
Photoacoustics xxx (2016) xxx–xxx

G Model
PACS 57 No. of Pages 10
Research article

Multimodal optoacoustic and multiphoton microscopy of human
carotid atheroma

Markus Seegera,b,1, Angelos Karlasa,b,c,1, Dominik Solimana,b, Jaroslav Pelisekd,
Vasilis Ntziachristosa,b,*
aChair for Biological Imaging, Technische Universität München, Munich, Germany
b Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany
cDepartment of Cardiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
dDepartment of Vascular and Endovascular Surgery, Klinikum rechts der Isar, Technische Universität München, Munich, Germany

A R T I C L E I N F O

Article history:
Received 14 March 2016
Received in revised form 14 May 2016
Accepted 25 July 2016

Keywords:
Human carotid atheroma
Collagen
Red blood cells
Multimodal microscopy
Optoacoustic microscopy
Photoacoustic microscopy
Non-linear optical microscopy

A B S T R A C T

Carotid artery atherosclerosis is a main cause of stroke. Understanding atherosclerosis biology is critical
in the development of targeted prevention and treatment strategies. Consequently, there is demand for
advanced tools investigating atheroma pathology. We consider hybrid optoacoustic and multiphoton
microscopy for the integrated and complementary interrogation of plaque tissue constituents and their
mutual interactions. Herein, we visualize human carotid plaque using a hybrid multimodal imaging
system that combines optical resolution optoacoustic (photoacoustic) microscopy, second and third
harmonic generation microscopy, and two-photon excitation fluorescence microscopy. Our data suggest
more comprehensive insights in the pathophysiology of atheroma formation and destabilization, by
enabling congruent visualization of structural and biological features critical for the atherosclerotic
process and its acute complications, such as red blood cells and collagen.
ã 2016 Published by Elsevier GmbH. This is an open access article under the CC BY-NC-ND license (http://

creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Atherosclerosis, a multifactorial disease of the arterial wall, is a
major precursor of ischemic heart disease and stroke; two of the
leading morality causes worldwide [1]. Ischemic stroke is
attributed to thrombosis and cerebral ischemia and often
associated with chronic atheromatous plaque accumulating within
the sub-endothelial layer (intima) of carotid arteries. Effective
Abbreviations: BF, Brightfield; CAE, Carotid thrombendarterectomy; CMR,
Continuous multirecord; DAQ, Data acquisition; FOV, Field of view; GM,
Galvanometric mirrors; HE, Hemalaun-Eosin; IPH, Intraplaque hemorrhage; LDL,
Low density lipoprotein; MAP, Maximum amplitude projection; MPM, Multiphoton
microscopy; MPOM, Multiphoton and optoacoustic microscopy; NLO, Non-linear
optical; OAM, Optoacoustic microscopy; PMT, Photo multiplier tube; PSR, Picro-
Sirius Red; RBC, Red blood cell; ROI, Region of interest; SHG, Second harmonic
generation; SMC, Smooth muscle cell; THG, Third harmonic generation; TPEF, Two-
photon excitation fluorescence.
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plaque prevention or treatment requires understanding of the
mechanisms underlying atheroma formation, rupture, and conse-
quent precipitation to acute ischemic events.

Atheroma tissue obtained from patients is a highly valuable
source of information regarding the disease. It typically presents an
inhomogeneous mass of high structural and biological complexity,
usually consisting of lipids, inflammatory and smooth muscle cells
(SMC), connective tissue, and calcium deposits [2–4]. Multiple
factors (e.g. inflammatory, biomechanical, genetic, environmental)
seem to be involved in all stages of atheroma formation and
progression [3,4].

