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Abstract

Background: Ordinary differential equation (ODE) models are widely used to describe (bio-)chemical and biological
processes. To enhance the predictive power of these models, their unknown parameters are estimated from
experimental data. These experimental data are mostly collected in perturbation experiments, in which the processes
are pushed out of steady state by applying a stimulus. The information that the initial condition is a steady state of the
unperturbed process provides valuable information, as it restricts the dynamics of the process and thereby the
parameters. However, implementing steady-state constraints in the optimization often results in convergence
problems.

Results: In this manuscript, we propose two new methods for solving optimization problems with steady-state
constraints. The first method exploits ideas from optimization algorithms on manifolds and introduces a retraction
operator, essentially reducing the dimension of the optimization problem. The second method is based on the
continuous analogue of the optimization problem. This continuous analogue is an ODE whose equilibrium points are
the optima of the constrained optimization problem. This equivalence enables the use of adaptive numerical
methods for solving optimization problems with steady-state constraints. Both methods are tailored to the problem
structure and exploit the local geometry of the steady-state manifold and its stability properties. A parameterization of
the steady-state manifold is not required.
The efficiency and reliability of the proposed methods is evaluated using one toy example and two applications. The
first application example uses published data while the second uses a novel dataset for Raf/MEK/ERK signaling. The
proposed methods demonstrated better convergence properties than state-of-the-art methods employed in systems
and computational biology. Furthermore, the average computation time per converged start is significantly lower. In
addition to the theoretical results, the analysis of the dataset for Raf/MEK/ERK signaling provides novel biological
insights regarding the existence of feedback regulation.

Conclusion: Many optimization problems considered in systems and computational biology are subject to
steady-state constraints. While most optimization methods have convergence problems if these steady-state
constraints are highly nonlinear, the methods presented recover the convergence properties of optimizers which can
exploit an analytical expression for the parameter-dependent steady state. This renders them an excellent alternative
to methods which are currently employed in systems and computational biology.
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Background
Gene regulation, signal transduction, metabolism and
many other biological processes are nowadays analyzed
using mathematical models [1]. Mathematical models
allow for the integration of available knowledge, pro-
viding mechanistic insights and an understanding of
design principles [2]. The spectrum of employed model-
ing approaches ranges from qualitative Boolean models
[3, 4] to quantitative stochastic spatial models [5]. In par-
ticular ODE models, such as reaction rate equations, are
used on a range of spatial and temporal scales [6]. These
models describe the temporal evolution of the concentra-
tion of biochemical species in cellular compartments as a
function of initial conditions, parameters and stimuli.
ODE models are flexible and allow for the mechanis-

tic description of a range of processes (see, e.g., [7–9] and
references therein). Similar to other quantitative model-
ing approaches, ODE models rely on accurate values for
initial conditions and parameters, e.g., binding affinities,
synthesis and degradation rates. Initial conditions and
parameters are often unknown and have to be inferred
from experimental data [10].
In most studies, experimental data from perturbation

experiments are used to infer these unknown parameters
[11, 12]. In perturbation experiments, the response of the
process to an external stimulus (also denoted as perturba-
tion) is quantified, as illustrated in Fig. 1a. As the initial
condition of the process corresponds to a stable steady
state of the unperturbed system, perturbation experi-
ments provide information about the stimulus response.
Depending on the process and the input, the stimulus-
induced changes might be transient or persistent. Com-
monly used stimuli are ligands, which bind to receptors
and induce downstream signaling, small molecules, which
diffuse across the cell membrane and change the cell state,
and physical stimuli (e.g., heat, cold or force).
The estimation of the parameters of ODE models from

data collected during perturbation experiments requires
the solution of optimization problems. These optimiza-
tion problems are in general nonlinear, non-convex and
computationally demanding. This establishes the need
for efficient and robust optimization methods [13, 14].
In the literature, multi-start local optimization methods
[15] and global optimization methods [16, 17] have been
employed. If the stationarity of the initial condition does
not have to be enforced or if analytical expressions of the
steady state are available, these methods mostly work well
[15, 17]. However, neglecting steady-state constraints
often results in a loss of information and poten-
tially implausible predictions. Furthermore, an analytical
expression of the parameter and input-dependent steady
state is rarely available.
Steady-state constraints are nonlinear equality con-

straints, which restrict the solution space to a manifold

of feasible points. Enforcing these equality constraints
causes efficiency and convergence problems for standard
optimization methods [18]. Deterministic local optimiza-
tion methods have to move along the manifold, resulting
in small step-sizes or stagnation. Stochastic local and
global optimization methods are only allowed to propose
update steps on the manifold, which is not possible in
state-of-the-art toolboxes (see, e.g., [19, 20]). The elimi-
nation of the equality constraints using analytical expres-
sions for the parameter-dependent steady states resolves
these problems [18].
The first method to derive analytical expressions for

steady states has been proposed by [21] for networks of
enzyme-catalyzed reactions. Thismethodwas later imple-
mented [22] and subsequently extended using results from
graph theory [23, 24]. Furthermore, tailored methods for
models with bilinear rate laws have been introduced [25].
For models with Michaelis-Menten and Hill-Type kinet-
ics, py-substitution has been developed [26]. This method
solves the steady-state constraint for a combination of
states and parameters. An important recent extension
ensured positivity of the solution [18]. Py-substitution and
its extension are however only applicable if themodel pos-
sesses sufficiently many degrees of freedom [18], which is
difficult to assess a priori.
We propose two novel methods for solving optimiza-

tion problems with a single or multiple steady-state con-
straints. These methods do not rely on an analytical
expression for the steady state. Instead, the geometry of
the steady-state manifold and the stability of the steady
state are exploited.
The first method we introduce borrows ideas from

optimization algorithms on matrix manifolds [27, 28].
These optimization algorithms employ retraction oper-
ators which map a point onto the manifold [28]. These
retraction operators – usually analytical functions – facili-
tate an effective movement of optimizers on the manifold.
Retraction operators are however problem-specific and
their construction is usually non-trivial [28], which limits
the application of established algorithms for optimization
on manifolds. We exploit therefore a simulation-based
retraction operator which exploits the stability of the
steady state. This retraction operator can be used within
state-of-the-art optimizers to eliminate the equality con-
straint and reduce the problem dimension. As the method
uses both, a simulation-based retraction operator and a
state-of-the-art optimizer, we will in the following refer to
it as a hybrid optimization method.
The second method uses continuous analogues of local

optimizers [29]. Continuous analogues are dynamical sys-
tems whose trajectories converge to a locally optimal
point of an optimization problem. These dynamical sys-
tems often possess a larger basin of attraction [30] and can
be solved using sophisticated numerical methods. This
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Fig. 1 Schematic illustration of optimization problem with steady-state constraint. aMeasurement data and simulations of the system for three
different pairs of parameters and initial conditions: optimum of the unconstrained optimization problem (θ(1) , x(1)s ); suboptimal point on the
manifold (θ(2) , x(2)s = xs(u0, θ(2))); and optimum of the constrained optimization problem (θ∗ , x∗s = xs(u0, θ∗)). The system is perturbed at time
t = 0 and should be in steady state for t < 0. b Objective function landscape, steady-state manifold and pairs of parameters and initial conditions

promises more robust convergence than simple step-size
controls used in existing optimization methods. Contin-
uous analogues have been constructed for a series of
linear and nonlinear problems [30–32]. We introduce
continuous gradient descent and Newton-Raphson meth-
ods for solving optimization problems with steady-state
constraints. The manifold is stabilized using a continuous
retraction derived from the model. This method is purely
simulation-based and will therefore be referred to as a
simulation-based optimization method.
The proposed optimization methods are illustrated

using a simulation example. This is followed by a rigorous
evaluation of the methods and comparison with alterna-
tive methods. To this end we consider two applications:
NGF-induced activation of ERK in primary sensory neu-
rons; and Raf/MEK/ERK signaling in HeLa cells. Using
novel data for the second application, new insights into
Raf/MEK/ERK signaling upon release from S-phase arrest
are discovered.

