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This paper deals with the analysis of existence of traveling wave solutions (TWS) for a diffusion-degenerate (at D(0) = 0) and
advection-degenerate (at h'(0) = 0) reaction-diffusion-advection (RDA) equation. Diffusion is a strictly increasing function and
the reaction term generalizes the kinetic part of the Fisher-KPP equation. We consider different forms of the convection term h(u):
(1) K (u) is constant k, (2) h'(u) = ku with k > 0, and (3) it is a quite general form which guarantees the degeneracy in the advective
term. In Case 1, we prove that the task can be reduced to that for the corresponding equation, where k = 0, and then previous results
reported from the authors can be extended. For the other two cases, we use both analytical and numerical tools. The analysis we
carried out is based on the restatement of searching TWS for the full RDA equation into a two-dimensional dynamical problem.
This consists of searching for the conditions on the parameter values for which there exist heteroclinic trajectories of the ordinary
differential equations (ODE) system in the traveling wave coordinates. Throughout the paper we obtain the dynamics by using tools
coming from qualitative theory of ODE.

1. Introduction limg_, oo @(8) = 1,limg_,, ,¢(§) = 0 with 0 < ¢(§) < 1, V& €
(00, +00), if and only if ¢ > c(k), where
The strong effect produced by the addition of the nonlinear

convective term kuu, on the solutions behavior of the

classical Fisher-KPP equation v, = u,, + u(l — u) is well 2

documented in the literature (see [1-3]). We mean those

for the nonlinear reaction-diffusion-advection equation u, = c(k) = k.2 2>k>-c0 @)
U, — kuu, + u(l — u). This is particularly remarkable, when 2Tk ! 2 <k < oo.

the diffusion is negligible compared to the convective effects.
In such a case, the solutions can exhibit shock-like behavior
(see [4-6]). In the above equation the term ku is called the
advection “speed.” It has also been proved (see [3]) that the
previous equation has monotonic decreasing traveling wave
solutions (TWS) u(x,t) = ¢(x — ct) = ¢(&), where ¢ is
the speed of the wave, satisfying the boundary conditions

In [7], the author carries out a Painlevé analysis to
get some approximate solutions for the above-mentioned
equation.

In a series of papers authored by Malaguti et al. [8-11],
the existence of TWS of the monostable (the reaction term



has two equilibria, one is asymptotically stable and the other
is unstable) reaction-diffusion-convection equation,

u +hwu, =[Dwu,]_+gw), (2)

was investigated. The constant diffusion case was studied in
[12] and the nondegenerate case (D(u) > 0 Vu € (0,1)) in
[11]; they proved that (2) admits decreasing TWS.

In 8] the authors looked at the case, where D(u) is such
that D(0) = 0, D(1) > 0 (simply degeneracy) and D(1) =
0 (double degeneracy) and D'(0) = 0 and D'(1) = 0.
Although they take h(u) to be nonlinear, specific properties
of h(u) are not explicitly stated. In particular, their equation
is not necessarily a convection-degenerate one. Note also that
even though an application of their results to the evolution
of a bacterial colony is presented, this equation does not
contain convection term, which makes no real application
of the convection-diffusion problem. In [10] continuous
dependence of the threshold wave speed and of the traveling
wave profiles is studied with respect to the diffusion, reaction,
and convection terms. In [12] degenerate convection was con-
sidered. More recently the authors considered aggregation
(i.e., the diffusion term changes sign) [9], D(u) > 0 for
u € (0,a), D(u) < 0, for u € (a, 1), and a bistable term [13].
See [14] for a review.

Gilding and Kersner [15] and separately Mansour [16]
looked at the particular case u, +bu*u, = (au*u,) +cu(1-u¥)
arising in the study of pattern formation by bacterial colonies.
Here a > 0, b,c > 0, and k > 0 are constants. Kamin
and Rosenau [17] also looked at a similar special case, with
D(u) = h(u) = v and g(u) = u(1 - u)"! In both papers,
the set of wave speeds from which the equation admits a
wavefront are studied.

The incorporation of a more general nonlinear advection
term in the above equation also has been discussed in [3]. In
such case, that equation takes the form u, = u,, — [h(u)], +
u(1 — u), where the convection “speed” is ' (u).

The aim of this paper is the investigation of the existence
of TWS for the one-dimensional nonlinear degenerate RDA
equation

ou 0 ou 0
E=£[D(u)a]—a[h(u)]+g(u) o

Y (x,t) € RxRY,
where the functions D, h, and g are defined on the interval
[0, 1] and there, they satisfy the following conditions:

(1) D € Cf,, with D(0) = 0, D(w) > 0 Vu € (0,1];
D'(u) >0 Yu € [0,1] and D" (u) # 0 Vu € [0, 1].

(2) h € Cjyyy with B (1) > 0 Yu € (0, 1]. Two cases will
be considered for 4’ (0). Namely,

(a) H'(0) > 0,
(b) H'(0) = 0.

(3) g € Cjyy with g(0) = g(1) = 0, g(u) > 0 VYu € (0,1);
g'(O) > 0 and g'(l) <0.
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The degeneracy (at u = 0) could have two sources: the
diffusion term D(0) = 0 and the case of item (2)(b), for the
advective term, where 4'(0) = 0.

The inclusion of the first-order spatial derivative term
h'(u)u,, in (3) transforms the parabolic degenerate nature of
(3) with h'(u) = 0 into a hyperbolic-like type. In fact, given
that the partial derivative OF/0u,, = D(u) of the nonlinear
operator

F(uuyti) = D) iy, + D' () e — B (u) u,

+g ),

vanishes at 4 = 0, F is not elliptic precisely at u = 0. Because
of that, the nonlinear operator,

L{u] =F (u,u, u,,) -, (5)

is not parabolic at u = 0. See [18].

The degeneracy of the equation involves two important
features of its solutions. One is the finite speed of propagation
throughout the space. The other is that, for general rule, we
do not expect that all the initial and boundary conditions
problem associated with (3) possesses a classical solution, that
is, smooth enough solution.

The TWS analysis we carried out through this paper uses
a dynamical systems approach, which is different to that
used by other authors [12, 15] and focuses on the qualitative
behavior of the trajectories of a phase portrait as the involved
parameters change. Additionally, in order to show the TWS
whose existence we prove, we numerically solve the initial
and boundary value problems associated with the full RDA
in each considered case.

