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Abstract. In the biological domain, it is more and more common to
apply several high-throughput technologies to the same set of samples.
We propose a Covariate-Related Structure Extraction approach (CRSE)
that explores relationships between different types of high-dimensional
molecular data (views) in the context of sample covariate information
from the experimental design, for example class membership. Real-world
data analysis with an initial pipeline implementation of CRSE shows
that the proposed approach successfully captures cross-view structures
underlying multiple biologically relevant classification schemes, allowing
to predict class labels to unseen examples from either view or across
views.

1 Introduction

With the development of modern omics technologies, massive numbers of vari-
ables are measured at the same time. For instance, sequencing technologies allow
to quantify expression levels for tens of thousands of transcripts. Furthermore,
multiple measurement types are frequently co-applied, providing different views
on the same biological samples. Multi-view data occur also in other domains,
for instance, textual descriptions combined with images of objects. In addition,
biological samples often have covariate information attached, which stems from
the experimental design. This information can be in form of categorical class
labels such as the disease group of a patient or in form of numerical variables such
as body weight. The approach proposed in this paper takes covariate information
into account while analyzing relationships between different data views. The goal
is to find such relationships that capture covariate-related structure in the data,
for example class separation.

To integrate data from multiple views, a lot of approaches have been pro-
posed, also known as data fusion or multi-block analysis methods (Wester-
huis et al. (1998); Smilde et al. (2003); Lanckriet et al. (2004); Tenenhaus
and Vinzi (2005); Jiang et al. (2012); Acar et al. (2014)). These methods have



2

been used in various areas (Jamali and Ester (2010); Acar et al. (2012); Lee
et al. (2012)). Multi-block analysis handles multiple blocks of data collected
on the same set of samples (Westerhuis et al. (1998); Smilde et al. (2003)).
The main objective of multi-block analysis approaches is to find latent variables
that explain each block while optimizing the correlation between blocks. The
multi-block analysis methods can be classified into three groups: generalized
Principal Component Analysis (PCA), Partial Least Squares (PLS) regression
and Canonical Correlation Analysis (CCA) methods (Westerhuis et al. (1998);
Zhou et al. (2015)). Consensus PCA (CPCA) (Svante et al. (1987)), hierarchical
PCA (HPCA)(Wold et al. (1996)), multi-group multi-block PCA (mgmbPCA)
(Eslami et al. (2014)) and multiple factor analysis (MFA) (Abdi et al. (2013))
are parts of multi-block family of PCA extensions introducing the concept of
using multiple blocks in PCA, which identifies orthogonal directions of largest
variance. PLS aims to explain an output dataset based on an input dataset
(Geladi and Kowalski (1986)). A PLS approach to multi-block analysis (PLS-
MBA) (Tenenhaus and Vinzi (2005)) has been proposed by Tenenhaus and Vinzi.
Choi et al. also propose a multi-block PLS (MBPLS) (Choi and Lee (2005))
method as a fault detection and identification approach. CCA (Hotelling (1936);
Sweeney et al. (2013); Klami et al. (2013)) is a well-known and widely used
method for finding a reciprocal relationship and capturing the common variation
between two datasets (Hardoon et al. (2004); Witten et al. (2009)). To handle
more than two datasets, many variations of CCA methods have been proposed,
such as generalized CCA (gCCA) (Horst (1961); Vı́a et al. (2007)) and tensor
CCA (TCCA) (Luo et al. (2015)).

Related to our goal, there exist previous multi-view approaches that take
covariate information into account, such as MultiwayCCA (Huopaniemi et al.
(2010)) and Supervised CCA (SCCA) (Witten and Tibshirani (2009); Guo et al.
(2013)). MultiwayCCA extends multiway ANOVA to the multi-view case by
introducing a Bayesian model, which uses shared variables to describe common
variation between both data views. SCCA searches for correlations between
the data views that are associated with covariate information. As an extension
of mgPCA (Krzanowski (1984)), mgmbPCA seeks common vectors of loadings
across classes for each view of variables basing on an iterative algorithm. Multi-
wayCCA has been designed to deal with datasets where the number of variables
is much larger than the number of samples (small-n-large-p problem). However,
the dimension reduction step used by MultiwayCCA is very time-consuming for
high-dimensional omics datasets. SCCA has a sparsity criterion that allows to
deal with small-n-large-p situation, but in practice it is still slow on the high-
dimensional data.