The discrete histopathological features of atherosclerotic
plaques, reflecting different pathogenetic and pathophysiological
mechanisms, allow for classification according to their severity:
early, intermediate, and advanced [5]. Early lesions usually start as
simple clusters of lipid-loaded macrophages before reforming to
so-called fatty streaks and giving rise to discrete lipid pools among
the SMC layers along with discrete intimal thickening [6].
Intermediate lesions are the first to be described as atheromas,
since they have a well-defined core of lipids usually protruding into
the vascular lumen. In terms of clinical incidence, early lesions are
asymptomatic while intermediate ones may already cause
e CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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ischemic disturbances [7,8]. However, the presence of symptoms is
usually connected to advanced (late) and complicated plaques
even if the phenomenon of plaque rupture seems to be
uncorrelated to parameters such as plaque size and degree of
luminal narrowing [7,9]. Advanced lesions are characterized by a
thinning of the fibrous cap and a large lipid core containing an
increased amount of collagen, inflammatory cells, as well as
affected SMCs. These plaques may evolve into complicated ones
with superficial fissure formation, intraplaque hemorrhage (IPH),
and acute luminal thrombus occurrence due to direct exposure of
lipid core material to blood contents [4,5,8].

From a topographical point of view, each plaque may be roughly
divided into sections corresponding to specific structural regions:
the cap, the shoulders, and the core (Fig. 2a). According to multiple
histological studies, thrombosis is usually the result of cap
ulceration and rupture near to one of the shoulders [10–12]. A
vulnerable plaque is generally characterized by a large necrotic
core (lipids, fibrin, blood inclusions, and macrophages), a thin
degraded cap (decreased collagen and SMCs), as well as prominent
inflammatory and neovascularization features [13]. Plaque rupture
is frequently considered to be a mechanical event. On the one hand,
collagen, a basic constituent of the extracellular matrix, seems to
be associated with the biomechanical integrity of the cap [14]. Its
degradation and disorganization have been correlated to de-
creased stability of the fibrous cap [14,15], while the retrieval of
collagen production (e.g. statin therapy) seems to stabilize the
plaque [16]. On the other hand, red blood cells (RBC), either within
the plaque’s neovessels or in the form of IPH, play a crucial role in
atheroma progression, destabilization, and rupture [13].

With respect to the above mentioned histopathological
evolution of atheromatous lesions linked to topographical
Fig. 1. Schematic depiction of the MPOM system consisting of two interchangeable m
generator; AMP, amplifier; BS, beamsplitter; DAQ, data acquisition card; F, optical filter; F
L, lens; LP-DM, longpass dichroic mirror; M, mirror; ND, neutral density filter; OA, op
photomultiplier tube; S, xyz stage; SHG, second harmonic generation signal; SP-DM, sho
signal; TPEF, two-photon excitation fluorescence signal.
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conditions and compositions at specific regions within the plaque,
new powerful and accurate imaging tools are required to precisely
observe and analyse components influencing the mechanical
stability. Within this framework, the accurate identification and
characterization of the histological components of an atheroma-
tous sample could increase our knowledge about atherosclerosis
and define features related to ischemic events, which would
potentially serve as future therapeutic targets.

Studies of atheromas largely rely on histopathology [17–21],
which can interrogate several cellular and molecular features of
the disease. Conversely, histopathology is invasive and laborious,
requires tissue staining, and typically visualizes thin slices and
small areas of the specimen. Non-invasive volumetric or quantita-
tive measurements of excised atheromas are studied by tissue-
sectioning microscopy, such as confocal or multiphoton microsco-
py [22–25]. Nevertheless, tissue-sectioning microscopy also
requires labels for cellular and sub-cellular moieties. While
genetically modified animals using fluorescent reporter labels
may be generated for studying atheroma events in mice, imaging of
excised human specimens is problematic for use with tissue-
sectioning microscopy since it requires diffusion and clearance of a
label through the tissue post-mortem. Likewise, the use of
fluorescence agents against specific atheroma targets have been
used in animal studies [26–29], but are not readily available for
human use.