Methods
In this section we introduce the model class and the
optimization problem. The differential geometry of the
steady-state manifold is described and two optimization
methods exploiting this geometry are introduced. The
properties of these methods along with their implementa-
tion are discussed.
The optimization methods are used in the Results

section to study Raf/MEK/ERK signaling in HeLa cells

after release from S-phase arrest. The biological materials
and the setups used to study this process experimentally
are described below.

Mathematical modeling of perturbation experiments
In this manuscript we consider ODE models of biochem-
ical reaction networks. ODE models are quite general
and allow for the description of many gene regulation,
signal transduction and metabolic processes [1]. Mathe-
matically, ODE models are commonly written as

dx
dt

= f (x, θ ,u), x(0) = x0(θ)

y = h(x, θ ,u),
(1)

with states x(t) ∈ R
nx , observables y(t) ∈ R

ny , parame-
ters θ ∈ R

nθ and inputs u(t) ∈ R
nu . The states x(t) are

the concentrations of biochemical species at time t. The
observables y(t) are the values of measurable quantities.
The parameters θ are biochemical reaction rates, total
abundances of biochemical species (in the presence of
conservation relations) and experimental parameters (e.g.
scaling and offset). The inputs u encode the experimental
conditions applied to the system, e.g., extracellular con-
centration of ligands. To ensure existence and uniqueness
of the solution of (1), the vector field f : Rnx×R

nθ ×R
nu →

R
nx is assumed to be Lipschitz continuous. The mapping

h : Rnx ×R
nθ ×R

nu → R
ny describes the observation pro-

cess and the mapping x0 : Rnθ → R
nx provides the initial

conditions.
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The dynamics of model (1) are probed using perturba-
tion experiments, e = 1, . . . ,E, with inputs ue. The initial
condition x0(θ) for an experiment condition is the steady
state xes for a control condition (u = uec). This steady
state xes is parameter-, and input-dependent and fulfills the
steady-state constraint,

0 = f
(
xes , θ ,uec

)
. (2)

The stability of xes can be assessed using Lyapunov the-
ory [33]. We denote the collection of all parameter-state
pairs (θ , x0) which fulfill the steady-state constraint (2)
for a given input u as the manifold of steady states. For
simplicity, we assume that (2) possesses a unique, expo-
nentially stable steady state for every combination of
parameters θ and inputs u. In this case, there exists a func-
tion xs : Rnθ × R

nu → R
nx which maps the parameters

to the corresponding steady state, i.e., x(0) = xs(θ ,u) (see
Fig. 1b). An analytical expression of the function xs(θ ,u)

is usually not available.
Perturbation experiments provide measurement data,

D =
{{(

tj,
{
ȳeij

}ny
i=1

)}N
j=1

}E

e=1
. (3)

The observable is indexed by i, the time point is indexed
by j and the experimental condition is indexed by e. The
measurements are noise-corrupted,

ȳeij = yei
(
tj, θ , xes

) + εeij, (4)

with ye
(
t, θ , xes

)
denoting the solution of (1) for input

u = ue, parameters θ and initial condition xes at time t.
The measurement noise εeij is assumed to be normally dis-

tributed, εeij ∼ N
(
0,

(
σ e
ij

)2)
, the methods presented in

the following are however not limited to this case.

Parameter estimation
In this study we employ maximum likelihood (ML) esti-
mation to determine the unknown model parameters θ

and steady states x1s , . . . , xEs from the experimental dataD.
In accordance with the noise distribution, the likelihood
function

p
(
D|θ , x1s , . . . , xEs

)
:=

E∏
e=1

N∏
j=1

ny∏
i=1

1√
2πσ e

ij
exp

⎧⎨
⎩−1

2

(
ȳeij − yei (tj, θ , xes)

σ e
ij

)2
⎫⎬
⎭
(5)

is used. This likelihood function depends on θ and
x1s , . . . , xEs , variables which are coupled via the steady-state
constraint (2).
The ML estimates for parameters and initial conditions,

θ̂ and
{
x̂es

}E
e=1, are obtained by maximizing the likelihood

function (5) subject to the steady-state constraint (2). To

improve the numerical evaluation and the optimizer con-
vergence, this maximization problem is reformulated to
the equivalent minimization problem

min
θ ,x1s ,...,xEs

J
(
θ , x1s , . . . , xEs

)
:=

1
2

E∑
e=1

N∑
j=1

ny∑
i=1

(
ȳei

(
tj
) − yei

(
tj, θ , xes

)
σ e
ij

)2

s.t. 0 = f
(
xes , θ ,uec

)
, e = 1, . . . ,E

(6)

in which the objective function denotes the negative log-
likelihood function, J

(
θ, x1s , . . . , xEs

)=−log p
(
D|θ, x1s , . . . , xEs

)
.

The solution of (6) provides parameter-state pairs
(
θ̂ , x̂es

)
on the steady-states manifold which maximize the
likelihood function (5). For these pairs it holds that
x̂es = xs

(
θ̂ ,uec

)
.

In general, optimization problem (6) is nonlinear and
possesses local minima. To compute the optimum of (6),
we employ multi-start local optimization. This approach
proved to be efficient in a variety of related problems
(see, e.g., [15, 34]). Furthermore, sophisticated local opti-
mizers allow for the consideration of nonlinear equality
constraints (see [35] and references therein). The consid-
eration of nonlinear equality constraints is not possible
for most evolutionary and genetic algorithms [36], parti-
cle swarm optimizers [37], simulated annealing [38] and
hybrid optimizers [19, 39]. Alternative methods are meta-
heuristics which combine ideas from local and global
optimization methods [40], facilitating the analysis of
optimization problems with nonlinear constraints and
multiple local minima.
The performance of multi-start local optimization

depends on the local optimization method. In this study
four alternative methods are considered, two established
methods:

• Unconstrained optimization method: An analytical
expression of the steady state as a function of the
parameter, xs(θ), is used to eliminate the constraint
and x0 from optimization problem (6). This yields the
reduced optimization problem

min
θ

J
(
θ , xs

(
θ ,u1c

)
, . . . , xs

(
θ ,uEc

))
(7)

which does not possess any equality constraints.
While this method is rarely applicable – analytical
expressions for the xs(θ) are difficult to compute – it
provides a gold standard.

