
SOFTWARE Open Access

IDGenerator: unique identifier generator for
epidemiologic or clinical studies
Matthias Olden1, Rolf Holle2, Iris M. Heid1 and Klaus Stark1*

Abstract

Background: Creating study identifiers and assigning them to study participants is an important feature in
epidemiologic studies, ensuring the consistency and privacy of the study data. The numbering system for
identifiers needs to be random within certain number constraints, to carry extensions coding for organizational
information, or to contain multiple layers of numbers per participant to diversify data access. Available software
can generate globally-unique identifiers, but identifier-creating tools meeting the special needs of epidemiological
studies are lacking. We have thus set out to develop a software program to generate IDs for epidemiological or
clinical studies.

Results: Our software IDGenerator creates unique identifiers that not only carry a random identifier for a study
participant, but also support the creation of structured IDs, where organizational information is coded into the ID
directly. This may include study center (for multicenter-studies), study track (for studies with diversified study
programs), or study visit (baseline, follow-up, regularly repeated visits). Our software can be used to add a check
digit to the ID to minimize data entry errors. It facilitates the generation of IDs in batches and the creation of
layered IDs (personal data ID, study data ID, temporary ID, external data ID) to ensure a high standard of data
privacy. The software is supported by a user-friendly graphic interface that enables the generation of IDs in both
standard text and barcode 128B format.

Conclusion: Our software IDGenerator can create identifiers meeting the specific needs for epidemiologic or
clinical studies to facilitate study organization and data privacy. IDGenerator is freeware under the GNU General
Public License version 3; a Windows port and the source code can be downloaded at the Open Science
Framework website: https://osf.io/urs2g/.

Keywords: Identifier, ID, ID generator, ID creator, Unique, Barcode, Check digit, Epidemiologic study, Clinical study

Background
In epidemiological studies, identifiers (IDs) are unique
tokens used to mark study participants and their study
data [1]. The most straight forward approach is to
utilize serial or random numbers or characters as IDs.
However, epidemiological studies often require more
sophisticated solutions.
First, study recruitment may be conducted sequen-

tially for numerous reasons requiring the generation of
IDs in batches: a consecutive batch of IDs needs to be
controlled for being distinct from existing IDs. Second,

organizational aspects often call for a more structured
approach: structured IDs carry not only a random
identifier, but also organizational information. Exam-
ples for such information are a study center in the case
of multi-center studies or information as to what study
program a participant pertains (called in the following
“study track”). In some instances, it may be of interest
to code the visit number, if the participant visits the
study center multiple times (for example to distinguish
between baseline, follow-up, or regularly repeated visits
or for applications like biobanking, where bio-samples
from the same user may be acquired at different time
points). Finally, a check code might be of interest to de-
tect data entry errors.

* Correspondence: klaus.stark@klinik.uni-regensburg.de
1Department of Genetic Epidemiology, Institute of Epidemiology and
Preventive Medicine, University of Regensburg, Regensburg, Germany
Full list of author information is available at the end of the article

© 2016 The Author(s). Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Olden et al. BMC Medical Research Methodology (2016) 16:120
DOI 10.1186/s12874-016-0222-3

http://crossmark.crossref.org/dialog/?doi=10.1186/s12874-016-0222-3&domain=pdf
http://orcid.org/0000-0002-7832-1942
https://osf.io/urs2g/
mailto:klaus.stark@klinik.uni-regensburg.de
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/

Third, the scientific best practice requires separate
storage of personal data from study data. The rationale
is that study data can be sensitive (e.g. including severe
disease diagnoses, life style information) and should be
kept separate from personally identifiable information
(name, birth date, address). For some tasks (report study
results to participants, re-contacting of participants),
linking both sides is mandatory. As employed by many
studies including the German National cohort [2] and
KORA [3], one approach is to have multiple IDs to diver-
sify the data access (layered IDs): one ID for personal data
(ID-P), another for study data (ID-S) and different IDs for
data to be transferred to external partners (ID-E). A pos-
sible model may involve granting very restricted access to
ID-P for recruiting and study personnel, access to ID-S for
study analysts to facilitate quality control, and different
ID-Es to external partners for data analysis to avoid re-
identification and merging of study data between different
external partners. The mapping of the different IDs is usu-
ally only temporarily required, e.g. for producing results
reports that are to be sent to the participant or for re-
contacting in the case of longitudinal studies. When gen-
erating these multi-layered IDs, a concept for ID linkage is
mandatory.
There are several software packages like EpiInfo [4],