The use of non-linear optical (NLO) microscopy has been
suggested for label-free visualization of atheromas, based on
optical harmonic detection or tissue autofluoresence. It has been
shown that second harmonic generation (SHG) microscopy
resolves collagen structures, two-photon excitation fluorescence
(TPEF) microscopy probes nicotinamide adenine dinucleotide
icroscopy systems, namely OAM and MPM. Abbreviations: AFG, arbitrary function
M, flippable mirror; GM, galvanometric mirrors; GMC, GM control; I, iris diaphragm;
toacoustic signal; OL, microscope objective lens; P, prism; PD, photodiode; PMT,
rtpass dichroic mirror; UT, ultrasound transducer; THG, third harmonic generation
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(NADH), elastin, and foam cells, whereby third harmonic genera-
tion (THG) microscopy can image low density lipoprotein (LDL)
deposits or embedded macrophages [30–35]. Optoacoustic imag-
ing has also been investigated for imaging atheroma and vascular
moieties regarding the detection as well as distinction of lipids and
hematomas [36–39]. Recently, multiphoton and optoacoustic
microscopy were proposed for hybrid imaging of autofluorescence,
harmonic, and absorption contrast generation [40–42], so far
applied to visualize structural and cellular features in fish and
small mammals.

Herein we consider the extension of label-free imaging
capacities by applying multiphoton microscopy (MPM) and
optoacoustic microscopy (OAM) in a pilot study to characterize
atheromatous tissue. We studied whether the hybrid approach
could reveal a wider feature set of investigational or clinical
relevance without the need to stain or label the tissue. Using the
intrinsically accurate registration of optical and optoacoustic
microscopy images, we further researched the spatial congruence
and complementarity of collagen and RBCs in human carotid
atheroma, i.e. two basic components which are present in different
stages of the plaque formation process and frequently altered in
unstable plaques [17].

2. Materials and methods

2.1. Experimental setup

The hybrid microscopic system utilized in this study combines
second and third harmonic generation (SHG and THG), two-photon
excitation fluorescence (TPEF), and optical resolution optoacoustic
microscopy (OAM). All modalities are characterized by a lateral
resolution of about 1 mm and an imaging depth of up to �300 mm
[40,41]. Hybrid multiphoton and optoacoustic microscopy
(MPOM), as schematically depicted in Fig. 1, consists of two
separate laser systems for OAM and MPM [40,41]. Both laser
systems are based on a common and co-aligned beam path, which
is guided consecutively into an inverted microscope (AxioOb-
server. D1, Zeiss, Jena, Germany). Final image generation for both
systems is achieved by raster-scanning a focused optical excitation
beam across the examined specimen by means of fast galvano-
metric mirrors (GM) (6215H, Cambridge Technology, Bedford,
USA). An accurate and seamless interchange between ultrasound
transducer for OAM and photomultiplier tube (PMT) for THG
acquisition is accomplished by magnetic kinematic bases (SB1/M &
SB1T/M, Thorlabs, New Jersey, USA), which are previously adjusted
using a suture-cross reference phantom (Dafilon USP 11/0, B. Braun
Melsungen AG, Melsungen, Germany). Brightfield (BF) examina-
tion of chosen regions of interest (ROI) was carried out using a CCD
camera (AxioCam ICc 1, Zeiss).