In ecological terms, (3) could describe the space-temporal
dynamics of one species living in a one-dimensional habitat
subject to the following factors: a density-dependent diffu-
sion term D(u) which produces a pressure on the individuals
of the population to migrate from crowded areas to sparse
ones (for more details on this interpretation of D(u), see
[19] and references therein), a nonlinear advective term A’ (1)
which “pushes” the population towards the direction —u, (a
sort of “directed wind”; see [3]), and a density-dependent
growth rate g(u) which, by its qualitative features given
in item (3), gives the dynamics of a habitat with limited
resources (logistic growth). The carrying capacity of the
habitat, in nondimensionalized form, is one.

The derivation of (3) can be done by using the micro-
scopic individual behavior (random walks approach) which
can be seen somewhere else (see [20] or [21]). Here we are
omitting the details.

Note that taking K () = V(u) + uV' (1), where A is an
arbitrary constant, we obtain the equation mentioned and
studied in [22].

Among the possible space-time patterns which could be
described by (3), are those of traveling wave type, that is,
solutions of the form u(x,t) = ¢(x — ct), where c is the wave
speed. These can be interpreted as waves of invasion of the
population into the habitat.
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Our analysis is based on the assumption that to look for
TWS in a functional space is equivalent to search the set
of parameters (in which the speed c is included) for which
a two-dimensional system of ODE possesses heteroclinic
trajectories. This system comes from the restatement of the
original problem into the appropriate traveling wave variable.

The TWS analysis for (3) we present in this paper will be
carried out in stages corresponding to the different levels of
complexity the function /' exhibits. These are the cases we
consider.

Case l. W (u) = k.
Case 2. W (u) = ku.

Case 3. No specific form for K (u). This function must satisfy
the quite basic requirements as stated in item (2).

These three cases are studied separately. Thus, the analysis
of each one is the contents of the following three sections of
this paper.

2. The TWS Analysis for h'(1)=k

With the choice #' (1) = k, the RDA equation (3) becomes

Bu_i

ou
p_2 [D(u)a]—k—w(u), ©)

ox

where the density-dependent diffusion coefficient D and the
kinetic part g satisfy the conditions listed in the previous
section.

Note that because of the qualitative features of D and g
on the interval [0, 1], the pair of functions uy(x,t) = 0 and
u,(x,t) = 1 are homogeneous and stationary solutions of (6)
for all (x,t) € R x R*. Their role in choosing the boundary
condition for the TWS of (6) will be clear later.

2.1. A Quick Review on thek = 0 Case. Fork = 0, (6) becomes

ou O ou
gza[D(u)a]"'g(u)‘ (7)

The traveling wave dynamics of (7) has been already
studied (see [19]). In this reference, the authors proved that
for D and g satistying the conditions stated before, there
exists a unique value, ¢* > 0, of ¢, such that (7) has

(1) no traveling wave solutions for 0 < ¢ < ¢”,

(2) a unique traveling wave solution of sharp type for ¢ =
c*,

(3) a traveling wave solution of smooth decreasing
front type satistying the boundary conditions
limg,_,¢(§) = 1 and limg,,p(€) = 0 with
0 < (&) <1 VE € (—00,+00), for each ¢ > ¢*.

The profile of the TWS mentioned in items (2) and (3) can
be found in [19].

2.2. 'The Analysis for k # 0. In this subsection, we investigate
the existence of decreasing TWS for (6). The specific TWS
satisfy the boundary conditions lim;_, ,,¢(§) = 1 and
limg_,, ,$(§) = 0 with 0 < ¢(§) < 1 V& € (-00, +00).

Our analysis starts with the physical interpretation of
the convective term —ku,. in (6). The diffusive substance is
pushed out with speed k towards the direction of —u,.

Suppose that u(x,t) = ¢(x — (C + k)t) is a traveling
wave solution of (6) satistying the appropriate boundary
conditions. We then set & = x — (C + k)t, by substituting
u(x,t) = p(x—(C+k)t) = ¢(&,) into (6); we obtain the second-
order ODE:

~@+k ¢ =D(@)¢"+D' @) [¢] +9(). ®

where the symbol ' on ¢ means derivative respect &, and on
D means derivative with respect to ¢. Note that, denoting by
¢ =C + k, actually (8) is of the form

¢ =D(¢)¢"+D' (@) [¢] +9($).  ©

This second-order ODE, except that the derivative ' is with
respect to &, has exactly the same form as the corresponding
second-order ODE in the traveling wave coordinate for the
TWS for (7) (see [19]). The following argument justifies this
simplification. Let T : R* — R?* be a linear transformation
such that for (x,t) € R x R*

T (x,t) = (x —kt,t) = (x',1). (10)

The following proposition holds. Let w(x’,t) be such that
u(x, t) = w(x',t).

Proposition 1. Ifu(x,t) is solution of (6), then w(x', 1) satisfies

ow 0 ow
—=_—|Dw) — |+ . 11
3% 5 [ (w) ax,] g w) 1)
Proof. This follows by using the chain rule; we obtain u, =
—kw, + w, and u,, = w,. Then we substitute #, and u, into
(6) to arrive to the above equation. O

Remark 2. Formally, the meaning of Proposition 1 is as
follows: the convective effect in (6) can be suppressed by
simply traveling in a space moving system of coordinates,
which moves parallel to the x-axis with the convective speed

k.

Hence, in the light of the previous reasoning the exis-
tence of TWS analysis for (6) is essentially reduced to the
methodology developed in [19]. Therefore, by adapting and
reinterpretation of the results given there, the following
proposition holds in the present case.

Proposition 3. If the functions D and g satisfy the conditions
(1) and (3) and ¢(x,t) is solution of (7) on —00 < x < +00,
t > 0, then for each k # 0, y(x,t) = ¢(x — kt, t) is solution of
(6).
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FIGURE 1: Front traveling waves solutions of (6) at equal time intervals t = 1,2, 3,... with g(u) = u(1 — u) and D(u) = u(1.0 + Su) for g = 1.
The values for k are indicated in each figure. The initial condition used was u(x,0) = 0.5(1.0 + tanh((0.4 — x)/0.1)), over the spatial domain

is 0 < x < 140.