OpenEpi [5], EpiData[6], Askimed [7] or OpenClinica
[8] that provide basic frameworks to design case-report
forms for entering study data, but none includes the
generation of structured and layered IDs. Other software
tools e.g. the Online GUID Generator [9] create globally
unique identifiers (GUIDs) [10], which do not guarantee
uniqueness but are most likely unique per design: by
selecting randomly from a large enough pool (128 bit),
the probability of identical GUIDs is very small (close to
zero). There are also tools that compute check digits,
like GS1 Check Digit [11] or Bulk Check Digit Calcula-
tor [12], these however are oriented towards commercial
applications like Global Trade Item Numbers instead of
epidemiologic studies.
We developed a software program that guarantees

unique IDs, supports the generation of structured IDs to
facilitate study organization, provides layered IDs to en-
hance data protection, and can extend existing IDs with
new non-overlapping batches. While IDGenerator was
originally developed for the needs of the AugUR study
[13], it allows for different parametrization and therefore
can be applied to epidemiological studies with different
requirements.

Implementation
Use case in the AugUR study
The German AugUR study (Age-related diseases:
understanding genetic and non-genetic influences - a

study at the University of Regensburg) is a prospective
study targeted towards the elderly mobile population in
Bavaria. The aim of the study is to recruit 3,000 ran-
dom participants aged 70 or older and patients selected
from the University Hospital Regensburg, phenotype
these in respect to eye and cardiovascular diseases and
conduct follow-up analyses after 3 years. Each partici-
pant was to be assigned a unique ID containing a num-
ber coding the study (to distinguish from other studies
in our institute), a number coding the study track (local
registry of residence based, clinic-based, or volunteers),
a unique participant number (5-digits), a number or a
character coding the study visit and a check digit. We
created a total of 14,000 IDs to be used during the re-
cruitment stage (20–25 % response rate yielding 3,000
participants). As study data is stored separately from
personally identifiable information, two distinct IDs
(ID-S for study data and ID-P for personal data) were
needed. Also, the clinical results for the participants
and the cover letter with name and address were
printed from two systems and manually mapped over a
temporary ID (ID-T).

Comparison against semi-manual techniques
As random IDs can also be generated with standard
office programs such as Microsoft Excel, we first
attempted to use standard tools to perform the steps re-
quired to produce 14,000 random IDs for the AugUR
study. We created 100,000 random non-unique numbers
using the RANDBETWEEN function, filtered about
30,000 unique results and selected 14,000 numbers out
of these. We then concatenated the coding digit for our
study number, study tracks, study visits and computed a
simple check digit using the MOD and MID functions.
We could not compute complex check digits or barcode
formats without Excel programming. While this may be
a solution for very small studies (e.g. up to 1,000 partici-
pants), it has several drawbacks: it is limited by the Excel
capabilities per worksheet (e.g. only 1,048,576 random
non-unique numbers can be created) [14], it cannot eas-
ily extend the existing IDs or add new tracks, and it is
error-prone due to the complexity of the steps required
to be performed by a human operator. This motivated
us to implement a simple automated software solution
for solving these issues.

Overall software architecture
The key task of IDGenerator software is the generation
of IDs for epidemiological studies providing the neces-
sary flexibility and modern features for data protection
and data entry error detection: create unique random
IDs, support various options to define a wide range of
patterns for structured IDs, provide layered IDs, or

Olden et al. BMC Medical Research Methodology (2016) 16:120 Page 2 of 10

generate new batches of IDs, that are distinct from
existing IDs.
A graphical user interface supports the software

utilization in a user-friendly manner. In four steps, the
user can (i) define the ID structure, (ii) specify parameter
settings, (iii) select the specific task, (iv) and run the
program. The output lists the IDs in two formats, one
for entry into an electronic record file system and an-
other for generating bar codes.

Ensuring uniqueness of generated identifiers
The key feature of the software is to ensure the unique-
ness of generated identifiers. The software uses a
pseudo-random number generator class that can yield a
sequence of numbers complying with statistical require-
ments for randomness (lacking any recognizable pat-
tern). The random function is initialized with a seed
representing the number of milliseconds since the com-
puter has started. IDGenerator supports the definition of
the random number length, constraints to the interval,
from which the numbers or characters are to be chosen,
and the selection of new batches of IDs controlling for
them being distinct from previously selected IDs.
Speed is a critical issue for larger sample sizes (more