2.2. Optoacoustic microscopy (OAM)

OAM utilizes a pulsed diode-pumped solid-state laser (Flare HP
PQ Green 2k 500, Innolight GmbH, Hannover, Germany; energy per
pulse: 570 mJ, pulse width: 1.8 ns, repetition rate: 1.2 kHz) as an
excitation source at 515 nm. The beam is attenuated by neutral
density filters and enlarged by a telescopic arrangement of lenses.
In order to merge both modalities, the OAM beam is guided by a
longpass dichroic mirror (DMLP650, Thorlabs) onto a high-
precision set of GMs. Latter are used for raster-scanning the beam
focus in the sample and are controlled by a 16 bit data acquisition
card (DAQ) (PCIe 6363, National Instruments, Austin, Texas, USA;
max. sampling rate per channel: 1 MS/s). Subsequently, the beam is
focused by a microscope objective lens (Plan Apochromat 10X,
Zeiss, Jena, Germany; air immersion, NA: 0.45) to a diffraction
limited spot through a 170 mm thick glass slide on top of which the
Please cite this article in press as: M. Seeger, et al., Multimodal optoa
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sample is placed (see 2.5 Sample preparation). For OAM detection, a
spherically focused 100 MHz transducer (SONAXIS, Besancon,
France; bandwidth: �10–180 MHz, focal distance: 2.85 mm, active
element diameter: 3 mm) is located in transmission mode with
respect to the illumination above the sample. Acoustic coupling is
provided by a water droplet between sample and transducer. The
acquired optoacoustic signals are amplified by 63 dB (AU 1291,
Miteq, New York, USA) and recorded by a high-speed 12 bit DAQ
card (ADQ412, SP Devices, Linköping, Sweden; max. sampling rate
per channel: 3.6 GS/s). Adjustment of the setup and alignment of
both the optical and the acoustic foci co-axially to one another is
achieved by two high-precision motorized xyz-stages (MLS203-2
& MZS500, Thorlabs; M-683.2U4 & M-501.1DG, Physik Instrumente
GmbH & Co. KG, Karlsruhe, Germany), as described in more detail
in [41]. In order to cover the scanned region of the optical beam
with the acoustic sensitive field, the transducer is placed 700 mm
in positive defocus with respect to the optical focal plane.

Both DAQ cards, and thus the acquisition as well as the
movement of the GMs, are triggered by a photodiode (DET36A,
Thorlabs) and thereby synchronized to the laser repetition rate. In
order to generate an OAM image, a field of view (FOV) of
630 mm � 630 mm with a resolution of 600 � 600 pixels and a pixel
averaging of 20 is recorded by step wise raster-scanning the beam
across the sample. To assign the OAM signals with the corre-
sponding position or rather pixel in the final image, the direct
current (DC) coupled position feedback of the GMs is amplitude
modulated by an alternating current (AC) generated by an arbitrary
waveform function generator (DG1022, Rigol Technologies Inc.,
Beaverton, USA) to be recordable by the AC coupled high-speed
DAQ card. Both the amplified time-resolved optoacoustic signals as
well as the actual positions are acquired at 450 MS/s by means of a
continuous multirecord (CMR) mode, a streaming-like acquisition
mode in which records stored in temporary buffers on the internal
memory of the DAQ card are fetched to the computer memory
while acquiring the remaining records. In OAM, raw signals are
bandpass filtered in the range of 10–180 MHz and their maximum
amplitude is extracted to generate an unprocessed maximum
amplitude projection (MAP) image. The synchronization of both
DAQ cards, control of the raster-scan by means of GMs, the CMR
based data acquisition, as well as filtering and projection of raw
OAM signals is fully performed in Matlab (Matlab 2014a, Math-
works, Natick, USA).

2.3. Multiphoton microscopy (MPM)

The MPM subsystem of MPOM, as comprehensively described
in [40,41], employs a Yb-based solid-state laser (YBIX, Time-
Bandwidth, Zurich, Switzerland; energy per pulse: 30 nJ, pulse
width: 170 fs, repetition rate: 84.4 MHz) to excite the specimen at
1043 nm in order to generate NLO effects, namely SHG, THG, and
TPEF. Whereas the THG signal is acquired in transmission mode,
SHG and TPEF signals are acquired in backward direction after
filtering out the laser excitation with a shortpass dichroic mirror
(DMSP805R, Thorlabs). The NLO signals are separated using optical
filters (SHG (FB520-10), THG (FGUV11), TPEF (FELH0550), Thor-
labs) and are recorded by highly sensitive PMTs (H9305 03,
Hamamatsu, Hamamatsu City, Japan). Digitizing is achieved by the
previously mentioned 16 bit DAQ card, which is also controlling the
GM scanning with a predefined scanning frequency of 320 kHz.
MPM images in this work are acquired in a FOV of 630 mm � 630
mm with a resolution of 800 � 800 pixels and an image averaging
of 100. For the purpose of optimizing the superposition of all
MPOM modalities, direction and collimation of both beams prior to
entering the microscope objective lens are achieved by a shearing
interferometer (SI050, Thorlabs). Chromatic deviation in z
between the foci of the two laser systems are corrected by the
coustic and multiphoton microscopy of human carotid atheroma,