Proof. This follows by using the hypothesis and the chain rule.
In fact, by hypothesis for each (x, t) such that —co < x < +o0o,
t>0

op _ aﬁb]
23] +s. 1)
Computing the relevant derivatives
Y, = —ce + ¢y,
(13)
Ve Vox = Peps

and using (8) and (9) appropriately, we obtain the equation
for which v is solution, as stated in the proposition. O

In Figure 1 we show the corresponding traveling wave
profiles for two values of k. These were obtained by
numerically solving (6) with the numerical routine NAG
PO3PCF (NAG Matlab Toolbox). As initial conditions we took
0.5(1.0 + tanh((0.4 — x)/0.1)).

For k > 0, the speed of the TWS of (6) is faster than the
TWS when k = 0. For negative k, the speed is slower than
TWS when k = 0. In particular, this is true for the sharp type
solution. See in Figure 2 an illustration of how the sharp type
traveling wave evolves. The sharp traveling wave shown here
(and in all remaining cases through the paper) was computed
using the PDE numerical solver of Matlab (pdepe) using
compact support initial conditions (in a larger domain —50 <
x < 40, u(x,0) = 1 for x < =20 and u(x,0) = 0 for x > 20).
Note that the issue of accurately numerically computing a
degenerate traveling wave represents on its own a research
topic in numerical analysis; this is beyond the scope of this
paper and we refer the interested reader to [23].

We also computed numerically the speed of the sharp
wave (see Figure 3). To compute this we follow how the
wave’s location changes with each time step; that is for a fixed

u(x,t)

30 35 40 45 50

FIGURE 2: Evolution of a compact support function as initial condi-
tion under the reaction-diffusion convection process described by
(6). The numerics show that as the time grows, the approximative
solution tends to the sharp traveling wave solution. Note the
agreement between the calculated speed of the sharp solution with
that for which we have the saddle-saddle heteroclinic trajectory; see
Figure 3. The profiles are plotted at equal time intervals ¢ = 1,2,3,...
with g(u) = u(1 —u) and D(u) = u(1.0 + Bu) for B = k = 1, compact
support initial conditions (in a larger domain =50 < x < 40,
u(x,0) = 1 for x < =20, and u(x,0) = 0 for x > 20).

value u = 0.5 we compute x,,x,,... so that x; is x, where
u(x,t;) = 0.5. We plot this curve versus time and compute
the slope to approximate the wave speed; we have obtained
1.8 as a result. We note that the corresponding sharp wave for
k = 0 has a speed of ¢._, ~ 0.8; that is, when k = 1, ¢_, =
¢e_o+1 = 1.8, making an illustrative example of Proposition 3.
Furthermore, for these parameter values (8 = k = 1), the
phase portrait numerical results show that the value of ¢ for
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FIGURE 3: Approximation of the wave speed of the profiles evolving
to a sharp traveling wave; to compute this we follow how the wave’s
location changes with each time step. For a fixed value u = 0.5 we
compute X, X,,... so that x; is the x, where u(x,t;) = 0.5. We plot
this curve versus time and compute the slope to approximate the
wave speed and obtain 1.8 as a result. For these parameter values
(B = k = 1), the phase portrait numerical results show that the value
of ¢ for which we have a unique heteroclinic connexion between P,
and P, is for ¢* =~ 1.82.

which we have a unique heteroclinic connexion between P,
and P. (corresponding to the sharp traveling wave) is ¢* =
1.82.

3. Traveling Wave Solutions Analysis
with 4’ (u)=ku

Here, (3) takes the form

ou ou
[D(u)a] —kua +g W), )

V(x,t) € R x RY,

u_ o
ot  0Ox

where the functions D and g satisfy conditions (1) and (3)
of Section 1. As in the equation analyzed in Section 2, the
functions uy(x,t) = 0 and u, (x, t) = 1 are homogeneous and
stationary solutions of (14) for all (x,t) € R x R*.

We will impose the same conditions as in Section 2 for
the possible TWS of (14). The TWS analysis we are going to
do starts by assuming the existence of positive ¢ and ¢ such
that u(x,t) = ¢(x — ct) = ¢(§) is solution of (14). Hence, by
substituting u(x, t) = ¢(x —ct) into (14), we get the nonlinear
second-order ODE:

—c¢' (&)= D($)¢" ) + D' (¢) (¢' ©)
k¢ ' &) +9(9),

(15)

which, by setting v = ¢, can be written as the singular (at
¢ = 0) two-dimensional ODE system:

¢ =
D(¢)v' = (k¢ —c)v-D'($)v' - g(¢).

The singularity can be removed by using a standard
reparametrization of (16) (see [19]). Thus, by introducing the
new parameter 7 such that for ¢ > 0,

(16)

4§ D(¢®)
we obtain the nonsingular system:
$=D($)v=fi($.v),
(18)

v=—(c—k¢)v-D'(¢)v’ - g(¢) = o (6v),

where the dot on ¢ and v denotes the derivative of these
variables with respect to 7. This new system is topologically
equivalent to (16) in the region

F={(¢,v)|0<¢p<1, —00<v<+oo}. (19)

In this region, for positive ¢ system (18) has three equilib-
ria: Py = (0,0), P, = (1,0), and P. = (0, —c/D'(0)). Hence,
according to the conditions of interest, the problem of show-
ing the existence of the TWS satisfying such conditions in
the full nonlinear PDE transforms into a dynamical systems
problem. This is searching for the existence of the parameter
values for which there exist heteroclinic trajectories of (18)
connecting P, with P, or with P.. The analysis is conducted
by stages.

