
Original Article

Random Survival Forest in practice: a method

for modelling complex metabolomics data in

time to event analysis

Stefan Dietrich1,*, Anna Floegel1, Martina Troll2,3, Tilman Kühn4,
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Abstract

Background: The application of metabolomics in prospective cohort studies is statistically

challenging. Given the importance of appropriate statistical methods for selection of disease-

associated metabolites in highly correlated complex data, we combined random survival for-

est (RSF) with an automated backward elimination procedure that addresses such issues.

Methods: Our RSF approach was illustrated with data from the European Prospective

Investigation into Cancer and Nutrition (EPIC)-Potsdam study, with concentrations of 127

serum metabolites as exposure variables and time to development of type 2 diabetes
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mellitus (T2D) as outcome variable. Out of this data set, Cox regression with a stepwise

selection method was recently published. Replication of methodical comparison

(RSF and Cox regression) was conducted in two independent cohorts. Finally, the R-code

for implementing the metabolite selection procedure into the RSF-syntax is provided.

Results: The application of the RSF approach in EPIC-Potsdam resulted in the identification

of 16 incident T2D-associated metabolites which slightly improved prediction of T2D when

used in addition to traditional T2D risk factors and also when used together with classical

biomarkers. The identified metabolites partly agreed with previous findings using Cox re-

gression, though RSF selected a higher number of highly correlated metabolites.

Conclusions: The RSF method appeared to be a promising approach for identification of dis-

ease-associated variables in complex data with time to event as outcome. The demonstrated

RSF approach provides comparable findings as the generally used Cox regression, but also

addresses the problem of multicollinearity and is suitable for high-dimensional data.

Key words: Cox proportional hazards regression, exploratory survival analysis, multicollinearity, random survival

forest, right-censored data, metabolomics, type 2 diabetes mellitus, variable selection

Introduction

Metabolite profiling offers the opportunity to discover

new disease biomarkers, thereby potentially improving our

understanding of disease aetiology.1–4 However, the ex-

ploratory analysis of large metabolomic data sets contain-

ing hundreds of variables with regression approaches has

unique statistical challenges including correction for mul-

tiple testing and handling of multicollinearity. These chal-

lenges have only partially been solved so far and can be

considered as limitations inherent in current statistical

methods. In this context, multivariate classification meth-

ods may overcome such limitations. Among them, random

survival forest (RSF) could be a powerful method,5 espe-

cially if an automated variable selection procedure could

be linked with the possibility to retain a fixed set of poten-

tial confounding factors in the model.

RSF is specifically suitable for exploratory analysis of

right-censored highly correlated complex survival data of

prospective cohorts where the outcome is a time-dependent

variable.5 RSF uses a collection of decision trees for predic-

tion and to rank variables by their importance for time to

event, which was recently, successfully applied to identify

risk factors of different diseases.6–8 Consequently, RSF

seems also suitable to reduce the data dimension of highly

correlated metabolomic data in prospective cohorts by se-

lecting the most important metabolites that are linked with

event time of interest.

The importance of exploratory analysis of complex

data sets in epidemiological studies will increase in the fu-

ture and thus appropriate methods must be used. Hence,

we illustrate the applicability of the RSF approach for ex-

ploratory identification of metabolites associated with dis-

ease risk. We applied RSF to a subcohort of the European

Prospective Investigation into Cancer and Nutrition

(EPIC)-Potsdam study, using concentrations of 127 serum

metabolites as exposure variables and time to development

Key Messages

• The implemented random survival forest backward selection algorithm enables metabolite selection and thus detec-

tion of potential novel disease biomarkers while taking into account possible confounders.

• The application of the random survival forest backward selection resulted in the identification of 16 metabolites which

are associated with type 2 diabetes risk and slightly improved risk prediction compared with RSF on all metabolites.

• Non-linear relationships between identified metabolites and predicted 5-year event-free survival were displayed,

thereby improving the interpretability of random survival forest results.

• Epidemiologists are encouraged to consider the provided random survival forest backward selection as a sensible

complement to conventional regression-based selection methods for variable selection when analysing highly corre-

lated complex survival data.
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of type 2 diabetes mellitus (T2D) as endpoint.3 An RSF