http://dx.doi.org/10.1016/j.pacs.2016.07.001


Fig. 2. Coarse imaging and ROI selection of human carotid atheroma. (a) Schematic depiction of a typical atherosclerotic vascular cross-section. (b) Widefield BF observation
of the unstained atheroma sample used for MPOM imaging and identification of lumen, cap, and shoulders. (c) Coarse OAM scan indicating a progressed intraplaque RBC
embedding. Final ROI selection for subsequent MPOM imaging is indicated by the red and white boxes.
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sample holding xyz-stage. MPM image acquisition as well as
controlling of both xyz-stages is carried out by LabVIEW programs
[40,41].

2.4. Imaging protocol and image registration

Widefield BF images (Aperio CS2, Leica, Wetzlar, Germany)
could be complemented by acquiring coarse optoacoustic imaging
over a 10 mm � 10 mm FOV performing a mechanical scan of the
sample holding xyz-stage with a large step size of 100 mm. Then,
specific ROIs could be selected on the large FOV images for high-
resolution visualization by OAM and MPM. Prior to MPM
Fig. 3. Hybrid microscopy imaging of human carotid atheroma at the shoulder region (RO
the connective tissue (e.g. collagen and elastin), no large inclusions or fissures, and 

embeddings (OAM), (c) collagen (SHG), (d) tissue appearance (BF), (e) tissue morphology
the white line in (a).
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examination, the water droplet used as acoustic coupling medium
between transducer and sample for OAM imaging was removed.
Image processing and co-registration of the four modalities were
carried out in ImageJ (ImageJ 1.50e, Wayne Rasband). OAM and
MPM images were upsampled by bicubic interpolation, median
filtered, and histogram-wise adjusted to saturate 1% of the pixels.
Final co-registration of all modalities was performed by using the
built-in function StackReg executing an affine transformation
whereas the TPEF image was used as an “anchor” for the OAM
images [43]. Through exciting the sample at two close wavelengths
(TPEF: 521.5 nm; OAM: 515 nm), the corresponding obtained
signals lead to partially shared information content although the
I 1). (a) Overlay of OA, SHG, THG, and TPEF demonstrates an unscathed condition of
a negligible amount of embedded blood residues. Separate depiction of (b) RBC

 (THG), and (f) mainly elastin (TPEF). Profile for subsequent analysis is indicated by
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Fig. 4. Hybrid microscopy imaging of human carotid atheroma at the cap region (ROI 2). (a) Overlay of OAM, SHG, THG, and TPEF indicates coarse interleaving structure of
embedded blood residues and connective tissue bands of collagen and elastin. Separate depiction of (b) RBC embeddings (OAM), (c) collagen (SHG), (d) tissue appearance (BF),
(e) tissue morphology (THG), and (f) mainly elastin and RBCs (TPEF). Profile for subsequent analysis is indicated by the white line in (a).