3.1. Local Dynamics. First,let us determine the local behavior
of the trajectories of (18) in a neighborhood of each equilibria.
For this aim, we obtain the Jacobian matrix of the vector field
defined in (18) at any point (¢, v). This is

T v ol

_ D' (¢)v D(¢) ] (20)
kv -D"(¢)V* - g (¢) ~(c—ko)-2D' (¢)v]

The evaluation of (20) at P, gives us

I flow=| /o @
> = » 21

fl fz (0,0) _g, (0) ¢

from which we have trJ[f}, f,]o0 = —c¢ < 0 for all

positive values of ¢ and det J[f, f,](0) = 0. Given that the

eigenvalues of (21) are A, = 0 and A, = —¢, then Pj is a

nonhyperbolic point of codimension one (see [24]). The corre-
sponding eigenvectors are v, = (—c/g'(O), 1)andv, = (0,1).
Because the Hartman-Grobman Theorem is not applica-
ble here, the local dynamics of (18) around P, does not follow
from the corresponding linear approximation. In such a case,
we must use the higher order terms in the Taylor series of



the vector field (f,, f,) around P,. In fact, we should obtain
the normal form of (18) and then use the Center Manifold
Theorem (see [24]). This tells us the local dynamics of (18)
around P, can be essentially reduced to that around its center
manifold. By proceeding as we already mentioned it, we
conclude that P is a saddle-node point (see [19] for a similar
analysis).
Evaluating (20) at P, we obtain the Jacobian matrix

0 D(1
()]. (22)

] b =
[fl f2](1,0) |:_g, (1) _ (C _ k)
From here, tr ][fpfz]u,o) = —(c—k)and det][fl,fz](l)()) =
g'(1)D(1) < 0; therefore P, is a hyperbolic saddle point for
all positive values of ¢ and k. The corresponding eigenvalues
and the eigenvectors are

. ~(c-K)+(c-k?-4D(1) g (1)
1= 2 >

—(e-k) - \(c-k? -4D (1) g' (1)
2 2 >

Vi

~(c—k)+ /e~ 2ke+ k2= 4D (1) g' (1) (23)
1

2g, (l) > >
\p)
~(c—k) =\ ~2ke+ k24D (1) g' (1)
- b 1 b
2g' (1)
respectively.

At P, (20) reduces to

J [fp fz](o,—c/D’(O))

—C 0 (24)
=| ke D'O, ,
o 0 - o (O)C -g (0) ¢

Then, it follows tr][f}, folo-c/p'(0) = 0 and
detJ[f1, falio-c/proy) = ~c* < 0; therefore P, is a hyperbolic
saddle point for all ¢ # 0 and k. The eigenvalues and
eigenvectorsare A, = —¢, A, =¢ v, = (2¢D'(0)*/(D" (0)+
kD' (0)c + D'(O)Zg'(o)), 1) and v, = (0, 1), respectively.

3.2. 'The Nullclines: Towards the Global Dynamics. In order
to study the global dynamics associated with system (18), we
should understand how its nullclines behave as the involved
parameters change. The horizontal nullclines of system (18)
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are the horizontal and the vertical axis of the ¢v plane. The
vertical nullcline has these two branches

—(c—k¢) + \(c—kg)’ —4D' (¢) g (¢)

Vi (‘/5) =

2D' (¢) ’
(25)
V() - ZemR = ek -4 (9)9(4)
T 2D'(9) '
From its respective expression, it follows
Vl (0) = V1 (1) =0,
c
O "5y (26)
=K
V==

Note that for all positive ¢, V,(0) < 0; meanwhile, given the
positiveness of D'(1), the sign of V,(1) changes according
with the sign of the term —(c — k).

3.3. Dynamics for Extreme Values of c. Here we are going
to analyze the dynamics of (I18) by considering extreme
(including ¢ = 0) values of c. This is done by considering two
separate cases.

3.3.1. For ¢ = 0. For ¢ = 0 system (18) becomes

$=D(¢)v,
v=kév-D'($)V - g(¢),

whose equilibrium points (in the region of interest) are P, =
(0,0) and P, = (1,0). Here Py comes from the collapse of
P_ into the origin and this point becomes a nonhyperbolic
equilibrium of codimension two; meanwhile P, stills as a
hyperbolic saddle point.

The vertical nullcline branches of system (27) are

(27)

k¢ +\(kg)* — 4D (¢) 9 (¢)

Vl ((l)) = 2D’ (¢) >
\/ (28)
k¢ — | (k¢)* — 4D’ (¢) g (¢)
V2 (¢) = 2D/ ((/)) .

Figure 4 contains a panel of figures illustrating the behavior
of (28) in a representative case, where D(u) = u + /)’u2 and
g(u) = u(1 — u) for fixed positive  and different values of k.

As it can be seen in Figure 4, for small values of k, V; and
V, (given by (28)) are not defined on the whole interval [0, 1].
They are, however, well defined on this interval for big enough
values of k and fixed positive 3. Moreover, the behavior of
(28)—according to Figure 4—can be classified in three main
categories. These are illustrated in each row of the mentioned
figures.
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FIGURE 4: The branches of the vertical nullcline of system (27) for ¢ = 0 and several values of k. Here 3 = 2.

For each positive k, let us introduce the following nota-
tion:

_ k¢
v (¢) = D' ()

The following proposition holds.

(29)

Proposition 4. For each positive k system (27) does not have
closed trajectories on the following sets:

D {(pv)|0<¢p<1,-00<v<0},

) {(g:v) [0< ¢ <1v<v(P)),
3) {(¢,v) 0P <1,v> v ()}

Proof. This follows by a straightforward application of
Bendixson’s Negative Criterion. In fact, the divergence, div,
of the vector field which defines system (27) is

divF (¢, v) = k¢ — D' (¢) v.

Given D is a strictly increasing function on [0, 1], for
item (1) divF(qb, v) is positive, the same sign for item (2);
meanwhile divF (¢,v) < 0in the third case. Then the proof
follows. O

(30)

As a consequence of Proposition 4 and the Poincaré-
Bendixson Theorem on each set this proposition states the
w and « limit sets of the trajectories are equilibrium points.



In what follows we are going to use the behavior of both
branches of the vertical nullcline for the determination of the
phase portrait of system (27).

Proposition 5. For small enough positive values—including
¢ = 0—of ¢ system (18) does not have nontrivial heteroclinic
trajectory in the strip {(¢,v) | 0 < ¢ < 1, —00 < v < +oo}.

Proof. By trivial heteroclinic trajectories, we mean those of
(18) for which ¢ = 0Vt € (-00,00), as it is the case for
each trajectory running on the negative vertical axis of the
phase portrait, connecting P, with P, which exists for all
¢ > 0. Because of the physical interpretation of ¢, we are not
interested in those. O

Phase portraits of system (27) for ¢ = 0 and for the same
positive values of k as those in Figure 4 can be found in
Figure 5.