backward elimination procedure was implemented to re-

strict the number of metabolites to informative metabolites

only, while retaining forcing a set of potential confounding

factors into the model. To investigate the impact of metab-

olite selection and potential confounders on prediction,

prediction error rates were compared between several RSF

models computed based on different data (identified or all

metabolites, traditional T2D risk factors and classical bio-

markers). In addition, in two independent cohorts, meth-

odical replications were conducted. Finally, we discuss the

performance of RSF in general and in comparison with

Cox proportional hazards regression (CR), which has been

recently applied to identify metabolites related to T2D in

the same data.3

Materials and Methods

Study population

The EPIC-Potsdam study is part of the ongoing large-scale

European-wide prospective cohort study, the European

Prospective Investigation into Cancer and Nutrition

(EPIC). From 1994 to 1998, 16644 women and 10904

men, aged mainly 35 to 65 years, were recruited from the

general population in Potsdam and surrounding areas.9 At

baseline, participants underwent examinations including

anthropometric and blood pressure measurements, filled in

self-administered questionnaires on diet and lifestyle and

answered personal computer-assisted interviews. Blood

samples (30 ml) were collected at baseline and immediately

fractionated, aliquoted into straws and stored at �196 �C

until measurement of serum metabolites.3 Baseline blood

samples were also used for measurement of the classical

biomarkers HbA1c, triglycerides, HDL-cholesterol, adipo-

nectin and high sensitive CRP as described before.10,11

Information about cases of incident T2D and diabetes-

specific medication was recorded every 2 to 3 years by self-

administered questionnaires. All self-reports had been veri-

fied by the treating physician (ICD-10: E11). In total, 849

cases of incident T2D have been recorded between baseline

examination and August 2005. Using a nested case-cohort

design, we randomly selected a subcohort of 2500 individ-

uals from the EPIC-Potsdam cohort, which served as the

reference group. The case-cohort design is an efficient and

well-established subsampling mechanism for investigating

biomarker-disease associations in prospective studies.12

After excluding participants with self-reported prevalent

T2D or antidiabetic medication at baseline, missing blood

samples or missing data on follow-up, metabolites and

covariates, the analytical study population consists of 800

cases of incident T2D and 2197 non-cases. For

computation of RSF models including classical biomarkers,

the study population consists of 690 cases of incident T2D

and 2067 non-cases due to the exclusion of participants

with missing classical biomarker measurements.

Replication cohorts

The implemented RSF approach and the previously used

stepwise CR approach3 were also applied in two independ-

ent German cohort studies: the Cooperative Health

Research in the Region of Augsburg (KORA) study and in

the EPIC-Heidelberg study.

KORA is a population-based cohort study conducted in

Southern Germany.13 The baseline survey 4 (KORA S4)

consists of 4261 individuals (aged 25-74 years) examined

between 1999 and 2001. During the years of 2006 to

2008, 3080 participants took part in the follow-up survey

4 (KORA F4). Clinical data for each participant were

retrieved from medical records. Based on physician-

validated and self-reported diagnosis, fasting glucose and

2-h post-glucose load and information on medications, in-

cident T2D cases were identified.13,14 After exclusion of

participants with prevalent T2D at baseline S4 and inci-

dent T2D cases with earliest diagnosis in the follow-up sur-

vey 4 (2006-08), missing data on follow-up, metabolite

profiles and clinical parameters, the current analysed

KORA study population consists of 21 incident T2D cases

and 779 non-cases. The sampling procedure and metabol-

ite measurement of the KORA S4 have been described in

detail elsewhere.14

The EPIC-Heidelberg study is part of the European-

wide EPIC-study15 with 25540 participants aged 35-65

years who were recruited between 1994 and 1998.16

Recruitment and follow-up procedures and verification of

prevalent and incident T2D cases in EPIC-Heidelberg were

the same as in EPIC-Potsdam.9,17 For measurements of

serum metabolites, a random subcohort including only

participants free of diabetes at baseline was established in

2006.18 After excluding participants with antidiabetic

medication at baseline, missing blood samples and missing

data on follow-up, metabolites and covariates, the analyt-

ical study population consists of 45 cases of incident T2D

and 716 non-cases.

EPIC-Potsdam study procedures were approved by the

Ethics Committee of the Medical Association of the State

of Brandenburg (Germany) and all participants provided

written informed consent. The EPIC-Heidelberg study was

approved by the Ethics Committee of the Medical Faculty

of the University of Heidelberg (Heidelberg, Germany).

The study participants provided written consent for the use

of their blood samples and data. All KORA participants

gave written informed consent, and the studies were
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approved by the Ethics Committee of the Bavarian

Medical Association.

Measurement of metabolites

In EPIC-Potsdam, metabolite concentrations of baseline

blood serum samples were determined using

AbsoluteIDQTM p150 Kits (Biocrates Life Sciences AG,

Innsbruck, Austria) which is based on the flow injection

analysis tandem mass spectrometry (FIA-MS/MS) tech-

nique as described in detail by Römisch-Margl et al.19 Of

163 quantified metabolites in EPIC-Potsdam, 36 with an

intraclass correlation coefficient of< 0.40 (indicating poor

reliability) were excluded, leaving 127 quantified metabol-

ites for statistical analyses:20 one hexose (sum of six-

carbon monosaccharides without distinction of isomers),

14 amino acids, 14 spingomyelins, 17 acylcarnitines

(Cx:y; x ¼ number of carbon atoms, y ¼ number of

double bonds), 37 acyl-alkyl-, 34 diacyl- and 10 lyso-

phosphatidylcholines (PC).

The serum blood samples from participants in the

baseline KORA S4 study were quantified with the

AbsoluteIDQTMp180 Kit (Biocrates Life Sciences AG,

Innsbruck, Austria),14 of which 118 metabolites were used

for the present study. In the EPIC-Heidelberg study, base-

line blood serum samples were quantified using the

MetaDisIDQTM Kit (Biocrates Life Sciences AG,

Innsbruck, Austria).18 Of quantified metabolites, 122 were

used in the present study. In the replication analyses, only

metabolites that were also available in EPIC-Potsdam

study were included.

Random survival forest

An RSF is computed by an ensemble of binary decision

trees which can be used for selecting the most important

variables that are linked with time to event. As previously

described in detail,5 bootstrapping and random node split-

ting are applied to grow an ensemble of independent deci-

sion trees that form the RSF (Figure 1). Once an RSF

model is computed, it can be assessed how informative a

variable is regarding time until event, using the so-called

minimal depth measurement (Supplementary Figure S1,

available as Supplementary data at IJE online). For this

purpose, for each variable the distance (counting the

nodes) from the root node to the node where a variable

splits first is determined in each decision tree. By averaging

over all trees, a reliable measure of importance of a vari-

able regarding time to event can be obtained.21 The lower

the minimal depth values, the more predictive is a variable

for the outcome of interest. To determine the prediction ac-

curacy of an RSF model, an RSF prediction error rate is

computed based on Harrell’s concordance index (C-index).