Fig. 5. Hybrid microscopy imaging of human carotid atheroma at the lipid core (ROI 3). (a) Overlay of OAM, SHG, THG, and TPEF reveals fine interleaving structure of
embedded blood residues and collagen bands. Separate depiction of (b) RBC embeddings (OAM), (c) collagen (SHG), (d) tissue appearance (BF), (e) tissue morphology (THG),
and (f) elastin, LDL, foam cells, and RBCs (TPEF). Profile for subsequent analysis is indicated by the white line in (a).
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Fig. 6. Profiles of embedded blood residues, collagen, and elastin along the white
lines indicated in Figs. 3 –5 a. The interleaving interaction between intraplaque
coagulated RBCs and collagen occurs on different size levels leading to undisturbed
collagen bands (a; ROI 1), coarse interrupted collagen stripes (b; ROI 2), and fine
expanded structures (c; ROI 3). Partially shared signatures among OAM and TPEF
reveal blood distribution whereas signals occurring only in TPEF present elastin
within the sample. Colored areas represent the dominant compound in the
respective region (red: RBC (OAM); green: collagen (SHG)).
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signal generation differs. OAM relies on an absorption contrast,
such as the one from hemoglobin stored in RBCs, whereas TPEF
detects natural fluorochromes such as elastin. Nevertheless, we
found that these two signatures could be accurately registered.

2.5. Sample preparation

A human atherosclerotic tissue sample was acquired from a
patient with advanced carotid artery stenosis, who underwent
carotid thrombendarterectomy (CAE). The surgically removed
atherosclerotic plaque was further segmented in blocks of 3–4 mm
length, fixed in formalin overnight, and subsequently embedded in
paraffin. Each segment was further cut into 10 mm thick slices and
the selected samples were placed on thin glass slides (170 mm) to
facilitate hybrid MPOM imaging. In order to assess the plaque
morphology, three different staining procedures were applied:
Hemalaun-Eosin (HE) to evaluate plaque cellularity, Picro-Sirius
Red (PSR) to visualize collagen fibres, and Orcein to show elastin
fibres. Herein, three different slices were chosen, which were
directly adjacent to the unstained slice used for hybrid MPOM
imaging within the same sample. For the validation of our methods
and to demonstrate its capabilities, we present standard histologi-
cal images of the approximate same positions in the sample
(Aperio CS2, Leica) [44,45].

3. Results

First, we examined the appearance of widefield BF and coarse
OAM images with respect to topological features of atherosclerotic
tissue samples. Fig. 2a depicts a schematic subdivision of
atheromas, which is sectioned into structural regions such as
the lumen, the shoulders, the cap, and the core. Fig. 2b presents a
widefield BF image of the sample. Fig. 2c shows a co-registered
coarse OAM scan of the whole sample, obtained in the same
orientation as in Fig. 2b. Fig. 2 preliminary reveals a complemen-
tarity between color contrast seen on Fig. 2b and absorption
contrast seen on Fig. 2c. In particular, a characteristic intraplaque
yellow-brown pattern throughout the tissue sample, possibly due
to embedded RBC residues, is also visualized as an optoacoustic
signal pattern in Fig. 2c.

The coarse examination of Fig. 2 allows for the overall
assessment of the sample regarding its global morphology,
narrowing of the lumen, level of degradation, and, thus, the
estimation of the degree of severity and the potential risk of
rupture. Based on these coarse sample images we could then select
specific plaque compartments for studying their fine local
topological structure using the MPOM modalities. We selected
ROIs close to the lumen in the shoulder region (ROI 1), centred at
the cap (ROI 2), and in the lipid core (ROI 3).

Fig. 3 depicts the MPOM examination of ROI 1 close to the
former lumen in the shoulder region. Fig. 3a presents a composite
image combining OAM, SHG, THG, and TPEF images. Fig. 3b shows
the RBC distribution imaged by OAM, Fig. 3c shows the collagen
structure imaged by SHG, Fig. 3d is the BF appearance of ROI 1,
Fig. 3e is the THG image representative of the overall cell
morphology, and Fig. 3f shows the elastin network yielded by
TPEF. The merged image (Fig. 3a) demonstrates no clear mutual
interaction among the imaged components and reveals an intact
connective tissue. No prominent RBC clusters are present.
Moreover, collagen and elastin appear largely fibrillar, ribbon
shaped, and unfractured. Regarding the cell morphology, no
inclusions or fissures larger than a few tens of micrometres can be
seen.