3.3.2. For ¢ > 0. Let us introduce the following notation:

M, = max {k¢ + 24D’ (9) g (4)} (3)

where the maximum is taken on the closed interval [0, 1].
Through this subsection we are going to distinguish two main
cases:

(1) 0<c< M,
(2) Csz.

For values of ¢ satisfying ¢ > M, V, and V, are defined'
for all ¢ > 0; in particular they do so on the interval [0, 1].

In another side, for values of ¢ such that 0 < ¢ < M;, these
branches of the vertical nullcline are not defined on the whole
interval [0, 1] but they do so on the union of subintervals
contained within it. Figure 6 illustrates the behavior of (25)
in the same representative2 case as in previous subsection for
fixed positive 3 and k. Here, the positive ¢ varies.

Now, we use this behavior to determine the phase portrait
of (18). We proceed by considering extreme values of c. We
can prove the following proposition.

Proposition 6. For each value of ¢ such that ¢ > M system
(18) has a heteroclinic trajectory (¢.(t), v.(1)), connecting the
equilibria P, and P,, that is, satisfying

(1) 0 < ¢p.(1) < Landv. (1) < 0forall T € (—00,+00),

(2) lim,_,_(¢.(7) , v.(7)) = (1,0) and
lim, . (¢.(1),v.(7)) = (0,0).

Proof. For ¢ > M the vertical null-clines look like in Figures
6(h) or 6(i). On each one of these branches the vector field,
being horizontal, points out towards the left; meanwhile on
the region {(¢,v) | 0 < ¢ < 1, V,(¢) < v < V (¢)}, the
vector field points left up. This behavior allows us to construct
a positive invariant region for such a vector field in a similar
fashion as that carried out in [25]. In fact, we can select a
function f : [0,1] — R belonging to the set C[lo,l] satisfying

(@) £(0) = vy < 0, f(1) = 0;(b) f'(¢) > 0 V¢ € (0,1); and
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V(@) < f(¢) < Vi(¢) in such a way the restriction of the
vector field (18) on the graph of f points inwards the region
{(¢,v) |0 < <1, f(¢) < v < 0}. Then, by a straightforward
application of the Poincaré-Bendixson Theorem we have that
any trajectory of (18)—in particular that leaving P, following
the left branch of the unstable manifold at P,—entering this
region, must end at one equilibrium point. Given that there
is not any other possibility such trajectory must end at P,.
Hence the proof follows. O

The phase portrait of (18) for fixed k = 2 and ¢ > 0 can be
seen in Figure 7.

3.4. A Monotonicity Property. Let (¢,v) be any fixed (but
arbitrary) point belonging to the region

Fi={(¢v)|0<p<1, —c0o<v<0}. (32)
For each pair (c, k), let us denote by 0(¢, v;c, k) the angle

formed by the vector field (18) with the positive semihorizon-
tal ¢p-axis. Then

~(c-kg)v-D'(¢)v' - g(¢)
D(¢)v
Proposition7. The angle 0(¢, v; ¢, k) is a monotone decreasing

function of the parameter c and a monotone increasing function
with respect to the parameter k.

tan 6 (¢, v; ¢, k) = (33)

Proof. Calculating the partial derivative with respect to ¢ in
the equality

0 (¢, v;c, k)
! [k V=D (9) v~ g (9) (34)
D(¢)v :
we obtain
00
3% (¢, vs¢,k)
= -D(¢)v* (35)
D@+ [~ k) v-D (@) 7 g @)

<0;

meanwhile the corresponding partial derivative with respect
to k is

00
L @mek)

_ —k¢D (¢) v (36)
[D(¢) ] + [~ (c—k¢)v - D' ($)v* - g (¢)]’
>0, V($v)eF.

Then the proof follows. O
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FIGURE 6: Behaviour of the two branches of the vertical nullclines of system (18) for fixed k = 2 and ¢ > 0: (a)-(g) for 0 < ¢ < M, (h) for

¢ = My, and (i) for ¢ > M,. Here 8 = 2.

Both monotonicity properties contained in the above
proposition have important implications in refining the
analysis for searching heteroclinic trajectories of system (18)
connecting P; with P, or with P,. In particular, for fixed k > 0,
if we continuously decrease the parameter ¢ starting from
M, the left branch of the unstable manifold at P;, W*(P,),
will move continuously downwards within the region & ;
meanwhile, the right branch of the stable manifold at P,
WZ(P,), moves continuously upwards as ¢ decreases in the
same region. By continuity of the vector field with respect to
the parameter ¢ and using shooting arguments, there exists
a unique, ¢* > 0, value of ¢ for which both manifolds touch
each other resulting in a saddle-saddle heteroclinic trajectory
connecting the equilibrium points P, with P... This reasoning
constitutes the proof of the following lemma.

Lemma 8. For the functions D(u) = u + Bu® and g(u) =
u(l — u) with B > 0 and for K () = ku with k > 0 there exists
a unique c* —depending on k—positive value of ¢ for which
system (18) has a unique heteroclinic trajectory connecting the
equilibria P, and P.. Moreover

(1) By increasing any of the parameters c or k, such a
trajectory is destroyed and for each (c, k) with either
¢ > c" ork > k" a heteroclinic trajectory connecting P,
with P, emerges.

(2) On the contrary, by decreasing any of these parameters
there are not heteroclinic trajectories for system (18) at
all.

Proof. This follows from Propositions 4-7. O
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FIGURE 8: Front traveling waves solutions of (14) at equal time intervals t = 1,2,3,...

The values for k are indicated in each figure.

Note that there are two reasons why system (18) is not
structurally stable (see Peixoto’s theorem in [24]). These are
the existence of a nonhyperbolic point and a saddle-saddle
heteroclinic trajectory. In particular, any small perturbation
of such system, for example, by varying the parameter c
in a small neighborhood, V,(c*), of the critical value c*,
involves strong dynamical changes including the destruction
of the saddle-saddle trajectory and the emergence of a saddle
(P,) saddle-node (P;) connexion or the disappearance of
heteroclinic trajectories at all.