The RSF prediction error rate is conformed to 1 minus

C-index, which implies that lower values reflect an

RSF model with better predictability. A detailed descrip-

tion of the RSF method is provided in the supplement,

available as Supplementary data at IJE online. AN RSF

can be computed automatically using the R-package

randomForestSRC.22

Statistical analysis

To obtain a reduced set of informative metabolites associ-

ated with incident T2D taking into account covariates, we

Figure 1. Schematic exemplary illustration of the computation of a RSF using 1000 bootstrap samples. The splitting process was illustrated in one

possible decision tree. Numbers on edges represents possible cut points used for splitting the respective parent node into two daughter nodes.

Based on the split points (e.g. 30 for BMI) observations are assigned to the left or right daughter node. To determine a split point random node split-

ting and the log rank statistic is used. Abbreviation: T, terminal node.
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systematically removed noise metabolites by implementing

the following stepwise RSF backward algorithm: (i) com-

pute an RSF using covariates and all metabolites to be

tested; (ii) rank the metabolites by minimal depth and re-

move the metabolite with the worst minimal depth from

the data; (iii) compute a new RSF with the remaining data;

(iv) repeat steps (ii) and (iii) until only one metabolite vre-

main;. and (v) choose the set of metabolites with the small-

est prediction error rate. A similar algorithm was suggested

by D�ıaz-Uriarte et al. and Jiang et al.23,24 in the context of

the method ‘random forest’ but without retaining possible

covariates throughout the selection process. The code for

implementing the selection algorithm in the RSF-syntax is

provided in the supplement, available as Supplementary

data at IJE online.

The RSF backward algorithm was applied on the data

consisting of all metabolites and covariates, to compute a

final RSF with the smallest prediction error rate. With RSF

there is no need for standardization of data, and thus the

crude data were used. For the purpose of comparability,

the same set of covariates was used as by Floegel et al.3

including age, sex, body mass index (BMI) (kg/m2), waist

circumference (cm), alcohol intake from beverages (non-

consumer, women > 0-6, 6-12 and > 12 g/day; men > 0-

12, 12-24 and > 24 g/day), smoking (never smoker, for-

mer, current � 20 cigarettes/day, current > 20 cigarettes/

day), cycling and sports (h/week), level of education (no

degree/vocational training, trade/technical school, univer-

sity degree), coffee intake (cups/day), red meat intake

(g/day), whole-grain bread intake (g/day) and prevalent

hypertension. The latter was defined as either systolic

blood pressure (BP) of 140 mmHg or higher, diastolic BP

of 90mm Hg or higher, self-reported hypertension diagno-

sis or use of antihypertensive medication.

The same covariate classification was used in EPIC-

Potsdam and EPIC-Heidelberg. In the KORA study, meat

and whole-grain bread was not recorded as g/day but as

categories (almost every day, several times a week, about

once a week, several times a month, once a month or less,

never). Physical activity was classified in the KORA study

as follows: regularly more than 2 h/week, regularly around

1h/week, irregularly around 1h/week, almost to none. In

EPIC-Potsdam and EPIC-Heidelberg, the diagnosis date

was available as day of diagnosis and in the KORA study

as year of diagnosis. In addition to the metabolite selection

procedure of the RSF backward algorithm, a CR procedure

for metabolite selection was applied in the two replication

cohorts as described previously by Floegel et al.3

Subsequently for evaluation, different RSF models were

computed containing: (i) identified metabolites derived by

applying the backward elimination procedure plus trad-

itional T2D risk factors (i.e. covariates); (ii) covariates

only; (iii) all metabolites only; and (iv) all metabolites plus

covariates. In EPIC-Potsdam, two additional RSF-models

were computed using data of (v) classical biomarkers plus

covariates; and (vi) identified metabolites plus classical

biomarkers and covariates. For each RSF model, 100 repe-

titions were computed and used to calculate means and

95% confidence intervals (CI) of prediction error rates of

the respective RSF models. Furthermore, a final RSF model

containing covariates plus the subset of identified metabol-

ites was computed to derive minimal depth values and, in

EPIC-Potsdam, partial (dependence) plots of identified me-

tabolites. Partial plots represent the effect of each metabol-

ite on predicted 5-year T2D-free survival after accounting

for the average effects of the other variables.25,26

Additional partial plots of classical biomarkers were

computed in EPIC-Potsdam from an RSF model including

data of classical biomarkers and covariates only.

Moreover, to investigate correlation structures in EPIC-

Potsdam, Spearman correlation coefficients between each

possible pair of identified metabolites were calculated with

adjustment for covariates using data of non-cases of T2D.

Metabolites identified by RSF and previously by CR3 were

highlighted in a metabolite network based on a Gaussian

graphic model. A Gaussian graphic model represents un-

directed probabilistic graphs useful to analyse and visualize

the dependency structure of highly correlated variables.27

Especially for acyl-alkyl-PC, we compared the correl-

ation structure of acyl-alkyl-PC identified by RSF and pre-

viously by CR.3 The analyses were conducted with the

statistic software R (version 3.0.0), the R-package

randomForestSRC (Version 1.2) and SAS version 9.4. The

default values for computation of RSFs were used. Each

RSF was computed using 1000 bootstrap samples and the

log-rank splitting rule with 10 splits per variable. The code

is available upon request.

Results

In EPIC-Potsdam, the mean age [standard deviation SD)]

was 54.7 (7.3) in future T2D cases and 49.3 (8.9) in par-

ticipants of the reference group (Table 1). With 41.8%, the

proportion of women among cases was substantially lower

than for non-cases (57.8%). In EPIC-Heidelberg, the par-

ticipants were of the same ages as in EPIC-Potsdam,

whereas in the KORA study the participants were approxi-

mately 10 years older.