than five digits), as any newly generated random ID
needs to be examined to ensure it differs from every pre-
viously created ID. Considering the often applied mode
of ID generation for all persons contacted (to facilitate
non-response analyses) rather than only generating IDs
for all persons actually agreeing to participate, it is ne-
cessary to generate two to ten times as many IDs com-
pared to the number of actual study participants
(considering a response fraction between 50 and 10 %).
A study with 10,000 participants would therefore need
to compute 100,000 IDs taking into account a response
rate of 10 %. Thus, the number of generated IDs be-
comes high rather quickly.
A tightly chosen interval for the sample size also af-

fects the speed of ID generation algorithm. When the
requested sample size is close or equal to the maximum
number of available samples, the probability of ran-
domly drawing duplicates increases significantly and
more drawings are necessary until a new unique num-
ber is randomly found. For each newly drawn number,
the list of previously generated numbers needs to be
searched and compared with the new number to avoid
duplicates. This process tends to become rather slow as
the list grows due to the default comparison method in-
volved. Thus, two variables are checked for identity
(e.g. a = 123, b = 123, memory address 0000007B) using
reference equality, which means that the program en-
gine will scan the entire computer memory to see if the
two variables refer to the same object in the memory.

An approach to accelerate the search is to use a string
representation of numbers and perform a byte-by-byte
comparison (e.g. for a = 123, b = 223, only the first bytes
“1” vs. “2” are checked) to asses for actual object equal-
ity, checking whether the string representations of num-
bers equal each other. This method is faster, as it
compares only parts of the string representation and
returns that two numbers are different upon encounter-
ing the first different digit in the numbers.

Concept of layered IDs
Good Clinical Practice (GCP) guidelines recommend
separating personal data information from study data in-
formation to ensure protection for human subjects data
[15]. This is often facilitated by generating layered IDs
[16] in form of a personal ID (ID-P) used as unique
identifying key to personally identifiable information and
a study data ID (ID-S) used as unique identifying key to
scientific data.
There are several approaches to link ID-P and ID-S.

Our approach is to generate a temporary ID (ID-T) and
create two mapping files: one containing the (ID-P, ID-T)
key pair, the other containing the (ID-S, ID-T) key pair.
The two mapping files are ideally stored in two separate
systems - with the (ID-P, ID-T) mapping file being the
one that should be stored in a particularly secure sys-
tem with restricted access and without internet con-
nectivity. During the study conduct, which can be
several years or even decades for longitudinal studies,
the ID-T is utilized for linking the information
(pseudo-anonymized for data analysis). At the end of
the study, the ID-T can be deleted from all files, which
facilities the anonymization of the study data meeting
the highest level of data protection.

Concept of structured IDs
Another key feature of IDs in epidemiological studies is
the fact that one might prefer to code some organizational
information into the ID. Our software tackles this issue by
enabling different patterns of blocks that form the ID,
with the mandatory block being the random number.
Optional blocks are a code for study center (for multi-
center studies), for study track (e.g. cases or controls),
or for the visit number in the study center.
If the study program differs between subjects, differ-

ent study tracks may be also encoded into the ID, e.g.
depending on how the participant was recruited (from
local registries of residence, general practitioners, or
clinics) or depending on participant characteristics (sex,
age-group). However, the coding of participant charac-
teristics into the ID should be only used with care to
avoid re-identification [1].
The visit number may be also encoded into the ID in

order to distinguish between multiple records

Olden et al. BMC Medical Research Methodology (2016) 16:120 Page 3 of 10

belonging to the same participant (e.g. when labeling
bio-materials). Yet, it should be noted that coding the
visit number into the ID is less widely applied and, in-
stead, identical IDs across visits (with an additional
variable like examination date coding for the number of
visit) are often used [17].

Control for ID entry error
Besides organizational information, another block can be
added that provides a check digit to detect data entry
errors in the case that the ID is entered manually [18].
Depending on the specific algorithm, check digits can
detect single digit errors (e.g. one digit typed wrong),
format errors (one digit wrongly inserted or omitted) or
transpositions (two digits switched). The challenge in
implementing any of these algorithms is not only to add
the check digit to the ID, but also to implement
consistency checks into other programs that test the
check digit correctness when the ID is entered.
We implemented the most widely applied algorithms

for check digits:

(1) With the parity check method [18], the check
digits is computed as modulo 10 of the sum all
digits of the ID. For letter digits, the American
Standard Code for Information Interchange
(ASCII) code associated to the letter (e.g. 65
for “A”) is used. This method is the easiest to
double check or implement, but does not detect
transpositions (two consecutive digits switched).