Fig. 4 shows MPOM images from ROI 2. As previously, the
merged image is shown in Fig. 4a and the OAM, SHG, BF, THG, and
TPEF images are shown in Fig. 4b–f, respectively. Fig. 4a represents
Please cite this article in press as: M. Seeger, et al., Multimodal optoa
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the merged image and exhibits marked differences compared to
Fig. 3a. A pattern of embedded RBCs, resolved by OAM, appears co-
localized with the connective tissue, i.e. collagen revealed by SHG
and elastin revealed by TPEF. Furthermore, a coarse alternating
structure of RBC inclusions and connective tissue can be seen. In
ROI 2 THG and BF observation reveal a slightly disturbed cell
morphology including fissures and inclusions in the range of 10–
100 mm.

Fig. 5 illustrates MPOM images of the lipid core (ROI 3), in the
same order followed for Figs. 3 and 4. As obvious in the merged
overlay (Fig. 5a), there is congruence between blood residues
(OAM) and collagen fibres (SHG) in the lipid core. Embedded RBCs
appear in clusters, whereby collagen fibres appear widened and
split up into smaller fibrils. A fine interleaving of these two
structure can be seen. Furthermore, TPEF reveals the presence of
round-shaped structures in the upper right corner, which cannot
be assigned with OAM signals generally indicating blood residues.
coustic and multiphoton microscopy of human carotid atheroma,
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Fig. 7. Histological images of human carotid atheroma validating MPOM performance. (a) HE staining of cell nuclei (blue), cytoplasm (pink), and RBCs (dark red), (b) PSR
staining of collagen (dark red), and (c) Orcein staining of elastin of the sample regions at the shoulder (ROI 1). Analogous depiction of (d,g) HE, (e,h) PSR, and (f,i) Orcein
stainings for ROI 2 and ROI 3, respectively.
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Thus, this pattern might indicate inclusions of LDL and foam cells,
which are prominent in the lipid core. Finally, an advanced
degradation of cell morphology can be observed.

Fig. 6 plots the OAM, SHG, and TPEF profiles along the white
lines marked in Figs. 3 a, 4 a, and 5 a, and allows for the observation
of the spatial scale of the corresponding structures. The plots
demonstrate different interleaved patterns of SHG and OAM
signals at different scales depending on the observed ROI. Fig. 6a,
obtained close to the lumen (ROI 1), confirms the lack of
congruence between RBCs and collagen. The SHG profile indicates
an intact collagen ribbon of at least 200 mm width consisting of
individual collagen strands of 2–10 mm diameter. In contrast,
Fig. 6b visualizes a coarse widening of the collagen bands (ROI 2).
Large gaps in the range of 80–100 mm indicate partially intact
collagen ribbons interleaved with areas of embedded RBCs. Fig. 6c
plots the most advanced interaction between RBCs and collagen
recorded from the three ROIs. These interleaving structures,
observed in the lipid core (ROI 3), occur in the range of 8–
15 mm. Although the widths of detected collagen fibrils match the
ones seen in ROI 1 (Fig. 6a), assumed as an unharmed collagen
Please cite this article in press as: M. Seeger, et al., Multimodal optoa
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structure, these strands are separated from one another by
incorporated RBCs.

In a next step we compared the MPOM findings with
conventional histopathology images, acquired from approximately
the same regions imaged by MPOM (Fig. 7). HE staining of cell
nuclei, cytoplasm, and RBCs, PSR staining of collagen, and Orcein
staining of elastin are depicted in the first, second, and third
column of Fig. 7, respectively, for three specimens obtained from
the shoulder (ROI 1), the cap (ROI 2), and the lipid core (ROI 3)
region. Whereas at the shoulder region only single RBCs are
present (Fig. 7a), the cap region is characterized by larger RBC
inclusions (Fig. 7d), and the lipid core contains widely spread RBC
coagulated aggregates (Fig. 7g). In addition, the collagen as well as
the elastin structures tend to widen and expand from an unharmed
and strong regular shape at the shoulder region (Fig. 7b and c),
through an intermediate situation at the cap (Fig. 7e and f), to a fine
subdivided distribution in the lipid core (Fig. 7h and i). It can be
also observed that single fibrillar structures, such as collagen and
elastin, cannot be unambiguously identified. These observations
coustic and multiphoton microscopy of human carotid atheroma,
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confirm differences in histological appearance between the three
examined ROIs and complement the MPOM findings.