Theorem 9. For the functions D(u) = u + ﬁuz and g(u) =
u(l — u) with B > 0 and for W) = ku with k > 0, given
k there exists a unique critical value, c* (depending on k), of ¢
such that (14) has

(1) no traveling wave solutions for ¢ such that 0 < ¢ < c*,

(2) a unique traveling wave solution of sharp type for ¢ =
c’,

(3) a monotonic decreasing traveling wave solution for each
c such that ¢ > c*.

Proof. The previous analysis demonstrates the existence
of the associated heteroclinic trajectories (see Lemma 8).
Searching for travelling wave solutions of the PDE (3), given
that such solutions have the particular form u(x,t) = ¢(x —
ct) = ¢&), is equivalent to showing the existence of
heteroclinic trajectories of the associated ODE system (18).
Therefore the theorem follows. O

In Figure 8 we show two front traveling wave profiles for
two values of k. In Figure 9 the sharp traveling wave can be
seen.

We close this section by numerically exploring the influ-
ence of changes in k on the critical value, ¢*, of ¢ for which the
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FIGURE 9: Evolution of a compact support function as initial condi-
tion under the reaction-diffusion convection process described by
(14). The numerics show that as the time grows, the approximative
solution tends to the sharp traveling wave solution. Profiles are
plotted at equal time intervals t = 1,2,3,... with g(u) = u(1 — u)
and D(u) = u(1.0 + Bu) for B = 1 and K (u) = ku, with k = 1.

r-d-a equation has a sharp type solution. This is the content
of the next subsection.

3.5. The Speed c¢* Depending on k in a Particular Case.
As we already mentioned in Section 1, the equation u, =
Uy, — kuu, + u(l — u) has a monotone decreasing TWS
connecting the states u;(x,t) = 1 and uy(x,t) = 0 for each
¢ > c(k), where the explicit form of c(k) is given by (1).
This result by Murray was our motivation for seeking the
corresponding relationship between the speed for which our
reaction-diffusion-convection equation (14) has TWS and the
parameter k, in particular for those of sharp type.
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In this subsection we illustrate this relationship through
a particular case. To this aim, we choose D(u) = u +
Bu® and g(u) = u(l — u) with B > 0. Through this
subsection our approach is from a numerical point of view.
We carried numerical simulations of the phase portrait of
the corresponding nonsingular ODE system in the traveling
wave coordinate. The goal of this was to illustrate, for different
values of k, the corresponding critical values, ¢*, of ¢ for
which a unique saddle-saddle heteroclinic trajectory exists
(one for each k). As we already know, associated with this
trajectory, there exists a unique TWS of sharp type for (6).
In Figure 10(a) we present a numerical approximation of how
¢* depends on k through the corresponding phase portrait,
with D(u) and g(u) as before.

This information tells us that, on this range of the
“numerical experiments,” the speed ¢” is a growing function
of k. Moreover, we can distinguish two qualitative parts: one

exponential for k < 8 and another linear for k > 8. We carried
out the corresponding fittings. These are our results for each
phase:

¢* (k) = 1.007151763¢>1662829302k g0 o < 8, (37)

¢ (k) = 0.5010815735 - k + 0.2125604852,
(38)
for k > 8,

respectively. See Figure 10(b).

In Figure 11 we show how ¢* changes as function of the
parameter k for K (u) = kand W' (u) = ku for comparison.

As result of the numerical experiments, we can see that
for k < 0 the critical value ¢ is small but positive, but once k
increases, the values of ¢* increase faster with k. The physical
interpretation of this is as follows: for k < 0 the “wind”
h'(u) = k acts in the opposite direction to which the wave
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travels; meanwhile for k > 0, the advective term pushes in
the same direction as the traveling wave goes. As a result of
this, the critical values of the speed, for which there exists the
sharp wave, increase as k increases.

4. Traveling Wave Solutions Analysis in
the General RDA Equation

The particular cases discussed in previous sections give us
some insights in order to carry out the TWS analysis for the
general RDA equation:

ou 0 ou ’ ou
E:&[D(“)&]_h(“)aw(u)’ (39)

V(x,t) e RxR",

where D, g, and h are real functions defined on the interval
[0,1]. The first two functions satistfy conditions (1) and (3)
stated at the beginning of Section 1; meanwhile 4, in addition
to satisfying the conditions in item (2), is such that K (0)
might have different signs. In particular when K (0) = 0 (39)
is degenerate in both the diffusion and the advective terms.

For the analysis of TWS we proceed in a standard way: let
us assume u(x,t) = ¢p(x — ct) = ¢(&) with ¢ > 0 is solution
of the RDA equation (39). Thus, by substituting ¢ in (39) we
obtain a nonlinear second-order ODE equation for ¢ which,
by introducing v = ¢'(&), can written as a singular (at ¢ = 0)
nonlinear ODE system. The singularity can be removed by
introducing the parameter 7 in a similar fashion as we did
in previous sections (see [19, 26]). The result is the following
nonsingular and nonlinear ODE system:

$=D(¢)v=fi(pv), (40a)

v=—[c=H(¢)]v-D'(¢)v’' —g(¢) = f,(¢.v), (40b)

where the dot on ¢ and v denotes the derivative with respect
to 7. This system and the singular system are topologically
equivalent on the stripe

F={(¢,v)|0<p<1, —c0<v<oo}. (41)
The analysis of the system ((40a) and (40b)) starts
by obtaining its nullclines. The horizontal nullcline is the

coordinate axis of the ¢v plane. The vertical nullcline has the
following two branches:

Vi (¢)

e @] +\[e-H (@) -4D' ($) g (4)
B 2D’ (¢) ’

(42)
V2 (9)

e H @] Nle-r (@) ~4D' ($) g (4)
B 2D’ (¢) '
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Given the conditions on D, h, and g, the functions V; and
V, are defined on the whole interval [0, 1] whenever the
inequality,

[c=H ($)] 24D ($) g (¢), Véelo1],  (43)

holds which, in turn, gives us a bound for ¢ for which the two
branches (42) are defined on [0, 1]. This is

c= 1 (¢)+2\D' (¢) g (9)- (44)

When the above inequality does not hold, V; and V, are not
defined on the whole interval [0, 1]. In fact, they are defined
on disjoint intervals belonging to the interval [0, 1].