• Constrained optimization method: An interior point
optimization method is used to solve the
optimization problem (6). This is the state-of-the-art
method and mostly used in practice.

and two newly developed methods
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• Hybrid optimization method: The optimization
problem (6) is reduced to the manifold of steady
states by computing xs(θ) numerically.

• Simulation-based optimization method: A dynamical
system is formulated whose trajectories converge to
local optima of the optimization problem (6). The
dynamical system is solved using state-of-the-art
numerical methods.

To facilitate efficiency and convergence, all methods are
provided with the gradients of the objective function,

∂J
∂θ

= −
E∑

e=1

N∑
j=1

ny∑
i=1

ȳei (tj) − yei
(
tj, θ , xes

)
(σ e

ij)
2

∂yei
(
tj, θ , xes

)
∂θ

(8)

∂J
∂xes

= −
N∑
j=1

ny∑
i=1

ȳei (tj) − yei
(
tj, θ , xes

)
(σ e

ij)
2

∂yei
(
tj, θ , xes

)
∂xes

(9)

and the gradients of the constraint. The sensitivities of
the observable with respect to the parameters and initial
conditions, ∂y

∂θ
and ∂y

∂xes
, are computed using the forward

sensitivity equations [41].
The optimization problem considered (6) is rather gen-

eral and allows for the consideration of multiple steady-
state constraints, as well as steady-state dose response
curves. In the next section the geometry of the steady-
state manifold is discussed. Subsequently, the hybrid opti-
mization method and the simulation-based optimization
method are introduced.

Manifold of steady states
The steady-state constraint defines the steady-state man-
ifold which can be expressed in term of the mapping
xs(θ ,u). In the considered setting, the existence of the
mapping xs(θ ,u) is ensured but an analytical expression is
in general not available. For individual parameters θ , the
steady state can however be computed by

• solving a feasibility problem (find xs ∈ R
nx subject to

0 = f (xs, θ ,u)),
• simulating the dynamical system until the steady

state is reached, or
• combining the simulation of the dynamical system

with fine-tuning using the Newton-Raphson method
[42].

The last two methods are robust and computationally
tractable. The computation of the steady state for individ-
ual parameters is however not sufficient, as the derivative
is also required. To develop a tailored method for solving
optimization problems (6), we will exploit the first-order
geometry of the manifold of steady states. To this end we

consider the sensitivities of the states x(t) with respect to
the parameters θ ,

S(t) = (
s1(t), s2(t), . . . , snθ (t)

) ∈ R
nx×nθ

with si := ∂x
∂θi

=
(

∂x1
∂θi

, . . . ,
∂xnx
∂θi

)T
.

(10)

in the control conditions. The dynamics of S are governed
by the forward sensitivity equation

Ṡ = ∂f
∂x

S + ∂f
∂θ

. (11)

In steady-state, Ṡ = 0, this equation simplifies to

S = −
(

∂f
∂x

)−1
∂f
∂θ

, (12)

evaluated at (θ , xs(θ ,u),u). The invertibility of the
Jacobian (∂ f /∂x) follows from local exponential stability
of the steady state. This result can also be obtained using
the implicit function theorem.
The sensitivity of the steady state with respect to the

parameters, S, provides a first-order approximation to
xs(θ ,u),

xs(θ+r�θ ,u) = xs(θ ,u)+S(θ , xs(θ ,u),u)r�θ+O
(
r2

)
.

(13)

The perturbation direction and the step size are denoted
by�θ and r, respectively. By reformulating (13) and letting
r → 0, we obtain a dynamical system which evolves on
the manifold of steady states,

dxs
dr

= S(θ , xs,u)�θ . (14)

Given an update direction �θ and a length r, (14) pro-
vides the steady state for parameter θ + r�θ up to the
accuracy of the chosen ODE solver. Hence, (14) enables
moves on the steady-state manifold, similar to results in
[28] for other manifolds.

Hybrid optimization method
The gold standard for solving optimization problem (6) is
to determine an analytical expression for the parameter-
dependent steady state. While such an expression is not
always available, a straightforward approach is to compute
the steady state numerically for given parameters θ . This
is computationally more demanding than using an analyt-
ical expression, but it also yields the reduced optimization
problem (7).
This straightforward approach is visualized in Fig. 2a.

As it can be employed in any state-of-the-art optimization
method, we denote it as a hybrid optimization method.
Starting at a point (θ l, xls), we employ a three-step proce-
dure:
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A B

Fig. 2 Schematic illustration of a the hybrid optimization method and b the simulation-based optimization methods. The path of the optimizers are
illustrated along with the manifold of steady states and the objective function contour

• Step 1: The local optimizer proposes new parameters
θ l+1. This yields the point

(
θ l+1, x1,ls , . . . , xE,ls

)
which

is usually not on the manifold of steady states.
(Represented as a solid arrow in Fig. 2a.)

• Step 2: The steady states x1,l+1
s , . . . , xE,l+1

s for the
parameters θ l+1 are computed using one of the
methods discussed in the Manifold of steady states
section (with starting points x1,ls , . . . , xE,ls ). This yields
the point

(
θ l+1, x1,l+1

s , . . . , xE,l+1
s

)
on the steady-state

manifold. (Represented as a dotted arrow in Fig. 2a.)
• Step 3: The objective function

J l+1 = J
(
θ l+1, x1,l+1

s , . . . , xE,l+1
s

)
is computed for

parameters θ l+1 and numerically calculated steady
state x1,l+1

s , . . . , xE,l+1
s . This objective function is

provided to the local optimizer. (Not represented in
Fig. 2a.)

The simulation-based retraction to the manifold of steady
states (Step 2) reduces the problem dimension and elim-
inates the constraint. The objective function gradient for
this reduced problem is

dJ
dθ

= ∂J
∂θ

+
E∑

e=1

∂J
∂xes

∂xes
∂θ

(15)

with the sensitivity of the steady states with respect to the
parameters, (∂xes/∂θ) = S(θ , xes ,uec), as defined in (12).
The proposed hybrid optimization method possesses all

properties and options of the employed local optimizer. In

addition, the retraction accuracy εtol of the convergence
criteria ||f (xe,ls , θ l,uec)||2 < εtol has to be selected.

Simulation-based optimization method
Instead of using a discrete update as in local optimization,
one could also think of choosing a continuous formulation
of the update as illustrated in Fig. 2b. The continuous ana-
logue of a gradient descent method is dθ/dr = −(dJ/dθ)T

[30]. This ODE system can be coupled with the dynamical
system evolving on the steady-state manifold (14), using
�θ = −(dJ/dθ)T . More generally we can consider any
descent direction g(θ , xs) in which J is decreasing. We
obtain the ODE system

dθ

dr
= −g(θ , x1s , . . . , xEs )

dxes
dr

= S(θ , xes ,uec)
dθ

dr
, e = 1, . . . ,E,

(16)

with the steady-state sensitivity S
(
θ , xes ,uec

)
. Initialization

of (16) in a point
(
θ0, x1s,0, . . . , x

E
s,0

)
fulfilling (2) yields a tra-

jectory evolving on the steady-state manifold, along which
the objective function decreases.
The formulation (16) avoids the repeated simulation-

based retractions used by the hybrid optimizationmethod
presented in the previous section, however it also
bears two disadvantages: (i) An appropriate initial point(
θ0, xs,0

)
has to be determined by solving (2); and

(ii) numerical errors can result in a divergence from the
steady-state manifold. To address these problems, we
introduce the term λf (θ , xs) which locally retracts the
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state of the system to the manifold by exploiting the sta-
bility properties of the steady state. This yields the system

dθ

dr
= −g

(
θ , x1s , . . . , xEs

)
dxes
dr

= Ŝ
(
θ , xes ,uec

) dθ

dr
+ λf

(
θ , xes ,uec

)
, e = 1, . . . ,E.