To extend classical CCA for the small-n-large-p problem, there are two princi-
pal directions, dimension reduction and penalty approaches, and the second one
includes ridge regularization and sparse regularization (Vinod (1976); Saunders
et al. (1998)). Regularization methods introduce additional parameters, which
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leads a new problem, how to set values for these parameters. González uses
a standard cross-validation procedure to choose optimal parameters (González
et al. (2008)). Huopaniemi et al. employ clustering-type factor analysis as a
dimension reduction technique to project the high-dimensional data into latent
variables spaces (Huopaniemi et al. (2010)). Like Huopaniemi et al., we apply
dimension reduction to tackle the small-n-large-p problem, but as a difference
we use the covariate information already in that step. In that way we hope to
solve the small size problem efficiently and at the same time effectively capture
the covariate-related structure of the data.

The paper is organized as follows. The next section shows a specific pipeline
implementation as a simple example of our approach, Covariate-Related Struc-
ture Extraction (CRSE). Then the effectiveness of the pipeline is demonstrated
by good classification accuracy in several biological applications, which is out-
performing other approaches. The final section discusses conclusions and future
work.

2 Covariate information related structure extraction
from multi-view data

In this section we describe a simple pipeline implementation to illustrate the
idea of CRSE. The pipeline consists of two parts: covariate-dependent dimen-
sion reduction and canonical correlation analysis. The purpose of the covariate-
dependent dimension reduction is on the one hand to solve the small sample
size problem for the subsequent multi-view analysis and on the other hand to
optimally preserve the class separation or variation of the covariate. Here we
use PLS to do this. PLS projects original variables into a latent variable space
that maximally explains the covariate information, hence it can reduce high-
dimensional data while taking account of covariate information. PLS is applied
on each data view separately. On the dimension-reduced data, CCA is applied
to extract correlated structure between the data views. Figure 1 illustrates the
work-flow of the proposed pipeline. The trained model can be used to project
data into a covariate-dependent shared representation of both data views. We
evaluate the model by classification of left-out samples in the projected space.

2.1 Partial Least Squares

PLS is a supervised method that simultaneously performs dimension reduction
of the input data and regression of the output data (Boulesteix and Strimmer
(2007)). In the CRSE pipeline, PLS is applied to each data view separately,
using the view as input data and the covariate information as output data. The
general underlying PLS model is as follows (Geladi and Kowalski (1986)):

X = TP> + E

L = UQ> + F ∗
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Fig. 1: The diagram of the proposed CRSE pipeline. Each data view is integrated
with covariate information by PLS, yielding a low-dimensional representation of
the data. The PLS variables are then further processed by CCA to find latent
variables capturing shared variation between the views. The standard CCA used
here handles two-view data but can be extended to multiple views.
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where X is the n× px matrix representing the data view with original variables
and L is the n × d matrix of covariate data. T and U are n × l matrices with
latent variable representations of the samples, where l is fixed to a small number
(l < n < px). E and F ∗ are error terms. The overall relation is L = TBQ>+F ,
where ‖F‖ is to be minimized and B relates T and U through regression. By
using PLS, we obtain covariate-aware low-dimensional representations of the two
views.

2.2 Canonical Correlation Analysis

After applying PLS, the two data views are represented by low-dimensional
datasets, which are used in the following step of the pipeline: an n × lx matrix
Tx and an n × ly matrix Ty, where lx and ly are the number of latent PLS
variables for X and Y , respectively. In the next step of the CRSE pipeline, the
relationship between the two low-dimensional data views is analyzed, looking
for common variation. Since lx and ly do not exceed the sample size (Haenlein
and Kaplan (2004)), we can use for that purpose standard CCA without any
regularization.

The objective of CCA is to find projections with maximal correlation between
the two data views. To obtain the first CCA component, the following objective
is solved (Hardoon et al. (2004)):

arg max
a>T>

x Txa=b>T>
y Tyb=1

cor(Txa, Tyb)

where a and b are weight vectors of length lx and ly. The subsequence components
have the additional constraint that they are uncorrelated to earlier components.
This results in two loading matrices A and B of size lx × h and ly × h, where h
is the number of paired canonical variables. Thus we get the following canonical
variables:

Cx = TxA

Cy = TyB

Since we are interested in shared variation of the two data views, we focus
on the top canonical variables to represent the samples. In practice we choose
the canonical variables with a correlation greater than a threshold to focus on
what is most common between datasets.