Applying the RSF backward algorithm on the data of

127 metabolites adjusted for the covariates resulted in a

reduced set of 16 metabolites in the EPIC-Potsdam study

(Figure 2). This set of metabolites had the smallest predic-

tion error rate during selection process, suggesting high

relevance for incident T2D (Table 2). Among them, hexose
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appeared to have the strongest influence on incident T2D

according to minimal depth. Beside hexose, the metabolites

acyl-alkyl-PC C34:3 and diacyl-PC C38:3 had the lowest

minimal depth values. Furthermore, several acyl-alkyl-PC

(C42:4, C42:5, C44:4, C44:5, C44:6), diacyl-PC (C32:0,

C42:0, C42:1), aminoacids (valine, tyrosine, glycine), lyso-

PC a C18:2 and acylcarnitine C16 were identified. The

mean prediction error rate of 100 computed RSF models

containing only covariates was 0.216 and thus higher than

the mean prediction error rate obtained in RSF models

containing all 127 metabolites (0.199) or all metabolites

plus covariates (0.173, Table 2). Application of the RSF

backward algorithm resulted in the final RSF model (iden-

tified metabolite plus covariates) with a mean prediction

error rate of 0.165. The most predictive RSF model with a

mean prediction error rate of 0.145 included the identified

metabolites, classical biomarkers and covariates, whereas

the RSF model that included only classical biomarker and

covariates resulted in a mean prediction error rate of 0.155

(Table 2).

Direction and non-linearity between identified metabol-

ites and predicted 5-year T2D-free survival was assessed

visually in partial plots (Figure 3). The T2D-free survival

decreased noticeably as values of hexose, diacyl-PC C38:3,

valine, tyrosine and acylcarnitine C16 increased.

Threshold values were approximately 5000 mmol/l of hex-

ose and 50 mmol/l of diacyl-PC C38:3. Individuals with the

lowest values of hexose had approximately 25% higher

T2D-free survival compared with individuals with highest

values. In contrast, increasing values of all identified acyl-

alkyl-PC, lyso-PC a C18:2, glycine, diacyl-PC C42:0 and

C42:1 were associated with an increase of T2D-free sur-

vival. Most of the partial plots indicate non-linear associ-

ations between the respective metabolites and T2D-free

survival. Non-linear associations were also observed in

partial plots of classical biomarkers (Figure 4).

The determination of the mutual correlations of identi-

fied metabolites resulted in correlations ranging from -0.05

to 0.85. As illustrated in Figure 4, a highly correlated me-

tabolite cluster of five acyl-alkyl-PCs (C42:4, C42:5,

Table 1. Baseline characteristics of the analysed study populationsa

Baseline characteristics EPIC-Potsdam EPIC-Heidelberg KORA

Non-cases

(n ¼ 2197)

Incident type 2

diabetes cases

(n ¼ 800)

Non-cases

(n ¼ 716)

Incident type 2

diabetes cases

(n ¼ 45)

Non-cases

(n ¼ 779)

Incident type 2

diabetes cases

(n ¼ 21)

Age (years)b 49.3 (8.9) 54.7 (7.3) 50.3 (8.0) 52.4 (7.7) 62.9 (5.4) 63.8 (5.0)

Women (%) 57.8 42.2 58.1 44.4 51.22 33.33

BMI (kg/m2) 25.9 (0.09) 30.1 (0.15) 25.2 (0.14) 28.7 (0.56) 27.9 (0.14) 32.2 (0.87)

Waist circumference, men (cm)c 93.3 (0.34) 103.6 (0.46) 94.3 (0.51) 100.9 (1.77) 98.8 (0.44) 109.4 (2.34)

Waist circumference, women (cm)c 80.1 (0.30) 93.4 (0.62) 78.9 (0.49) 90.1 (2.24) 88.6 (0.52) 98.3 (3.95)

Prevalent hypertension (%) 48.3 70.8 25.3 48.9 46.7 85.7

Education

No degree/vocational training (%) 36.6 45.6 23.5 44.4 8.9 9.5

Trade/technical school (%) 23.9 25.4 43.4 44.4 70.0 66.7

University degree (%) 39.5 29.0 33.1 11.1 21.2 23.8

Smoking status

Never (%) 47.4 36.2 43.3 46.7 11.6 19.1

Former (%) 32.3 42.3 35.2 26.7 34.8 42.9

Current (%) 20.3 21.5 21.5 26.7 53.7 38.1

Among smokers: number of cigarettes/day 12.5 (0.44) 16.0 (0.74) 16.5 (0.80) 16.6 (3.09) 16.1 (0.83) 27.8 (4.31)

Physical activity (h/week)d 2.9 (0.08) 2.2 (0.13) 2.4 (0.09) 2.5 (0.37) 47.4 38.1

Alcohol intake from beverages (g/day) 14.8 (0.42) 14.5 (0.71) 17.6 (0.69) 16.8 (2.78) 16.0 (0.67) 15.6 (4.07)

Coffee consumption (cups/day) 2.8 (0.05) 2.7 (0.08) 2.7 (0.10) 2.5 (0.38) 2.9 (0.08) 3.4 (0.50)

Whole-grain bread intake (g/day)e 46.4(1.12) 38.2 (1.91) 108.0 (2.70) 101.0 (10.80) 84.98 90.84