(17)

For this modified system we do not require that the ini-
tial point (θ0, xs,0) fulfill the steady-state constraint (2),
hence, the Jacobian ∇xf |(θ ,xs) might not be invertible. To
address this, we define

Ŝ(θ , xes ,uec) = −
(

∂f
∂x

)+
∂f
∂θ

(18)

in which (∂ f /∂x)+ denotes the Moore–Penrose pseu-
doinverse of (∂ f /∂x) at (θ , xes ,uec). On the steady-state
manifold, the Jacobian is invertible and we recover the
standard steady-state sensitivity. For a large retraction fac-
tor λ � 0, the state (θ , x1s , . . . , xEs ) is retracted quickly to
the steady-state manifold.
In this manuscript we consider two possible choices for

the descent direction:

• Gradient descent: g(θ , xs) = − dJ
dθ

and
• Newton-type descent: g(θ , xs) = − (F + μI)−1 dJ

dθ
.

The Newton-type descent exploits the Fisher Informa-
tion Matrix F [43]. The Fisher Information matrix is an
approximation to the Hessian of the objective function.
This approximation can be computed from first-order
sensitivities and is positive semi-definite.
For the gradient descent we established local exponen-

tial stability of local optima for appropriate choice of
λ for a broad class of problems (see Additional file 1:
Section 1). This implies that the trajectories of the system
converge to the local optima of the optimization prob-
lem (6). We expect that a similar result can be derived
for the Newton-type descent. Though this is not yet avail-
able, we included the Newton type descent as we expect –
similar to classical optimizers – faster convergence.
For local optimization of (6), the dynamical system (17)

has to be simulated for r → ∞. For this, implicit meth-
ods with adaptive step-size selection and error control
should be employed as (17) might be stiff. Appropriate
numerical methods are implemented among others in
MATLAB and the SUNDIALS package [44]. These simu-
lations are stopped as soon as the convergence criterion
max{‖dθ/dr‖, ‖dxs/dr‖} < εtol is met.

Implementation
The different methods are implemented in MATLAB and
provided in an Additional file 2. The local optimization

is performed using the MATLAB routine fmincon.m.
fmincon is supplied with the objective function value
and the values of the constraint, as well as the respec-
tive analytical derivatives. The continuous analogue used
for simulation-based optimization is simulated using the
MATLAB ODE solver ode15s. The computationally
intensive simulation of the perturbation experiments and
the numerical calculation of the steady state is performed
using the SUNDIALS package [44] which was accessed
using the MATLAB Toolbox AMICI (https://github.com/
AMICI-developer/AMICI). Default settings are used for
fmincon.m and the simulation routines unless stated
otherwise. The convergence tolerance for the hybrid opti-
mization method is set to εtol = 10−9 in the simula-
tion example and the first application example and to
εtol = 10−13 in the second application example. For the
simulation-based optimization methods it is set to εtol =
10−6.

Experimental data
To evaluate the performance of the proposed methods,
we use two application examples with experimental data.
In the first application example, we consider a dataset for
NGF-induced ERK signaling in primary sensory neurons
which was published by Andres et al. [45]. In the second
application example, we use novel data for Raf/MEK/ERK
signaling in HeLa cells after release from S-phase arrest.
This novel experimental data for Raf/MEK/ERK sig-
naling in HeLa cells was acquired using the following
methods.

Cell culture. HeLa cells were obtained from the Ameri-
can Type Culture Collection (Manassas, VA). Cells were
maintained in RPMI 1640 supplemented with 10% fetal
bovine serum.

Cell synchronization at the G1/S border. HeLa cells
were synchronized at the G1/S border using an aphidi-
colin treatment. In brief, cells grown on Petri dishes
were incubated in medium supplemented with aphidi-
colin (0,3 g/ml; Calbiochem) for 18 h. Afterward, cells
were released from the S-phase arrest by washing
with serum-free medium and were refed with growth
medium.

Protein extraction of cells. Whole-cell extracts were
obtained by solubilizing cells in hot protein sample buffer
(95 ◦C). After 10 min of incubation at 95 ◦C, extracts were
placed on ice and centrifuged (16,000 μg, 15 min, and
4 ◦C). Samples were subjected to SDS-PAGE.

Western blotting. Equal amounts of proteins were sepa-
rated by SDS-PAGE and blotted onto nitrocellulose mem-
branes (Pall, Dreieich, Germany). After blocking with

https://github.com/AMICI-developer/AMICI
https://github.com/AMICI-developer/AMICI
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0.5% blocking reagent (Roche Diagnostics), filters were
probed with specific antibodies. Proteins were visual-
ized with IRdye-coupled secondary antibodies using the
Li-COR Odyssey system. Protein bands were quantified
using ImageJ.

Antibodies Commercially available antibodies used in
this study were: anti-ERK rabbit polyclonal, anti-phospho-
p44/42 MAPK (ERK1/2) (Thr202/Tyr204) rabbit poly-
clonal, and anti-phospho-MEK1/2 (Ser217/221) rabbit
polyclonal (all from Cell Signaling). The tubulin-specific
mouse monoclonal antibody was from Millipore. The
IRdye-coupled secondary antibodies were from Li-COR
Biosciences.

Results
In the following, we illustrate the behavior of the proposed
optimization method. Furthermore, the performance of
the proposed methods will be compared to standard
constrained and unconstrained optimization methods.
For this purpose, we consider a simulation example
for which the ground truth is known. Furthermore, we
test the methods on two application examples using
real data.

Simulation example: Conversion process
In this section, we illustrate the proposed optimization
methods by studying parameter estimation for a conver-
sion process from steady-state data. Conversion processes
are among the most commonmotifs in biological systems,
therefore particularly interesting, and provide a simple
test case.
We consider the conversion process

A
θ1u
�
θ2

B, (19)

with parameters θ = (θ1, θ2) ∈ R
2+ and input u ∈ R+.

Assuming conservation of mass ([ A] + [ B]= 1) and
mass action kinetics, the temporal evolution of the con-
centration of biochemical species A, x = [ A], is governed
by

dx
dt

= θ2 − (θ1u + θ2)x

y = x
(20)

with x0 ∈ R+ denoting the initial concentration. The
steady state of model (20) is

xs(θ ,u) = θ2
θ1u + θ2

. (21)

To illustrate the properties of the hybrid and the
simulation-based optimization methods, we consider the
estimation of the parameters θ from artificial time-
resolved data for y. The artificial data are obtained by

simulation of (20) for θ = (4, 1) and u = 0.4 at the time
points tj = [ 0, 0.1, 0.5, 1, 2], starting from the steady state
of the control condition uc = 1 at t = 0. Assuming unit
variance for observation errors, yields the optimization
problem

min
θ ,xs

J(θ , xs) := 1
2

N∑
j=1

(
ȳ(tj) − y(tj, θ , xs)

)2
s.t. 0 = θ2 − (θ1 + θ2)xs,

(22)

in which ȳ(tj) denotes the measured concentration of A
at time point tj and y(tj, θ , xs) denotes the solution of (20)
for initial conditions x(0) = xs and input u = 0.4 at time
point tj.