2.3 Data covariate prediction

CRSE integrates covariate information with shared components of the data
views via two projection steps. Any new sample where we have either one of
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the data views available can be scaled and projected by the trained PLS plus
CCA model. In the projected space, we can apply a classification or regression
method to predict the covariate of the new sample, allowing to assess whether
the projected representation captures relevant information from the samples.
Remarkably, when predicting the covariate label of a new sample in a data view,
the common space allows to not only use the labeled samples of this data view
but also all the labels of the other data view, including in particular non-paired
labeled samples.

3 Experiments and Results

To demonstrate the effectiveness and efficiency of the CRSE pipeline, we make
experiments on real-world datasets from the model plant Arabidopsis thaliana.
Each dataset consists of two data views, a metabolomic data view and a gene
expression data view. As covariate information, the biological samples are anno-
tated by two different classification schemes, genotype and environmental con-
dition. Genes modified in the genotypes, allowing a trivial genotype separation,
were excluded from the expression data. Table 1 summarizes the key properties
of both datasets.

The datasets are preprocessed using the R packages limma (Smyth (2004);
Ritchie et al. (2015)), FTICRMS (Barkauskas (2012)) and nlme (Pinheiro and
Bates (2000)). The CRSE pipeline is implemented based on built-in functions in
R. All the experiments are executed on a regular workstation PC with 3.4 GHz
dual core CPU equipped with 32 GB RAM.

Table 1: Paired datasets

Dataset 1 Dataset 2

Nr. of paired observations 57 23
Nr. of variables in metabolomic view 1454 203
Nr. of variables in expression view 24603 24603
Nr. of classes in genotype covariate 3 2
Nr. of classes in condition covariate 6 2

The canonical variables are the projections of the original data in a new space
that represents the maximum correlation structure between views and preserves
covariate variation. Assuming that canonical variables keep the principal infor-
mation and the basic structure of the original data, the classification result of
the sample objects in the new space should have a similar accuracy to that of
original data. Since irrelevant information and noise might be cleaned out, the
accuracy in the new space could be even better. So we use a classification-based
method to evaluate the effectiveness of the canonical variables and check whether
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the detected cross-view relationships are meaningful.

For the analysis we consider paired samples between expression data and
metabolome data. After applying scaling to make each variable in the training
dataset to have a mean of zero and a standard deviation of one, we reuse
the scaling parameters on test samples. Since we have categorical covariate
information, we employ dummy coding, which uses only ones and zeros to
convert all label information (Wendorf (2004); Boulesteix and Strimmer (2007)).
Assuming there are k groups, k − 1 dummy coding variables are needed to
represent each group. The evaluation is performed by leave-one-out analysis, i.e.,
n-fold cross-validation where n equals the number of samples. In each round, all
data except one sample are used to train a model, and then we apply the model on
the left-out sample to get the canonical variables. A k-Nearest Neighbor (k-NN))
classifier (Duda et al. (1973)) is applied on the canonical variable representation
to predict a covariate label for the left-out sample. The accuracies of classification
on original data and canonical variables will be compared to evaluate the CRSE
model. The number of PLS latent variables in CRSE are chosen by nested
cross-validation on the training data (i.e., not touching the test data), using
the classification accuracy.

We compare the results of CRSE with that of MultiwayCCA and SCCA.
Considering that the factor analysis of MultiwayCCA is too expensive and it
cannot finish in a reasonable time for our data (it takes hours to finish pilot
experiments on an example dataset with only 1000 variables in the expression
view), we use k-means as an alternative to reduce the variable number. In analogy
to the MultiwayCCA dimension reduction, we cluster all the variables of the
original data into k clusters, where k < n, and then use the cluster centers
as low-dimensional latent variables for the following procedure. Even though,
MultiwayCCA still cost much more time than CRSE. Since SCCA is very slow
on the full high-dimensional data, too, we use the clustered data also as input for
SCCA, and for comparison purposes also with CCA. In order to prove that the
clustering step has not lost much information of the original data with respect to
covariate structure, we also evaluate the classification accuracy of the clustered
data. Since MultiwayCCA yields by default the first shared component, we apply
k-NN algorithm on the first pair of canonical variables for all the approaches.

The classification results of dataset 1 is shown in Figure 2. All the classifi-
cation accuracies have a relative stable trend with the increase of k in k-NN. In
Figure 2 (a) and (b), CRSE has the best performance on classification accuracy,
even better than the original data. MultiwayCCA outperforms the clustered
data for both views, which achieve similar classification accuracies with the
original one. SCCA has the second highest accuracy in Figure 2 (a) but the
worst in (b). Combining expression and metabolome with different conditions
(Figure 2 (c) and (d)), CRSE achieves no better classification accuracies than
the original data, but it is still the best performing method among comparisons.
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MultiwayCCA, CCA and SCCA show lower accuracies than that of clustered
data. The reason for the low performance of all methods compared to the original
data might be the complex six-group structure of the condition covariate, which
cannot be captured by a single component. This is further analyzed below.