4. Discussion

We investigated label-free visualization of human atheroma
using multimodal optical and optoacoustic microscopy. Label-free
imaging is researched herein as a complementary method to
conventional histopathology analysis. An increasing number of
label-free contrast mechanisms can thus visualize histopathologi-
cally interesting compounds such as erythrocytes, collagen, elastin,
foam cells, macrophages, and the overall tissue morphology by the
combination of OAM and NLO microscopy methods [40,41]. Even
though OAM was implemented herein at a single wavelength,
imaging at multiple wavelengths can further increase the number
of labels available to the multimodal system, e.g. enabling the
visualization of lipids.

The hybrid microscopy aimed at revealing different structural
and morphological components of human atheroma and demon-
strated the ability to co-localize readings of RBCs, elastin, collagen,
lipid, and other moieties. Type I and II collagen can be imaged using
SHG due to the collagen’s non-centrosymmetry and birefringence
properties [46–49]. Based on intrinsic autofluoresence, elastin,
LDL, foam cells, and to a smaller extent embedded RBCs can be
probed by TPEF [46–48], whereas THG is sensitive to the overall
tissue morphology due to optical interface heterogeneities such as
cell boundaries [47,50]. Finally, embedded RBCs are visualized by
OAM based on the strong optical absorption of hemoglobin in the
visible range in combination with a low quantum yield [51,52].

In the healthy arterial wall, which shows a viscoelastic
behaviour, collagen (along with elastin) represents the elastic
component and warrants vessel stability, while arterial wall
viscosity is mainly reflected by the function of SMCs. According to
basic studies, in the load-free wall (ex vivo), the collagen fibres
seem to be corrugated. On the other side, under strong wall
stresses, collagen fibrils are being elongated, reaching their elastic
limit and offering enhanced mechanical strength to the arterial
wall [53]. Regarding atheromatous tissue, collagen synthesis and
degradation influences plaque stability and progression: Excessive
collagen production may accelerate stenosis, while collagen
decomposition seems to be correlated with increased rupture
susceptibility [54]. Furthermore, RBCs are thought to be a potential
contributor to atheroma accumulation and progression [55]. Both
neovascularization and IPH are considered as basic factors of
increased plaque vulnerability [56]. From a histological point of
view, the profile of a vulnerable plaque shows the following
features: 1) a large lipid core, 2) a small number of SMCs, low
quantity and quality of collagen within the fibrous cap, 3)
enhanced accumulation of inflammatory cells (macrophages and
T-lymphocytes) in the shoulder regions and the cap, and 4) the
presence of neovessels and IPH [21]. According to this data, the
intraplaque statuses of collagen and RBCs are critical elements of
plaque vulnerability.

In the current study, we presented data visualizing collagen,
elastin, and RBC congruence within a human carotid sample.
MPOM reveals these moieties without the need of staining.
Therefore, composite signals can be acquired from the same slice
without the need to interleave and stain slices, leading to a precise
topological co-registration between different signals. Further
optimization of the current system could allow for the simulta-
neous detection of other constituents (e.g. lipids), giving a wider
possibility for stain-free investigation of tissues. In the future,
detailed microscopic observations of atheroma could be combined
with macroscopical observations for example employing multi-
spectral optoacoustic tomography (MSOT) [57].
Please cite this article in press as: M. Seeger, et al., Multimodal optoa
Photoacoustics (2016), http://dx.doi.org/10.1016/j.pacs.2016.07.001
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