Red meat intake (g/day)f 43.0 (0.62) 48.9 (1.06) 31.1 (1.06) 28.9 (4.25) 92.68 100

aPresented are age- and sex-adjusted mean (standard error) for continuous variables or percentages for categorical variables.
bUnadjusted mean (standard deviation).
cAge-adjusted mean (standard error).’
dFor EPIC-Potsdam and EPIC-Heidelberg, average of cycling and sports during summer and winter season; for the KORA study, the physical activity is pro-

vided as percentage � 1 h/week.
eFor the KORA study, whole-grain bread intake is given as percentage � once per week (includes whole-grain bread, brown bread, crispbread).
fFor the KORA study, meat intake is given as percentage � once per week (without sausages or ham).
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C44:4, C44:5, C44:6) and two diacyl-PC (C42:0 and

C42:1) was identified by the RSF backward algorithm. All

seven metabolites were previously also identified by uni-

variate CR; however, four of these metabolites lost statis-

tical significance in the subsequently applied stepwise CR

selection procedure3 (Figure 4 and Supplementary Table

S1, available as Supplementary data at IJE online). As

demonstrated for acyl-alkyl-PCs identified by RSF and

those identified previously with CR by Floegel et al.,3 RSF

tend to select metabolites with stronger correlations than

CR (Figure 5).

The application of the RSF backward algorithm in the

EPIC-Heidelberg study and in the KORA study resulted in

the identification of 18 and 10 metabolites, respectively,

which were associated with incident T2D and improved

the prediction of T2D (Supplementary Figures S2 and S3,

and Supplementary Tables S3 and S4, available as

Supplementary data at IJE online). The application of a

CR procedure for metabolite selection resulted in the iden-

tification of hexose only in EPIC-Heidelberg

(Supplementary Table S5, available as Supplementary data

at IJE online) and of hexose and acyl-alkyl-PC C34:1 in

the KORA study (Supplementary Table S6, available as

Supplementary data at IJE online). Most of the metabol-

ites, which tested significant in individual tests, lost statis-

tical significance after correction for multiple testing

(Supplementary Tables S5 and S6). Nine of 18 metabolites

in EPIC-Heidelberg and five of 10 metabolites in the

KORA study identified with the RSF backward algorithm

also tested significant with CR before correction for mul-

tiple testing. The RSF backward algorithm identified me-

tabolites hexose, diacyl-PC C38:3, acyl-alkyl-PC C42:4

and lyso-PC a C18:2 in EPIC Heidelberg; hexose, acyl-

alkyl-PC C44:6 and tyrosine in KORA were also identified

in EPIC-Potsdam.

Discussion

To illustrate the applicability of RSF for exploratory data

analysis in prospective cohorts, we applied an RSF back-

ward algorithm to a well-described study population.3

Using this approach, we were able to reduce the dimen-

sionality of our complex data set to a subset of 16 metabol-

ites while retaining established T2D risk factors. This was

accompanied by an improvement of the prediction error

rate, indicating that mainly noise metabolites were

excluded. The identified metabolites also improved the

prediction of T2D when classical biomarkers were avail-

able. Moreover, of identified metabolites seven metabolites

form a highly correlated metabolite cluster. Partial plots,

a feature of RSF, were used to display non-linear re-

lationship between the identified metabolites and predicted

5-year T2D-free survival, thereby improving the interpret-

ability of RSF results. In two replication cohorts with

lower numbers of incident T2D cases, the RSF backward

algorithm could be applied to identify incident T2D-associ-

ated metabolites. Some of these metabolites were also iden-

tified with stepwise CR, but most of them lost statistical

significance after correction for multiple testing.

Many common chronic diseases of Western societies

have a strong metabolic component. Therefore, the appli-

cation of metabolomics in epidemiological studies is ex-

pected to expand our aetiological understanding of several

0 1 2 3 4 5

Hexose

PC ae C34:3

PC aa C38:3

PC ae C44:6

PC ae C42:4

PC ae C42:5

Valine

Tyrosine

PC ae C44:5

lyso-PC a C18:2

PC aa C42:0

PC aa C42:1

PC ae C44:4

Glycine

AC C16:0

PC aa C32:0

minimal depth

Figure 2. Identified metabolites that are most predictive for incident

type 2 diabetes ranked by the minimal depth measurement.

Metabolites were identified using the random survival forest backward

algorithm. Metabolites with lower minimal depth values are more pre-

dictive regarding incident type 2 diabetes. Abbreviations: a, acyl; aa,

diacyl; ae, acyl-alkyl; PC, phosphatidylcholine; AC, acylcarnitine.

Table 2. RSF-derived error rates for the prediction of incident

T2D in different RSF models in the EPIC-Potsdam study

RSF model Prediction error rate mean (95% CI)

Covariates and selected

metabolites

0.16489 (0.16487; 0.16491)

Only covariates 0.21580 (0.21578; 0.21583)

All metabolites 0.19855 (0.19852; 0.19859)

Covariates and all metabolites 0.17314 (0.17311; 0.17317)

Covariates and biomarker 0.15515 (0.15512; 0.15517)

Covariates, selected metabolites

and biomarkers

0.14533 (0.14530; 0.14535)

Covariates included age, sex, BMI, waist circumference, alcohol intake

from beverages, smoking, cycling and sports, level of education, coffee intake,

red meat intake, whole-grain bread intake and prevalent hypertension.

Biomarkers included HbA1c, triglycerides, HDL-cholesterol, adiponectin and

high sensitive C-reactive protein (CRP).
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Figure 3. Partial plots of the selected metabolites including the partial values (black points) 6 2 SE (dashed grey lines). Values on the vertical axis rep-

resent predicted five-years T2D-free survival for a given variable after adjusting for all other variables (covariates and selected metabolites).