(2) The weighted parity check [18] computes the
module 10 of the sum of all digits, where each
digit is multiplied with a number specifying its
position. This method can detect adjacent
transpositions, but not non-adjacent transpositions.

(3) With the algorithms Gumm_1986 [19] and
Damm_2004 [20], non-adjacent transpositions
can be detected. However, these approaches are
the most complex to re-implement.

Technical implementation
The technical implementation of the software is driven
by the organizational structure of the study center. In
this case, the software requirements specifications were:
usable by study personnel without programming skills,
independent of previous installation or software depend-
encies, simple to understand Windows interface, and
low hard- and software demands for running on offline
personal computers due to data protection reasons.
IDGenerator was developed under Visual Studio.Net

2012, as this allows a standard Windows graphic user
interface (GUI), try-catch error handling and an easy in-
stallation without package dependencies. The minimum

screen resolution is 1024×768 pixels. The output is in
form of ASCII text files and configuration files are
stored in eXtensible Markup Language (XML) text for-
mat. The software is compatible with both 32 bit and 64
bit Intel processor architectures.
The IDGenerator code is object-oriented and contains

the following classes (Fig. 1):

frmMain – implements the overall functionality
and GUI commands; stores shared variables;
clsGenerateIDs – implements methods for creating
new (baseline) IDs, extends previously created baseline
IDs, creates follow-up IDs based on baseline data or
generates external IDs for data sharing;
clsBarcode – implements functions for creating barcode
128B readable data;
clsAddFunctions – implements help functions, such
as check digits, file naming using date-time functions,
data reads and writes, and performs plausibility checks;
clsConfigXML – implements read and write functions
for the configuration file.

The process of ID generation consists of 3 steps: in a
first step (“CHECK”), plausibility checks test the quality
of each user input value. All selected blocks must not be
empty or contain special characters (like empty spaces),
track names must be unique, valid sample sizes must be
entered for all selected tracks and the total number of
requested combination must be lower than the number
of possible combinations for the given number size.
In the second step (“GENERATE”), the program allo-

cated 3 arrays (for ID-P, ID-S and ID-T) of the total sample
size requested for all tracks and starts generating random
numbers using the Random() class constructor as imple-
mented in.Net to initialize the random number generator
with a time-dependent seed value. To accelerate the
process of checking newly drawn random IDs, the program
uses the Array.Contains().NET function to check if a drawn
number has already been selected, which is considerably
faster than sequentially searching the available number sets
for yet un-selected numbers. This function uses the enu-
meration rule StringComparison.Ordinal, which com-
pares strings based on binary sorting rules.
Finally, in the third step (“SAVE”), the additional

information (study center, study track, study visit) is
added to the random number and a check digit is com-
puted according to the user input from step 1. The data
is immediately stored in text format and discarded from
memory.

Results
The functionalities of IDGenerator encompass the full
workflow of designing, creating, extending and managing
IDs for epidemiological studies and are described below.

Olden et al. BMC Medical Research Methodology (2016) 16:120 Page 4 of 10

Layered IDs
IDGenerator implements the concept of layered IDs by
separating the personal ID-P from the study ID-S into
different files and linking these over a common tempor-
ary ID-T. The personal file contains the key pairs (ID-P,
ID-T) and the study file contains the key pairs (ID-S, ID-
T), where the values for ID-T are the same in both files
(Fig. 2). The study center creates both key pairs files be-
fore the recruiting begins and may choose to transfer a
copy of the (ID-P, ID-T) key file to a linkage unit for
storage. Later in the study recruitment phase, the study
center may delete the ID-T from the (ID-P, ID-T) key file
for already recruited participants or non-responders and
thus detaching the link to the study data identified by
the (ID-S, ID-T) key file. In case of recontacting, the
linkage unit can provide the deleted ID-T information
based on a list of ID-Ps. The study may also choose to ex-
change the (ID-S, ID-T) list instead of the (ID-P, ID-T), if

the ID-P list requires additional protection and cannot be
exchanged.