Illustration of hybrid optimizationmethod
The hybrid optimization method evaluates the steady
state numerically but exploits the gradients of the objec-
tive functions (15). To this end the objective function
gradient, dJ/dθ ,

dJ
dθ

= −
N∑
j=1

(
ȳ(tj) − y(tj, θ , xs)

)
(

∂y(tj, θ , xs)
∂θ

+ ∂y(tj, θ , xs)
∂xs

∂xs
∂θ

) (23)

and the local sensitivities of the steady state for u = 1,

S(θ , xs, 1) =
(

∂xs
∂θ1

,
∂xs
∂θ2

)

=
( −xs

θ1 + θ2
,
1 − xs
θ1 + θ2

) (24)

are derived. The local sensitivities depend merely on
derivatives of the vector field and can be computed with-
out knowledge of an analytical expression of the steady
state.
The trajectory of the hybrid optimization method is

illustrated in Fig. 3. At the end of each iteration, the
simulation-based retraction ensures that the parameter-
state pair is on the steady-state manifold (Fig. 3a and b).
On the steady-state manifold, the optimizer reaches a nar-
row valley for θ1 and θ2 and then moves along the valley
to reach the optimum (Fig. 3a, c and d). The behavior is
similar for other starting points.

Illustration of simulation-based optimizationmethod
For simulation-based optimization the continuous ana-
logue of the gradient descent method is derived. This
yields the dynamical system
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Fig. 3 Illustration of the hybrid optimization method for the conversion process (20). a Path of the hybrid optimization method (full lines), the true
optimum (red star), and the steady-state manifold (surface, (21)) are shown. The objective function values are indicated by the surface coloring. The
optimizer path is partially covered by the steady state manifold. b The distance to the analytical steady state as well as c, d the path of the
parameters (full lines), their endpoints (stars) and optimal parameter value (dotted lines) are depicted

dθ1
dr

= −
N∑
j=1

(
ȳ(tj) − y(tj, θ , xs)

)
(

∂y(tj, θ , xs)
∂θ1

+ ∂y(tj, θ , xs)
∂xs

s1
)

dθ2
dr

= −
N∑
j=1

(
ȳ(tj) − y(tj, θ , xs)

)
(

∂y(tj, θ , xs)
∂θ2

+ ∂y(tj, θ , xs)
∂xs

s2
)

dxs
dr

=
( −xs

θ1 + θ2
,
1 − xs
θ1 + θ2

) ⎛
⎜⎜⎝

dθ1
dr
dθ2
dr

⎞
⎟⎟⎠+

λ(θ2 − (θ1u + θ2)xs),

(25)

with initial conditions θ1(0) = θ1,0, θ2(0) = θ2,0 and
xs(0) = xs,0. It can be verified that the objective function
J is locally strictly convex in θ – the parameters are locally
identifiable – and that the model (20) is asymptotically

stable. Accordingly, system (25) converges to a local opti-
mum of the constrained optimization problem (22) (see
Additional file 1: Theorem 1).
To illustrate the simulation-based optimization method

we simulate the continuous analogue of the gradient
descent method. Exemplary trajectories are depicted in
Fig. 4. We find that for retraction factors λ > 0, the states
(θ1, θ2, xs)T converge to the optimal solution. As retrac-
tion renders the steady-state manifold (21) attractive, also
for initial conditions (θ1,0, θ2,0, xs,0)T which do not fulfill
the steady-state condition, fast convergence to the steady-
statemanifold can be achieved using λ � 1 (Fig. 4a and b).
For large retractions (λ � 1), the dynamic consists of
two phases: (Phase 1) the state x converges quickly to the
parameter-dependent steady state (21) (Fig. 4a and b); and
(Phase 2) the state (θ1, θ2, xs)T moves along the steady-
state manifold to the global optimum (Fig. 4a, c and d).

Application example 1: NGF-induced ERK signaling in
primary sensory neurons
To evaluate and compare existing and proposed local
optimizationmethods for problems with steady-state con-
straints, we analyze NGF-induced ERK phosphorylation
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Fig. 4 Illustration of the simulation-based optimization method for the conversion process (20). a Trajectory of the continuous analogue for different
retraction factors λ (full lines), the endpoints (stars), the true optimum (red star), and the steady-state manifold (surface, (21)) are shown. The
objective function values are indicated by the surface coloring. b The distance to the analytical steady state as well as c, d the path of the
parameters (full lines), their endpoints (stars) and optimal parameter value (dotted lines) are depicted

in primary sensory neurons. Primary sensory neurons are
among others used to investigate pain sensitization in
response to inflammation. During inflammation a cock-
tail of stimuli is present, including NGF. NGF binds to
cellular receptors and induces the ERK phosphorylation
[45]. This modulates neuronal activity by triggering ion
channel phosphorylation and protein expression [46].
Growth-factor induced ERK signaling is a potential tar-

get for novel pain therapies [47] and therefore of high
practical relevance. In addition, this application is well-
suited for the evaluation of the methods as NGF dose-
response curves at late time points have been recorded.
These data provide multiple steady-state constraints for
the thorough assessment of the methods. In the following,
we will compare the performance of unconstrained, con-
strained, hybrid and simulation-based optimization in the
presence of multiple steady-state constraints.

Experimental data for NGF-induced ERK phosphorylation
ERK phosphorylation in response to different concentra-
tions of NGF was previously quantified using quantita-
tive automated microscopy [45]. This technique provides
single-cell data from which population average data can
be derived. These population average data are highly

reproducible and quantitative but provide merely the rel-
ative ERK phosphorylation in comparison to the control
as no calibration curve is employed. The unknown scaling
constant is denoted by s.

Mathematical model of NGF-induced ERK phosphorylation
NGF induces ERK phosphorylation by binding to the
NGF receptor TrkA. The complex TrkA:NGF activates
Ras which in turn phosphorylates Raf. pRaf phosphory-
lates MEK and pMEK phosphorylates ERK (Fig. 5). While
all these steps are considered in complex models [48, 49],
a previous analysis revealed that the intermediate steps do
not have to be modeled to capture the measured data [34].
We therefore use the model introduced in [34],

dx1
dt

= k1u (k3[ TrkA]0 −x1) − k2x1,

dx2
dt

= (x1 + k4) (s[ ERK]0 −x2) − k5x2,

y = x2,

(26)

to describe the activities of the NGF receptor TrkA (x1)
and ERK phosphorylation (x2) in response to NGF stim-
ulation, u = [ NGF]0. This model possesses a minimal
number of model parameters, θ = (k1, k2, k3[ TrkA]0 ,
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Fig. 5 Schematic of the model considered for NGF-induced ERK
phosphorylation in primary sensory neurons

k4, s[ ERK]0 , k5, σ 2), and is structurally identifiable. For
details on the model, we refer to the Additional file 1:
Section 2 and the original publication [34]. The experi-
mental noise ε is assumed to be normally distributed with
the unknown variance σ 2, ε ∼ N (0, σ 2).
The parameter-, and input-dependent steady state

of (26) is given by

xs,1(θ ,u) = k3[TrkA]0
k1[NGF]0

k1[NGF]0 +k2
,

xs,2(θ ,u) = s[ERK]0
xs,1(θ) + k4

xs,1(θ ,u) + k4 + k5
.