From the explicit form of V; and V, it follows V;(0) =
0, Vi(1) =0, and

[c—H (0]

Vz (0) = _D’—(O)’
[ ] (45)
c—H 1)

V,(1) = _D’—(l)'

Since we assumed both D'(0) and D'(1) are positive, depend-
ing on ¢ compared with W' (0) (or with A'(1)), the following
cases might occur:
(i) V,(0) < 0 for ¢ > h'(0), V,(1) < 0 forc > K'(1),
(ii) V,(0) = 0 for ¢ = H'(0), V,(1) = 0 for c = h'(1),
(iii) V,(0) > 0 for ¢ < h'(0), V,(1) > 0 forc < H'(1).

The equilibrium points of (40a) and (40b) are

PO = (030)>
Pl = (LO)»
(46)
c—-H(0)
Py = <0’—%) =(0,V,(0)).

Given the positiveness of D'(0), depending on the sign of
(H'(0) = ¢) the third equilibrium is located on the

(i) positive vertical v-semiaxis, for ¢ < H(0),
(ii) the origin for ¢ = 1 (0),

(iii) negative vertical v-semiaxis, for ¢ > H(0).

4.1. Local Dynamics. The linear local analysis of the system
((40a) and (40b)) is based on the Jacobian matrix, J[ f;, f,],
of the vector field (f;, f,) evaluated at the equilibria. The
Jacobian matrix at any point (¢, v) is
J [fl’fZ](¢,v)
D' (¢)v D(¢) (47)
(H'(9)-D" ($)v)v=g'(9) ~(c=H (¢))-2D"(9)v]

At PO> det][f]a fz](o,o) = 0 and tr][fl,fz](o,o) = —(C —
'(0)). Hence, whenever ¢ # K'(0), P, is a nonhyperbolic
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point of codimension one. Evaluating J[f;, f,1(4,) at P, we
obtain det J[ f1, f,](1,0) = g'(1)D(1) < 0 and tr J[ f;, fo](10) =
—(c—=H'(1)); hence P, is a hyperbolic saddle point. Finally, the
evaluation of J[ f, f,] at Py (g)) gives us tr ][fl’fz]P(C,h'(o» =

and det J[ f;, f2]P<»h'(o>) = —(c - H'(0))? from which it follows
that for ¢ # H'(0), detJ[ f, f>lp

(eh' ()
¢ # h'(0), Py () is @ hyperbolic saddle. On the contrary, for
¢ = 1'(0) the equilibrium P, o), is a nonhyperbolic point of
codimension two.

The Jacobian at P, is

< 0. Thus, whenever
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\/(c - h'(1))? —4D(1)g' (1)) and eigenvectors v, and v, given
by

c—H (1)=& =20 (1)c+ 1 (1> -4D(1) g’ (1)
- 24’ (1)

>

0 0
I [fi> Floo) = ( , , > (48) (50)
O =g © H©O-c c—H (1) + 2 =20 (e + 1 (1) 4D (1) g’ (1)
with eigenvalues A,(P)) = 0, A,(P) = H'(0) — ¢ and 2g' (1) )
eigenvectors v, = (—(c — h'(O))/g'(O), 1), v, = (0,1),
respectively.
The Jacobian at P, is 1,
0 @
> 49
] [fl fZ](l,O) <_g[ (1) h/ (1) —C) ( )
with eigenvalues A,(P,) =  (1/2)(-c + H'(1) - respectively.
\/(c —H(1))> -4D(1)g' (1)), A,(P,) = (1/2)(=c + K'(1) + The Jacobian at Py gy, is
H(0)-c 0
I Flo-enwoypon| DO (H©-c) H©(H©-c) , , (51)
_ A% + D) —g'(0) —c-2(K (0)—c)+H (0)
with eigenvalues A; (P )) = H(0) -« M (Pepioyy) =
¢ - H(0)and eigenvectors
( 2D (0)* (c - ' (0)) 1)
V = bl bl
' g (0) D' (0)* + (c = ' (0)) K" (0) D' (0) + (c — k' (0))> D" (0) (52)

v2 = (0’1)>

respectively.

4.2. Degeneracy Just in the Diffusion Term at u = 0. Here
D(0) = 0 and K'(0) # 0. Thus, for a fixed k and positive c—
as we assumed—depending on the sign of H'(0) its effect on
P 0y s as follows:

(1) For h'(0) > 0 we have two subcases:

(a) 0 < H'(0) < ¢; here P 0y 1s closer to Py than
P. does; this is on the negative vertical v-axis.

(b) 0 < ¢ < K'(0); Ppy(gy switches to the positive
vertical axis of the ¢v plane.

(2) For h'(0) < 0 the equilibrium runs away on the
vertical negative axis. Here P (o), for all ¢ > 0,
is more far away from P, on the vertical negative
axis.

4.21. H'(0) > 0. We will take W' (1) = « + yu (o > 0) as an
example of the first case. The behavior of the phase portrait
depends on how 4'(0) compares with c. In this example
this means how & compares to c. For our example ' (0) =
a« = 1, we show in Figure 12 the phase portrait for several
values of ¢. In particular, as stated before, we have two major
subcases: 0 < ¢ = 1 < K'(0)and 0 < H(0) = 1 < ¢
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FIGURE 12: Phase portrait of (40a) and (40b) for eight values of ¢; (a)-(h) contemplate the first subcase (1 = K (0) > ¢); (e) shows ¢ = 1 (only
two equilibria); and (f)-(h) contain the second subcase (¢ > h'(0) = 1). Here k = y = & = 1, 8 = 2. Red points are equilibrium points. Green

curves are nullclines and blue curves are trajectories.

For completeness, we start by showing the phase portrait
for ¢ = 0. In Figures 12(a) and 12(b) there are three
equilibrium points and a heteroclinic connexion from P, to
P, in Figure 12(c) the heteroclinic connexion is from P, to P;,
in Figure 12(d) there are only trivial heteroclinic connexions,
in Figure 12(e) there are only two equilibria, in Figure 12(f)
there are only trivial connexions, Figure 12(g) corresponds to
¢”, that is, one connexion from P, to P,, and in Figure 12(h)
for each ¢ > ¢* there is connexion from P, to B,.