Metabolite concentrations are on the horizontal axis. A lower predicted five-years T2D-free survival means a higher risk to develop type 2 diabetes

within five years of follow-up time in EPIC-Potsdam. Abbreviations: a, acyl; aa, diacyl; ae, acyl-alkyl, PC, phosphatidylcholine; AC, acylcarnitine.
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Figure 4. Partial plots of tested biomarkers in EPIC-Potsdam including the partial values (black points) 6 2 SE (dashed grey lines). The partial plots

based on a RSF model that included the covariates and the five biomarkers. Values on the vertical axis represent predicted five-years T2D-free sur-

vival for a given variable after adjusting for all other variables (covariates and biomarkers). Biomarker concentrations are on the horizontal axis. A

lower predicted five-years T2D-free survival means a higher risk to develop type 2 diabetes within five years of follow-up time in EPIC-Potsdam.

Figure 5. Gaussian graphic model of serum metabolites analysed for associations with type 2 diabetes in EPIC-Potsdam. Each node represents one me-

tabolite and each edge between two nodes represents the partial correlation between two metabolites mutually adjusted for all other metabolites.

Metabolites that were identified to be associated with incident T2D by RSF or previously by Floegel et al. with a stepwise Cox regression approach (3) are

colour coded. One highly correlated metabolite pattern was resized and filled with metabolite names (nodes) and partial correlation coefficients (edges).

Abbreviations: a, acyl; aa, diacyl; ae, acyl-alkyl; Cox, Cox proportional hazards regression, PC, phosphatidylcholine; RSF, Random survival forest.
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diseases.3,4,28–33 However, in general, metabolomic data

consist of hundreds to thousands of metabolites and, due

to the tight co-regulation of metabolic networks, metabo-

lomics data exhibit a complex correlation structure.

Therefore, identification of important predictors related

with the outcome time to event remains a continuing statis-

tical challenge.

As previously described by Floegel et al.,3 a two-stage

CR analysis can be applied to identify metabolites associ-

ated with disease risk. In their study,3 the association be-

tween each metabolite and incident T2D was first assessed

in a univariate test followed by a stepwise selection proced-

ure. In compliance with the proportional hazards assump-

tion, this approach allows calculation of hazard rate ratios

and thus meaningful measures of strength and direction of

risk associations. However, testing each metabolite indi-

vidually–which is a frequently used approach in explora-

tory data analysis–increases the probability of type I error,

unless appropriate methods to adjust for multiple testing

are used.34 Yet, correction for multiple testing may sub-

stantially decrease statistical power in data sets containing

a large number of ‘noise variables’. This seems to be the

reason why most metabolites lost statistical significance

after correction for multiple testing in the two replication

cohorts. Compared with multiple testing, multivariable

statistical analyses may provide a deeper understanding of

altered metabolic pathways associated with disease devel-

opment. However, a high number of predictor variables

and mutual correlations increase the risk of multicollinear-

ity in multivariable regression models. The larger the re-

gression model, the more likely overfitting, unreliable

estimation of regression coefficients, inflated standard

errors or convergence problems will occur. In addition,

multicollinearity increases the risk of arbitrary predictor

choices in stepwise selection processes,35,36 which alto-

gether hampers the identification of disease-related meta-

bolic pathways in regression models.

Compared with regression approaches, RSF has several

advantages. RSF is completely data driven and thus inde-

pendent of hypothesis testing. It does not test the goodness

of fit of data to a hypothesis, but seeks a model that best

explains the data. RSF may thus represent a suitable tool

for exploratory analysis of survival data where previous

knowledge is still limited. As RSF is a multivariate feature

selection method, the above discussed limitations of uni-

variate regression approaches do not apply here.

For tree growing, RSF uses random subsets of variables

per node. Consequently, correlated variables will be selected

independently from each other to split nodes leading to

interruption of the correlation structure of variables. As a

consequence, there is less competition between highly corre-

lated variables due to the process of random node splitting,

and reliable variable selection is possible even in the pres-

ence of multicollinearity.37 This may be the reason why RSF

appeared to favour correlated metabolites. Furthermore, the

problem of overfitting–e.g. when multivariate regression

models are performed on a high number of variables with-

out internal validation–is largely reduced due to randomiza-

tion via bootstrap sampling.38 This feature makes RSF very

appealing for explorative metabolomics research, where

false-positive discoveries due to overfitting are considered to

be a major problem.39 However, the computation of an RSF

represents a kind of black box, as the reduction of an RSF

into one understandable decision tree is inappropriate.

Instead, minimal depth measurements and partial plots can

be considered for interpretation.