(27)

This steady state exists for all positive parameters and is
exponentially stable.

Parameter estimation problemwithmultiple steady-state
constraints
In this study, the unknown parameters θ ∈ R

7+ and the
states xs,1 and xs,2 for each considered input of NGF are
inferred from published dose response data [45] usingML
estimation. The dataset contains 6 different NGF doses,
yielding an optimization problem with 7+ 2 · 6 = 19 opti-
mization variables and 2 · 6 = 12 nonlinear equality con-
straints. This nonlinear optimization problem is solved
using multi-start local optimization. The local optimiza-
tion is performed using unconstrained, constrained and
hybrid optimization as well as simulation-based optimiza-
tion using gradient andNewton-type descent. Bounds and
scales for the parameters are provided in the Additional
file 1: Table S1.
To assess the convergence properties, the constraint sat-

isfaction/violation and the computation time, the local
optimization methods were initialized with the same 100
sampled starting points. The results are summarized in
Fig. 6. Additionally, we assessed the dependence of the
convergence properties on λ. The results can be found in
the Additional file 1: Section 5.

The convergence properties of unconstrained, hybrid and
simulation-based optimization are comparable
To assess the convergence of the optimization method, we
sort and visualize the objective function values achieved
in the individual optimizer starts (Fig. 6a). In addition, we
determine the percentage of converged starts. A start is
considered to be converged if the final point cannot be
rejected compared to theML estimate using the likelihood
ratio test with a significance level of 0.05.
As expected, we find that the gold standard – the uncon-

strained optimization method – shows the best conver-
gence properties. It converges in 75% of the starts to the
global optimum. A similar convergence is achieved by the
proposed methods, hybrid optimization and simulation-
based optimization using gradient descent. The third
proposed method – simulation-based optimization using
Newton-type descent – displays intermediate conver-
gence properties (60% of the starts converged to the global
optimum). The state-of-the-art method – constrained
optimization – exhibits the poorest convergence. It con-
verges in 45% of the starts. Hence, the proposed optimiza-
tion methods are superior to constrained optimization
regarding convergence to the global optimum.
Beyond differences in the convergence to the global

optimum, the convergence to local optima differs. The
results of unconstrained, constrained and hybrid opti-
mization reveal three local optima. The local optima with
the worst objective function values are hardly found using
simulation-based optimization, indicating altered regions
of attraction.

Hybrid and simulation-based optimization provide reliable
estimates of the steady states
The individual optimization methods enforce the steady-
state constraints differently. What all methods have in
common is that the steady-state constraint f (xs, θ ,us) =
0 is relaxed to a constraint on the norm of the vector
field, i.e., ||f (xs, θ ,us)||2 < εf . Accordingly, parameter-
state pairs returned by the optimization methods usually
do not fulfill steady-state constraints exactly. Different
optimization methods might even achieve different accu-
racies. In addition, a bound for the difference of the
estimated steady state xs for a parameter θ and the true
steady state xs(θ), �xs = xs − xs(θ), is usually not
available.
We studied the relation of the solver indicating con-

vergence based on the vector field (||f ||2 < εf ) and the
difference of the estimated to the analytical steady-state
being small (||�xs||2 < εx) for the different optimization
methods. In our opinion a good optimizer should achieve
equivalence of the two criteria. This would mean that
enforcing the constraint of the vector field ensures a good
approximation of the steady state. The result is depicted
in Fig. 6b for a tolerance of 10−6.
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Fig. 6 Comparison of optimization methods for NGF-induced ERK activation model. a Final objective function values (darker color in steady-state,
lighter color not in steady-state), b comparison of convergence criteria with respect to steady-state constraint, c computation time for 100 runs and
d average computation time per converged start of unconstrained optimization method (fmincon), constrained optimization algorithm
(fmincon), the hybrid optimization method and the proposed simulation-based optimization methods with gradient descent and newton
method based updates and e the best fit to the data are depicted

The unconstrained optimization uses an analytical
expression of the steady state and therefore the two crite-
ria are identical. Hybrid and simulation-based optimiza-
tion also achieved a good agreement of both criteria,
with ∼85%. In ∼15% of the cases, the solver indicates
convergence based on the vector field constraint but the
steady-state estimate is off (||�xs||2 > εx). The pre-
cise percentage depends heavily on the retraction factor
λ for the simulation-based optimization method. For the
constrained optimization, all possible combinations are
observed and the two criteria agree in merely 55% of the

runs. In summary, the results indicate that the proposed
methods provide reliable estimates for the steady states
while constrained optimization yields many inconsistent
parameter-state pairs.

Hybrid and simulation-based optimization are faster than
constrained optimization
A key performance metric for local optimizers is the aver-
age computation time per converged start. This metric
summarizes convergence properties (Fig. 6a and b) and
computation times for individual starts (Fig. 6c). It is
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computed by dividing the overall computation time for
the multi-start optimization by the number of converged
starts. This measure of optimizer performance is depicted
in Fig. 6d.
Unconstrained optimization using a (usually not avail-

able) analytical expressions for steady states is most effi-
cient. The individual runs are fast and the percentage
of converged starts is high. Hybrid and simulation-based
methods are roughly 10 times slower but these meth-
ods can be applied if analytical expressions for steady
states are not available. Furthermore, these methods are
1.5 times faster than constrained optimization due to the
improved convergence rate. Additionally, the fit to the
data for the optimal parameters is convincing (Fig. 6e).
Accordingly, we conclude that hybrid and simulation-
based optimization are promising approaches in the pres-
ence of multiple steady-state constraints.

Application 2: Raf/MEK/ERK signaling in HeLa cells after
release from S-phase arrest
In this section, we study Raf/MEK/ERK signaling in HeLa
cells after release from S-phase arrest. Experimental stud-
ies revealed that cell-cycle is, among others, controlled by
Raf/MEK/ERK signaling [50, 51]. The signaling dynamics
in different cell-cycle phases as well as the cell-cycle-
dependent relevance of feedback mechanisms [52] are
however still not completely unraveled although a more
thorough understanding could provide valuable insights
into treatment resistance [52]. Using the new data and
model selection we study the relevance of negative feed-
back from phospho-ERK to Raf activation during G1/S
phase transition.
In addition to its biological relevance, the Raf/MEK/

ERK pathway is well-suited for the evaluation of the pro-
posed optimization methods and the comparison to state-
of-the-art methods. The pathway is nonlinear, yielding
a nonlinear and non-convex optimization problem. Fur-
thermore, we will consider a synchronized cell population

which reached a steady state before the start of the exper-
iment. Accordingly, a steady-state constraint has to be
enforced and fitted along with time-resolved data for
perturbation experiments.