In Figure 13 we show the corresponding front traveling
wave profiles for two values of k. These were obtained by
numerically solving (39) for h'(u) = o« + yu with the
numerical routine NAG PO3PCF (NAG Matlab Toolbox).
Figure 14 shows the sharp traveling wave. We also plot how
¢” changes with k in this case (see Figure 16). Although we
are concentrating on heteroclinic connections leaving P;, we
display the phase portrait behavior for a broad range of values
for k to show the richness of the dynamics. To this end, we
would also like to show how the heteroclinic connexion from
P, to P, from Figure 12(b) translates into a front traveling
from right to left (the initial condition in that case is marked
with dots) connecting 0 with 1; see Figure 15.

4.2.2. H(0) < 0. This case is basically the same as before.
We have two main subcases according to the sign of ¢ —
H(0). Figure 17 shows how ¢* changes with k for W) =
a + yu. We do not plot the corresponding phase portraits
or traveling waves as they are qualitatively similar to the
ones in the previous subsection. We do, however, show how
the advection parameter changes with k in Figure 17; note
how here also there is linear dependency to later become an
exponential one. For a comparison, refer to Figure 10.

4.3. Degeneracy in Both Diffusion and Advection Terms at
u = 0. Here D(0) = K'(0) = 0. Then the equilibrium
P(.) coincides with the equilibrium, P,, which is allocated on
the seminegative vertical v-axis for the corresponding system
when no advection term is included. Here we will take A’ (1) =
u + ku® as an example.

Mutatis mutandis one of the monotonicity properties
contained in Proposition 7 holds for the general case. In fact,
by using the same notation as that used there, the following
proposition holds.

Proposition 10. For fixed (but arbitrary) (¢,v) € F, the
angle, 8(¢, v; ¢), formed by the positive ¢ semihorizontal axis
and the vector field which defines the system ((40a) and (40b)),
is a monotone decreasing function of the parameter c.

Proof. We have
0 (¢, vic)

L[ (c=H(¢))v-D'(¢)v’ - g(¢)

= tan >

D(¢)v

and then, by simply calculating the derivative with respect to
¢ in the above equality, we obtain

(53)

2 (.1:0)
_ -D(¢)v* (54)
[D@)v) +[-(c=H (¢)v-D' (§)v* - g (@)
<0,
for all (¢, v) € F; then the proof follows. O
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FIGURE 13: Front traveling waves solutions of (39) for &' (1) = « + yu at equal time intervals t = 1,2,3,... with g(u) = u(l — u) and

D(u) = u(1.0 + Bu) for B = 1. The values for k are indicated in each figure.
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FIGURE 14: Evolution of a compact support function as initial con-
dition under the reaction-diffusion convection process described by
(39). The numerics show that as the time grows, the approximative
solution tends to the sharp traveling wave solution. Profiles are
plotted for W) =a+ yu at equal time intervals t = 1,2, 3,... with
gw) =u(l —u)and D(u) = u(1.0 + pu) for f =k = 1.
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FIGURE 15: Front traveling waves solutions of (39) for i’ (u) = o+ yu
atequal timeintervalst = 1,2,3,... with g(u) = u(1-u) and D(u) =
u(1.0 + Bu) for f=k = 1.
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FIGURE 16: Plot of how ¢* changes with k for /' (1) = « + yu. For a
comparison, refer to Figure 10, where K () = ku.

Of course, all the implications this proposition has are
assumed by the corresponding ODE system which in turn
implies the existence of sharp and monotone traveling wave
solutions.

In Figure 18 we show the corresponding front traveling
wave profiles for two values of k for W (u) = u + ku? and in
Figure 19 the sharp type.

Figure 20 shows how ¢ changes with k for W (1) = u+ku®.

5. Discussion

We have presented a study on the effect of the incorpo-
ration of a nonlinear advection term in the degenerate
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FI1GURE 17: Plot of how ¢* changes with k for W) =a+ yu, with « = —1 < 0. For a comparison, refer to Figure 10, where H(u) = ku.
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FIGURE 18: Front traveling waves solutions of (39) for h'(u) = u + ku? at equal time intervals ¢ = 1,2,3,... with gw) = u(l — u) and
D(u) = u(1.0 + Bu) for = 1. The values for k are indicated in each figure.

reaction-diffusion equation (3). When investigating the trav-
eling wave behavior, we found that the “advection speed”
influences the type and the speed of the possible traveling
waves. The aim of this paper was the investigation of the exis-
tence of TWS for the one-dimensional nonlinear degenerate
RDA equation (3). The degeneracy of the equation causes its
solution to possess finite speed of propagation throughout the
space.

The TWS analysis for (3) was carried out for three cases:
(1) W) = k, 2) K () = ku, and (3) no specific form for
h'(u), as long as it satisfies the quite basic requirements as
stated in item (2). In all these cases, (3) has

(1) no traveling wave solutions for 0 < ¢ < ¢*,

(2) a unique traveling wave solution of sharp type for c =
c’,

(3) a traveling wave solution of smooth decreasing
front type satisfying the boundary conditions
limg, @) = 1 and limg,,,¢() = 0 with
0 < ¢(&) <1 V¢ € (—00,+00), for each ¢ > c*.

We also numerically solved the initial and boundary value
problems associated with the full RDA in each considered
case. Moreover, we show how the advection speed impacts
the type and speed of the traveling waves. In particular, the
unique ¢ = ¢* for which there are sharp traveling waves
depends initially linearly on the advection speed to later
increase exponentially.
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Endnotes

1. Note that, certainly, the inequality ¢ > M, gives us a
bound of ¢ for which both branches are defined on [0, 1].

k¢ + 2+/D'(¢p)g(¢p) it is
enough for the definitiveness of V; and V, on the interval
[0,1].

2. Note that for the representative case D(¢p) = ¢ + f¢p* and
g(@) = ¢(1 — ¢) with B > 0, the corresponding ODE
system (18) could have another two equilibria. These are
(¢,7%,) and (¢, 7,), where

~(c-k)+ \j(c - k§) - 4D’ (9) 9 ($) (%)
2D' (§)

and ¢ = —1/f. Both of them are outside of the region
of interest. Moreover, given that the vertical axis of the

However, for ¢ satistying ¢ >

Y12
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¢v plane is an invariant set of the system, the dynamics
around them does not influence the dynamics on the
region of interest.
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