 0.06 
56650 CLDND1 3 0.038 0.009 5.68E-05 0.07 
25996 REXO2 11 0.044 0.011 7.55E-05 0.09 
10331 B3GNT3 19 -0.032 0.008 8.98E-05 0.09 
3257 HPS1 10 0.036 0.009 9.41E-05 0.09 
51339 DACT1 14 0.015 0.004 9.85E-05 0.09 
5329 PLAUR 19 -0.032 0.008 0.000103 0.09 
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Table 3: Gene ontology enrichment analysis of smoking-related gene coexpression network modules 

CoEM Ontology category Overlap  
Fold 

Change 
P Value 

Corrected P 

Value 

Turquoise 
 

Response to wounding 35 2.35 1.40E-06 1.15E-03 

Platelet activation 9 7.28 3.75E-06 3.09E-03 

Integrin-mediated signaling pathway 11 4.99 1.26E-05 0.01 

Blood coagulation 12 4.39 1.86E-05 0.01 

Inflammatory response 23 2.50 4.53E-05 0.04 

Blue 

T cell activation 19 6.10 2.67E-10 2.20E-07 

Lymphocyte activation 23 4.75 4.68E-10 3.86E-07 
Transmembrane receptor protein 
tyrosine kinase signaling pathway 

17 3.53 6.35E-06 5.24E-03 

T cell proliferation 8 6.76 2.32E-05 0.02 

Brown 

Immune cell mediated cytotoxicity 9 25.35 4.71E-11 3.89E-08 

Cellular defense response 15 6.69 6.01E-09 4.96E-06 

Positive regulation of apoptosis 21 3.52 3.95E-07 3.26E-04 

Cell migration 23 3.09 9.95E-07 8.21E-04 

Regulation of cytokine biosynthesis 11 5.34 6.52E-06 5.38E-03 

Green Protein biosynthesis 10 5.29 7.58E-06 6.26E-03 
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Table 4: Smoking-related diseases and traits enriched for smoking-related gene expression signatures 

Trait Overlap 

Gene NO  

Total Genes 

having eSNPs 

in GWAS 

Catalog 

Fold 

Change 

P-val Gene List 

 --link by cis-eSNP 

Stroke 5 11 6.3 4.5E-5 ALDH2; CAMTA1; SH2B3; TMEM116; 

ERP29 

Pulmonary 
function 

16 116 1.9 3.7E-3 C6orf48; CAMK1D; CSNK2A2; GYPE; 

HLA-DPA1; HLA-DRA; LST1; LTA; NCR3; 

SEC61A2; TAP2; TNS1; TRIM10; RPL10A; 

NAP1L5; WDR11 

Weight 6 40 2.1 0.02 C6orf48; GTF3A; HLA-DRA; LST1; NCR3; 

PRKCA 

Asthma 11 89 1.7 0.02 AGPAT1; C6orf48; CDC25B; HLA-DPA1; 

HLA-DRA; IL2RB; LST1; MYL6B; TAP2; 

BLK; VAV3 

 -- link by trans-eSNP 

Asthma 6 40 2.1 0.02 BTN3A2; CCL5; LIMS1; MYC; SSR4; 

TRIM10 

Coronary heart 
disease 

6 45 1.9 0.04 BTN3A2; FOS; GBP1; GBP2; GBP4; 

GZMH 
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Table 5: Mediation analysis examining the indirect association of smoking with IL6 and CRP through gene expression  

Gene β1  P for β1  β1’ P for β1’ β2 P for β2 

Mediation 

Prop Z-Val Sobel P 

Sobel P 

(corrected) 

-- Mediation Analyses: Smoking ���� Gene ���� IL6 

ALAS2 0.3 3.39E-07 0.27 3.49E-06 -0.26 1.36E-05 0.09 2.77 5.66E-03 0.017 

-- Mediation Analyses: Smoking ���� Gene ���� CRP 

ALAS2 0.11 0.03 0.06 0.24 -0.45 1.07E-18 0.47 5.32 1.04E-07 5.73E-06 

PLAUR 0.11 0.03 0.06 0.23 0.50 6.54E-08 0.44 4.78 1.74E-06 9.58E-05 

DARS 0.11 0.03 0.06 0.23 0.21 4.80E-07 0.44 4.58 4.66E-06 2.56E-04 

MFGE8 0.11 0.03 0.08 0.12 0.63 5.88E-10 0.29 4.33 1.52E-05 8.34E-04 

RPS2P8 0.11 0.03 0.08 0.11 0.43 3.07E-09 0.28 4.20 2.70E-05 1.48E-03 

SNORD48 0.11 0.03 0.07 0.14 0.35 3.12E-05 0.31 3.81 1.37E-04 7.52E-03 

CDC25B 0.11 0.03 0.08 0.10 0.49 1.07E-06 0.24 3.81 1.37E-04 7.55E-03 
 

 * Model 1: phenotype ~ β1 Smoking + covariates  

& Model 2: phenotype ~ β1’ Smoking + β2 gene + covariates  
§ Bonferroni correction for IL6 was to correct for 3 genes; for CRP was to correct for 55 genes.
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Figure 1: Volcano plots of meta-analysis of differentially expressed for smoking.  A) Current vs. Never 
Smokers; B) Former vs. Never Smokers.  
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