Experimental data for Raf/MEK/ERK signaling after release
from S-phase arrest
To study the Raf/MEK/ERK pathway, HeLa cells were
synchronized at the G1/S border using an aphidicolin
treatment. After synchronization was achieved, aphidi-
colin was removed and the dynamics of phospho-MEK
and phospho-ERK were quantified using Western blot-
ting. This was repeated after treatment with Sorafenib
and UO126 to explore the dynamic range of the pathway.
Sorafenib is an inhibitor of Raf kinases [53] and UO126 is
a highly selective inhibitor of MEK [54].
As Western blots are merely semi-quantitive, they pro-

vide the relative activity of phospho-MEK and phospho-
ERK at different time points and under different con-
ditions. The unknown scaling constants differ between
blots and measured species. For a detailed discussion of
characteristics of Western blot data we refer to [55].

Mathematical model for Raf/MEK/ERK signaling after release
from S-phase arrest
Raf/MEK/ERK signaling is induced by myriads of intra-
and extracellular signals [51, 56]. These signals converge
on the level of Raf kinase, which they phosphorylate. The
phosphorylated Raf kinase phosphorylatesMEK, which in
turn phosphorylates ERK. ERK induces downstream sig-
naling and can down-regulate the Raf activity [49]. The
latter establishes a negative feedback loop [52, 57]. The
activity of Raf and MEK can be inhibited by Sorafenib and
UO126, respectively. The pathway is illustrated in Fig. 7.
In this section we develop a model for Raf/MEK/ERK

signaling which accounts for the core proteins as well as
their inhibition with Sorafenib and UO126. The model
considers the six reactions:

Fig. 7 Schematic of the model considered for the Raf/MEK/ERK signaling after release from S-phase arrest
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R1 : Raf → pRaf, rate = k1,max(t)ξ(t)[Raf] ,
R2 : pRaf → Raf, rate = k2[pRaf] ,

R3 : MEK → pMEK, rate = k3K2[pRaf]
K2+[sora]

[MEK] ,

R4 : pMEK → MEK, rate = k4[pMEK] ,

R5 : ERK → pERK, rate = k5K3[pMEK]
K3+[UO126]

[ERK] ,

R6 : pERK → ERK, rate = k6[pERK] .
(28)

The upstream signaling is summarized in the time-
dependent rate constant k1,max(t) with the flexible param-
eterization

k1,max(t) = k1,0 + k1,1
(
1 − e−

t
τ1

)
e−

t
τ2 (29)

(as proposed in the Data2Dynamics toolbox [58]). The ef-
fects of Sorafenib and UO126 are captured by a reduction
in the kinase activity of pRaf and pMEK (R4 and R6).
Experimental studies proved an inhibition of Raf phos-

phorylation by pERK [52]. This feedback is however
context-dependent [49]. To study the importance of this
feedback during the G1/S phase transition, we considered
two model hypotheses:

H1 Inhibition of Raf phosphorylation by pERK:
ξ(t) = K1

K1+[pERK]

H2 No inhibition: ξ(t) = 1

Using mass conservation and reformulations explained
in detail in Additional file 1: Section 3 we arrive at the
ODE model

dx1
dt

= k1,max(t)ξ(t)(1 − x1) − k2x1
dx2
dt

= k3[Raf]0 K2x1
K2+[sora]

(1 − x2) − k4x2

dx3
dt

= k5[MEK]0 K3x2
K3+[ UO126]

(1 − x3) − k6x3

y1,b = s1,b[MEK]0 x2
y2,b = s2,b[ERK]0 x3

(30)

for the relative phosphorylation levels x1 = [ pRaf] /[ Raf]0,
x2 = [ pMEK] /[MEK]0 and x3 = [ pERK] /[ ERK]0 and
the input u = ([ sora] , [ UO126] ). The model for the rela-
tive phosphorylation levels does not depend explicitly on
the total abundances [ Raf]0, [MEK]0 and [ ERK]0 but only
on products and ratios of these parameters with other
parameters, e.g., k3[ Raf]0. Defining these products and
ratios as new parameters eliminates non-identifiabilities
and reduces the number of parameters. Each Western
blot, indexed by b = 1, . . . , 4, provides time-resolved data
for y1,b and y2,b for a combination of different experimen-
tal conditions. The measurement noise is assumed to be

normally distributed and its variance is estimated from
the experimental data. As all parameters are non-negative,
a log-parameterization is used for parameter estimation
[15]. The states of the reformulated model are between 0
and 1. Details regarding parameters and initial conditions
are provided in the Additional file 1: Table S2.
In addition to the kinetic, scaling and noise param-

eters, the initial conditions of the models for H1 and
H2 are unknown. As the cells are however arrested in
S-phase with k1,max(0) = k1,0 and u = 0, the ini-
tial conditions are the corresponding steady states. After
significant manual preprocessing of the steady-state con-
straints, analytical expressions xs(θ) for the steady-states
as a function of the other parameters could be cal-
culated with symbolic math toolboxes. These analyti-
cal expressions are provided in the Additional file 1:
Equation (10), (11).

Parameter estimation problemwithmultiple perturbation
datasets
We inferred the model parameters and initial condi-
tions from the Western blot data using ML estimation.
The dataset provides time-resolved data for three con-
ditions (control & two perturbations), all starting from
the same steady-state. The optimization problem is solved
using multi-start local optimization. The local optimiza-
tion was performed using unconstrained, constrained and
hybrid optimization as well as simulation-based opti-
mization using gradient and Newton-type descent each
method starting at the same points. The starting points for
local optimizations were obtained using Latin hypercube
sampling (see Additional file 1: Table S2). The maximal
number of iterations and function evaluations performed
by fmincon were increased to 2000 and 2000nθ for
the unconstrained and constrained optimization. For the
hybrid optimization, the maximal number of iterations
was increased to 2000. The results for 100 starts of the
local optimizations for the model of H1 are depicted in
Fig. 8a and b.

Hybrid and simulation-based optimization outperforms
constrained optimization
Unconstrained optimization using the analytical expres-
sion for the steady state – the gold standard – converged in
∼50% of the starts (Fig. 8a). Hybrid and simulation-based
optimizationmethods achieved a percentage of converged
starts comparable to the gold standard (40–60%), but
without requiring an analytical expression for the steady
state. Constrained optimization – the state-of-the-art –
converged in less than 10% of the starts, resulting in
a relatively large computation time per converged start
(Fig. 8b). Even though hybrid and simulation-based opti-
mization were slower than the gold standard, they were
more than 10 times faster than constrained optimization.
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Fig. 8 Parameter estimation results for Raf/MEK/ERK signaling in HeLa cells. a Convergence and b computational efficiency of local optimization
methods for the model with the negative feedback loop (H1). c Best fit of the model with the negative feedback loop (H1) to data for three different
treatment conditions. pMEK and pERK signals are rescaled with the respective maximum activity and the light gray area indicates 2-σ interval of the
measurement noise

Hence, the proposed optimization methods also outper-
form constrained optimization for this problem.
A detailed comparison of the proposed methods

revealed that simulation-based optimization using gra-
dient descent achieved the highest percentage of con-
verged starts. Hybrid optimization required however
fewer simulations of the perturbation experiments –
the time-consuming step – rendering this method
computationally more efficient. Simulation-based opti-
mization using Newton-type descent was the least effi-
cient of the proposed methods. This might be related to
the challenges in tuning the regularization parameters.