In light of these advantages, we applied RSF to a well-

described data set including 127 serum metabolites and a

number of established T2D risk factors.3 For the sake of

comparability, we used the same set of covariates as

Floegel et al.,3 though we acknowledge the fact that add-

itional study characteristics such as drug use40 or unmeas-

ured participant characteristics could have confounded the

observed metabolite-disease associations. Although RSF

has been recommended for automated survival analyses,6

methodological issues related to feature selection deserve

special attention. In some recent applications, RSF has

been applied on smaller sets of predictor variables.6–8 In

exploratory metabolic data analysis, however, it is neces-

sary to identify a subset of disease-related variables among

numerous additional unknown variables with no or minor

association to the endpoint. Therefore, we applied a strict

backward selection process under adjustment of estab-

lished T2D risk factors, resulting in a reduced data set of

16 metabolites. Because the selection process resulted in a

metabolite set with improved prediction error rates, it can

be concluded that only noise variables were removed. With

an error rate of 0.165 (equalling a C-statistic of 0.835), the

predictive power of RSF coupled with backward elimin-

ation is slightly lower than what was reported by Flögel

et al. following their two-step CR (C-statistic ¼ 0.849).3

The predictive accuracy of RSF and CR has been compared

in several previous applications, with superiority of RSF in

some5,7,41 but not all6,42 applications. In general, however,

differences appear to be small and partly related to censor-

ing frequency.5

All 16 metabolites identified by RSF also showed a

nominally significant association of the same direction

with the endpoint in univariate CR, though the acylcarni-

tine C16 lost significance in the CR following adjustment

for multiple testing, as previously published.3 Seven other

metabolites–namely the acyl-alkyl-PC C42:4, C44:6,

diacyl-PC C32:0, C42:0, C42:1, tyrosine and valine–were

not identified in the subsequent stepwise CR,3 since they
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were not independent of other metabolites in the multivari-

ate model (Supplementary Table S1). The diacyl-PC C38:3

and four acyl-alkyl-PC (C34:3, C42:5, C44:4, C44:5) were

identified by both RSF and multivariate CR.3 To our

knowledge, these metabolites have not been linked to inci-

dent T2D in other cohort studies before.

However, glycerophospholipids constitute a large chem-

ical class. The technological platforms used for metabolite

profiling differ with regard to glycerophospholipid cover-

age, thereby limiting the comparability of previous find-

ings. Nevertheless, alterations in diacyl-PCs and acyl-alkyl-

PCs are common in the (pre)diabetic state,43–48 possibly

influencing T2D risk via their impact on cell membrane in-

tegrity and cellular signal transduction.49 Lyso-PC a

C18:2–which was inversely associated with T2D in our

study and in Floegel et al.3 –is one of the few phospholipids

measured in multiple human studies, with most of them

also observing an inverse relation to T2D14,48,50,51 or im-

paired glucose tolerance.14,43,52 In vitro, lyso-PC a C18:2

has been shown to stimulate glucose-induced insulin re-

lease, which may partly explain the above findings.50

Our observation of an inverse association of glycine

with T2D is in line with Floegel et al.3 and other stud-

ies.14,50,51 This amino acid may decrease with increasing

gluconeogenesis or increasing glutathione demand as a re-

sult of oxidative stress.53 Moreover, in the multivariate ap-

proach of Floegel et al. only the amino acid phenylalanine

was identified to be independently associated with T2D,3

whereas RSF did not select phenylalanine but the biochem-

ically related aromatic amino acid tyrosine. In fact, a posi-

tive association to T2D or insulin resistance has been

repeatedly observed for phenylalanine4,54,55 as well as

tyrosine.4,50,54–57 The (patho)biological mechanism still

needs to be explored, though a competing transport

mechanism of aromatic amino acids and branched-chain

amino acids (BCAA) into mammalian cells has been sug-

gested as one possible explanation.58

BCAA are believed to induce insulin resistance via im-

paired insulin signalling in skeletal muscles, and our find-

ing of a positive association of valine to T2D is in line with

several previous studies.4,50,51,55–57,59–61 In Floegel et al.,

an increased T2D risk was observed for the BCAA valine

and isoleucine following adjustment for multiple testing,

but no independent association to the endpoint was

observed in the multivariate model.3 We assume that the

correlation structure and linear or non-linear associations

with T2D risk contributed to the diverse selection of

chemically-related metabolites by RSF and the two-stage

CR. In particular, compared with the CR analysis of

Floegel et al.,3 RSF appears to favour metabolites that

were partly highly correlated with each other, as seen in

Figures 5 and 6. Some of these metabolites differ only by

the number of double bonds or are likely members of the

same metabolic pathway. Since RSF selects these metabol-

ites independently of the correlation structure, bias by mul-

ticollinearity is unlikely, due to the random node-splitting

process.

For use in observational epidemiology and clinical inter-

pretation of metabolites, it is also important that RSF is

able to handle the issue of confounding in metabolite-

disease associations. Hence, we modified our backward se-

lection approach so that the selection process is run on all

metabolites while forcing a pre-defined set of potential

covariates into the model. This allows the interpretation of

the metabolites under consideration of covariates. Our

finding, that the RSF prediction error rate of a model

including all metabolites decreases from 0.198 to 0.173

upon additional consideration of traditional T2D risk

Figure 6. Correlation structure for acyl-alkyl phosphatidylcholines which were selected by (a) Cox proportional hazards regression analysis by Floegel

et al. (3) and (b) random survival forest. Edges represents spearman correlation coefficients adjusted for age, sex, alcohol intake from beverages,

smoking, cycling and sports, education, coffee intake, red meat intake, whole-grain bread intake, prevalent hypertension, BMI, and waist circumfer-

ence. Dotted lines rs¼ 0 – 0.5, Thin dashed lines rs¼ 0.5 – 0.75, thick lines rs> 0.75. ae ¼ acyl-alkyl; PC ¼ phosphatidylcholine.
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factors, is not surprising and underlines the importance of

inclusion of possible confounders when analysing metabo-

lomic data (Table 2). Since the RSF trees are grown solely

with predictor variables (i.e. metabolites) with an impact

on T2D-free survival, one may speculate that noise vari-

ables do not affect prediction. However, our data show

that the applied backward selection algorithm further de-

creases the RSF prediction error rate. Though this decrease

is small, 95% CI of prediction error rates do not overlap in

Table 2, indicating that mainly noise variables were

excluded.