Figure 3 shows the classification results on dataset 2, and the performance of
all methods are similar with that of Figure 2. CRSE achieves the highest clas-
sification accuracy in most case, and its accuracy reaches the optimum for both
expression data and metabolome data with the condition covariate information.

Since more than one canonical variables have very high correlation values,
which are greater than 0.9 (see Figure 4), we use more canonical variables to do
the classification-based evaluation, and the comparisons are shown in Figure 5.
One, two, five and six canonical variables in CRSE are chosen to apply the k-NN
algorithm, respectively. The classification accuracy is getting better and better
with the increased number of latent variables. When five and six components are
used, the accuracy reaches the accuracy of the original data in Figure 5(a) and
it achieves a stable but higher level than that of the original data in Figure 5(b).
This confirms that with a larger number of components, the relevant structure
of the six-group condition covariate is successfully captured.

4 Conclusions and Discussion

Multi-view data analysis taking covariate information into account plays an im-
portant role in data mining of omics measurements and gives us a potential way
to get fully aware of data structure and hidden patterns. Since there is still a lack
of efficient analysis methods to address this challenge, a better understanding of
the available models is needed to exploit the potentialities. In this paper we have
built the pipeline of Covariate-Related Structure Extraction on paired datasets.
In CRSE, we can handle high-dimensional data with small sample size and
integrate covariate information into a new canonical variable space. Real datasets
of Arabidopsis thaliana plants have been analyzed as a demonstration, and we
have also shown the effectiveness of CRSE using classification-based evaluation of
the extracted relationships between metabolome and gene expression variables,
indicating a good separation in the canonical variable space.

CRSE achieves the highest classification accuracy in the classification-based
evaluation. As for the alternative methods, SCCA has a better accuracy than
CCA since it incorporates both covariate information and data structure. Mul-
tiwayCCA also has a better performance than standard CCA, but it is still
time-consuming after the pre-clustering. It takes the covariate information into
account but does not optimize for having significant covariate effects. The CRSE
pipeline presented in this paper has the highest classification accuracy, allowing
to explore the biologically relevant structure in two-view data. CRSE can be
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Fig. 2: Classification-based evaluation results on dataset 1 for two types of
covariates: genotype and condition. Each sub-figure contains classification
accuracies of original data, 50 cluster data, MultiwayCCA output, CCA output,
SCCA output and canonical variable output of CRSE. (a) and (b) are the
classification results for the three different genotypes, and (a) takes test samples
from the expression view while (b) takes that from the metabolomic view.
Classification results for the six different conditions are shown in (c) and (d),
which indicate expression view and metabolomic view, respectively.
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Fig. 3: Classification-based evaluation results on dataset 1 for two types of covari-
ates: genotype and condition. Each sub-figure contains classification accuracies of
original data, 20 cluster data, MultiwayCCA output, CCA output, SCCA output
and canonical variables data of CRSE. (a) and (b) are the classification results
for the two different genotypes, and (a) takes test samples from the expression
view while (b) takes that from the metabolomic view. Classification results for
the two different conditions are shown in (c) and (d), which indicate expression
view and metabolomic view, respectively.
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Fig. 5: Classification results using different number of latent variables. In this
figure, the classification accuracies of experiment on dataset 1 under the six
different conditions are shown. (a) and (b) show the classification results on the
two data views, respectively.
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extended to handle more than two data views by applying existing generalized
CCA approaches. It should be noticed that even if two views have a high
correlation in the canonical variable space obtained from the training data,
especially for the first component, they do not necessarily act the same on
test data, leading to differences in classification accuracy. Therefore, robustness
of structure extraction approaches must be carefully examined before pursuing
biological follow-up studies. In particular for complex multi-group covariates, a
higher classification accuracy can be obtained if more components are chosen.

An advantage of the CRSE approach is that the dimension reduction step
of the pipeline can exploit also samples available only for one data view (i.e.,
non-paired samples). Furthermore, it is straightforward to apply the presented
approach with sparse PLS and CCA variants to improve the interpretability of
components, or to replace PLS by other dimension reduction methods. From
a biological perspective, it will be useful to include known gene-metabolite
connections from metabolic pathways into the multi-view model and infer addi-
tional relationships for covariate structure that cannot be explained by current
knowledge.
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