Model selection reveals importance of negative feedback
The model with negative feedback (H1) fits the experi-
mental data (Fig. 8c). It captures the transient phospho-
rylation of MEK and ERK after release from S-phase
arrest, the reduced ERK phosphorylation in the pres-
ence of Sorafenib and UO126. Furthermore, the increased
MEK phosphorylation after UO126 treatment is explained
via a decrease in the strength of the negative feedback
which is caused by the reduced abundance of pERK. The
model without the negative feedback loop (H2) is not

able to capture the difference between the control con-
dition and the simulation with UO126. The value of the
Bayesian Information Criterion (BIC) [59] is 278.4 for
the model with negative feedback (H1) and 317.4 for the
model without negative feedback (H2). The difference of
39.0 indicates a strong preference for H1 [60]. The same
conclusion is reached using the Akaike Information Crite-
rion (AIC) [61]. We conclude that Raf phosphorylation is
inhibited by pERK during G1/S phase transition.
To conclude, in this section we illustrated the proposed

hybrid and simulation-based optimization methods. The
applicability of the methods was demonstrated by study-
ing relevant biological problems. The comparison with
state-of-the-art methods revealed convergence and com-
putational efficiency. The study of Raf/MEK/ERK signal-
ing using the methods underlined the feedback regulation
of ERK phosphorylation during cell cycle progression.

Discussion
Optimization problems with steady state constraints arise
in many biology applications for a wide range of models.
For some models an analytical expression for the steady
state can be derived and used to eliminate the steady-
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state constraints [18]. While this is favorable, it is not
always possible. In cases in which no analytical expres-
sions are available, the vector of optimization variables
contains the unknown parameters as well as the corre-
sponding steady states. The optimizers have to evolve on
the non-linear manifold, the set of steady states. In this
manuscript, we propose a hybrid optimization method
and a continuous analogue to solve optimization prob-
lems with steady-state constraints more efficiently. This
simulation-based method exploits the local geometry of
the steady-state manifold for optimization.
The proposed hybrid and simulation-based optimiza-

tion methods are evaluated using three models for bio-
logical processes. Following a simple illustration example,
an application with multiple steady-state constraints and
an application with time-resolved data for multiple per-
turbation conditions are considered. For this rich set
of scenarios we find that the hybrid and simulation-
based optimization methods possess improved conver-
gence properties in comparison to standard constrained
optimization methods implemented in the MATLAB rou-
tine fmincon. We expect that the proposedmethods also
outperform alternative optimization routines (e.g. IPOPT
[62]), this, however, remains to be analyzed. The proposed
optimization methods yield convergence properties com-
parable to those of unconstrained optimization methods
exploiting an analytical expression for the steady state.
However, if analytical expressions for the steady state
can be determined using available methods [18, 25, 26],
unconstrained optimization should be used as the com-
putation time is lower. The proposed methods are also
applicable to a broader class of problems for which no ana-
lytical expression for the steady state is available. Further-
more, the method directly allows for multiple steady-state
constraints. Unlike methods based on sequential geomet-
ric programming [63, 64], steady-state and kinetic data
can be handled.
Beyond the evaluation of the proposed methods, our

experimental and computational analysis of novel data for
Raf/MEK/ERK signaling after release for S-phase arrest
provided new insights. Parameter estimation and model
comparison indicate that the negative feedback from ERK
to Raf phosphorylation is also active at the G1/S bor-
der. This complements previous knowledge of stimulus-,
context-dependence of this stimulus [49] and its rele-
vance for the robustness of MAPK signaling in tumor
cells [52].
The implementation of the hybrid optimization method

employed in this study is a simulation-based retraction
operator. Alternatively, efficient and accurate schemes
combining simulation and local optimization could be
employed to compute steady states and sensitivities [42].
This should improve the computational efficiency fur-
ther. To relax the stability assumption for the steady state,

conservation relations can be incorporated in the local
optimization scheme.
For the simulation-based optimization method we

established local asymptotic stability of optimal points
using perturbation theory. This result is however
restricted to the gradient-type descent and locally convex
objective functions. The latter implies local practical iden-
tifiability. The theoretical properties of the Newton-type
descent and the properties in the presence of practical
and structural non-identifiability remain to be analyzed.
Preliminary results and the applications suggest that in
the presence of non-identifiabilities the simulation-based
optimization method always yields a point on the non-
identifiable subspace. Furthermore, the available proof
shows the retraction factor λ has to be chosen large
enough to ensure convergence. However, as too large λ

will result in a stiff system, an intelligent choice of λ is
necessary.
The simulation example and the applications possess a

unique exponentially stable steady state. However, pre-
liminary results suggest that the methods also achieve
good convergence for dynamical systems with multiple
stable steady states and bifurcations [65] (see Additional
file 1: Section 6). The theoretical analysis of the pro-
posed methods and a detailed performance evaluation for
dynamical systems with such properties remains to be
addressed.
Beyond parameter estimation, the proposed optimiza-

tion methods can also accelerate practical indentifiability
analysis and uncertainty quantification by speeding up
optimization runs in bootstrapping uncertainty analysis
[66, 67] and profile likelihood calculation [68]. In addition,
Bayesian uncertainty analysis using Markov chain Monte
Carlo sampling [11] can profit from an efficient initial
optimization prior to the sampling. This has been shown
to reduce the warm-up and to improve convergence [69].
For a more detailed discussion of identifiabilty and uncer-
tainty analysis methods, we refer to recent comparative
studies [70, 71].

Conclusion
In summary, the proposed optimization methods are
promising alternatives to constrained optimization for
optimization problems with steady-state constraints.
They are applicable to a wide range of ODE-constrained
optimization problems [34, 72] and can – unlike methods
which rely on an analytical expression for the steady state
– be extended to PDE constrained optimization problems
[73]. The availability of the MATLAB code will facilitate
the application and extension of the methods, as well as
the integration in toolboxes such as Data2Dynamics [58]
and COPASI [74]. Accordingly, our study has a strong
potential influence on the analysis of optimization prob-
lems with steady-state constraints in practice.
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Additional files

Additional file 1: Supporting Information S1. This document provides a
detailed description of the stability proof and the derivation of the different
pathway models. Furthermore, the parameter and bounds are listed, the
influence of the retraction factor on convergence and run time as well as
the behavior of the proposed methods in the presence of multiple steady
states and bifurcations is illustrated. (PDF 577 kb)

Additional file 2: Code S1. This zip-file contains the MATLAB code used
for the simulation example (conversion process) and the application
examples (NGF-induced Erk signaling in primary sensory neurons and
Raf/MEK/ERK signaling in HeLa cells after release from S-phase arrest)
presented in the paper. We provide implementations for the hybrid
optimization and simulation-based optimization methods, the models and
the optimization. In addition to the implementation, also all data and result
files (.mat, .csv) are included. (ZIP 25965 kb)
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