Moreover, we attempted to improve the interpretability

of RSF analyses by using partial plots to determine the dir-

ection of association of each variable with the outcome of

interest, including potential non-linearity. Assessment of

non-linearity is also possible in CR, e.g. by cubic spline re-

gression. Yet, partial plots are adjusted for all variables in

the respective RSF model.25,26 Therefore, they can also be

obtained in the presence of multicollinearity among vari-

ables. As shown in the partial plots of Figure 4, the identi-

fied predictors appear to have a non-linear relation to

predicted 5-year T2D-free survival. Besides direction of as-

sociations, partial plots are ideally suited to derive non-

linear associations and possible clinical relevant cut points.

This was also shown by the partial plots of the classical

biomarkers. The cut points that can be derived from the

partial plots of classical biomarkers are greatly in line with

the guidelines of the American Diabetes Association.62

This renders partial plots a useful tool of exploratory sur-

vival analysis in order to gain first indications for further

research in the laboratory and the clinical environment.

The RSF backward algorithm and the previously

applied stepwise CR approach were also applied and com-

pared in two replication cohort studies. However, due to

the low number of incident T2D cases in the two replica-

tion cohorts, most metabolites tested significantly in indi-

vidual CR lost statistical significance after correction for

multiple testing. Unfortunately, replication cohorts with

higher numbers of incident T2D cases that measured

Biocrates serum metabolites do not exist. Nevertheless, in

contrast it was shown that the RSF backward algorithm

can be applied to identify metabolites that are associated

with incident T2D also in populations with a low number

of incident cases and high numbers of variables. Some of

the metabolites identified by the RSF approach also tested

significant before correction of multiple testing in the indi-

vidual CR tests. Interestingly, in the EPIC-Heidelberg co-

hort, some of the metabolites identified by the RSF

approach differ only in the number of double bondings,

pointing to a potential biological link. As in the EPIC-

Potsdam study, identified metabolites improved the predic-

tion of incident T2D in the replication cohorts when used

together with traditional T2D risk factors (Supplementary

Tables S3 and S4). However, the lower number of incident

T2D cases in the replication cohorts, the older KORA

population and the availability of diagnosis date only in

years in the KORA cohort, limited a direct comparison of

findings between the replication cohorts and the EPIC-

Potsdam cohort for the RSF as well as for the CR

approach.

One limitation of RSF is that this method does not im-

mediately allow calculation of a relative risk for each vari-

able, which is an intuitive and meaningful measure of

association in epidemiological studies. Instead, the contri-

bution of each marker to its relative relatedness with the

endpoint needs to be assessed by minimal depth ranking.

However, variables identified by RSF can be analysed in

subsequent regression models to estimate relative risks. Yet

regression models including all identified metabolites may

not be appropriate, given the fact that RSF can independ-

ently select structurally related metabolites of high correl-

ations. Furthermore, a disadvantage of tree-based methods

is that they tend to prefer splits of continuous variables,63

if the data consist of a mix of continuous and categorical

variables. To minimize this bias, the number of splits

chosen should be as small as possible. Accordingly, we

chose the number of splits equal to 10.

Some additional methodological issues should be

acknowledged when interpreting our findings. The EPIC-

Potsdam study is not representative of the German general

population64 and the higher proportion of women and

highly educated participants likely influences metabolite-

disease associations. Moreover, the comparison of the two

variable selection approaches was only possible in replica-

tion cohorts with a low number of incident T2D cases, re-

sulting in an insufficient statistical power for the stepwise

CR approach. Thus, even though it was shown that the

RSF approach for variable selection can also be applied

in data with a low number of cases and high number of

variables, the external replication of the results obtained

in the EPIC-Potsdam study was somewhat limited.

Unfortunately, no other population-based studies with a

comparable high number of incident T2D cases, in which

metabolomics analyses using the Biocrates kit have been

carried out, exist to our knowledge. Our data are also lim-

ited in terms of metabolite coverage. In fact, 75% of the

covered metabolites were choline-containing phospho-

lipids and another 18% were amino acids. Their close

structural and metabolic inter-relationship is reflected by

strong correlations between metabolites, which may have

contributed to a preferential selection of highly correlated

metabolites by the RSF algorithm. With 127 quantified

serum metabolites, our study has been conducted in a small

data set derived from targeted metabolomics profiling.

12 International Journal of Epidemiology, 2016, Vol. 0, No. 0

 at H
elm

holtz Z
entrum

 M
uenchen on Septem

ber 4, 2016
http://ije.oxfordjournals.org/

D
ow

nloaded from
 

http://ije.oxfordjournals.org/lookup/suppl/doi:10.1093/ije/dyw145/-/DC1
http://ije.oxfordjournals.org/lookup/suppl/doi:10.1093/ije/dyw145/-/DC1
http://ije.oxfordjournals.org/


However, the advantages of RSF over CR may be more

apparent in data sets containing a higher number of

noise variables,5 such as data derived from untargeted

metabolomics.

Taken together, we believe that RSF is a sensible com-

plement to CR. The introduced RSF backward algorithm is

particularly suitable for variable selection when highly cor-

related complex survival data are investigated to identify

unknown biomarkers associated with the disease of inter-

est, taking into account possible confounders. Using the

provided R-code, our RSF backward algorithm can be eas-

ily implemented and used to reduce the dimensionality of

data derived from ‘omic’ sciences in order to improve the

interpretability. However, partial plots are a first step to

investigating the direction and potential non-linearity of

individual metabolite-disease associations, and verification

and translation of RSF findings into clinically understand-

able association measures should be a matter for future

research.

Supplementary Data

Supplementary data are available at IJE online.
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