Blocks for structured IDs
The structure of the IDs is composed of following parts
(blocks): [C] study center, [T] study track, [N] a unique
random number, [V] study visit and [X] check digit.
With the exception of the unique random number, all
other blocks are optional. Upon selection, the blocks
move from the list of available blocks to the list of se-
lected blocks, where they can be arbitrarily sorted. The
selection [C] allows the generation of IDs for one study
center with the center name being part of each ID. The
selection [T] allows for generating IDs for one or mul-
tiple study tracks (e.g. cases or controls, men or women)
with the study track names being part of the ID. The se-
lection [V] allows for generating IDs with the same
unique [N] number and with a new visit number, in

Fig. 1 UML class diagram of the idGenerator software. The IDGenerator code contains the following classes: frmMain (overall functionality and
GUI commands, shared variables), clsGenerateIDs (creates baseline IDs, extends previously created IDs, creates follow-up IDs or generates external
IDs), clsBarcode (creates barcode 128B readable data), clsAddFunctions (help functions), clsConfigXML (functions for the configuration file)

Olden et al. BMC Medical Research Methodology (2016) 16:120 Page 5 of 10

order to distinguish records for the same participant at
different time points. The selection [X] adds one check
digit generated from all other digits based on a specific
algorithm to check for data entry errors.

Parameter settings
All blocks have features to configure, some being spe-
cific to an optional block:

(i) In any case, the study name is required, which
is used for naming the directory to which the
identifiers are stored on disk (general feature).

(ii) In any case (general feature), a sample size (n) is
required, which defines the number of IDs to be
generated. If multiple tracks are specified, sample
sizes for multiple tracks must be provided separately
with semicolon).

(iii) In any case, the length of the random numbers (k)
must be specified.

(iv) If the block [C] is selected, the name of the center
is to be specified and will be used in the ID code
(e.g. if the chosen feature for study center is “9” and
the [C] is the first block, all IDs will start with “9”).
IDs will be generated for this one center. If IDs are
to be generated for a second center, the procedure
has to be repeated.

(v) If the block [T] is selected, the name of the track(s)
are to be specified and will be used in the ID code
(e.g. if the chosen setting for tracks are “1; 2” and
[T] is the second block, then ID batches will contain
“91” and “92”).

(vi) If the block [V] is selected, the code of the visit is
to be specified.

(vii) If [X] is selected, the specific check digit algorithm
is to be specified (parity check, weighted parity
check, Gumm_1986 method [19] and Damm_2004
method [20]). The check digits are natural numbers.

Random numbers in the identifiers
The random numbers [N] in the ID are natural num-
bers within [1 × 10k; 4 × 10k[for ID-P, within [4 × 10k;
7 × 10k[for ID-S, and within [7 × 10k; 10 ×10k[for ID-T
(fixed intervals). For example, if a 5-digit random
number is requested (k = 5), a maximum of 30,000 IDs
can be generated, with the random number for ID-P
from [10,000; 40,000[, for ID-S from [40,000; 70,000[,
and for ID-T from [70,000; 100,000[. To achieve this,
IDGenerator defines a new instance of the Random
class, with a time-dependent default seed value taken
from the Environment.TickCount() property, repre-
senting the number of milliseconds passed since the
computer was started. The random numbers are then
created using the Random.Next(lower_bound, upper_-
bound) function, which yields natural numbers within
the boundaries of the range specified by lower_bound
and upper_bound.

The main tasks of the software
Create IDs
IDGenerator creates n random numbers of the length k
by drawing a random number for each of the ID-P, ID-S
and ID-T from the respective interval and selecting the
number, only if it is distinct from any previously selected
numbers (within one study). The requested codes for
study center, study track and check digits are added in

Fig. 2 Concept of layered IDs. The study center creates two key files (ID-P, ID-T) and (ID-S, ID-T) before recruitment and transfers a copy of the
(ID-P, ID-T) file to a trusted linkage unit. Later in the recruitment phase, the study center may delete the ID-T from the (ID-P, ID-T) key file for
already recruited participants and detach the link to the study data. The link may be reconstructed using the original key file from the linkage
unit. The study may also choose to exchange the (ID-S, ID-T) list Instead of the (ID-P, ID-T), if the ID-P list requires additional protection and
cannot be exchanged

Olden et al. BMC Medical Research Methodology (2016) 16:120 Page 6 of 10

the order and with the parameters previously specified.
For each of the ID-P, ID-T and ID-S, the same study cen-
ter name and track name is used, but different random
IDs are assigned. The visit is always “0” for ID-P and
takes on natural numbers for ID-T and ID-S. The pairs
(ID-P, ID-T) and (ID-S, ID-T) are stored in standard and
in barcode 128B format in a directory named after the
study name. The pair (ID-P, ID-T) is stored as created;
for the pairs (ID-S, ID-T), the order is randomized to
prevent a re-association simply by the order in the files.
The files are stored as:

[STUDYNAME]_IDP_IDT_T = [TRACK]_
N = [SAMPLESIZE]_Baseline and
[STUDYNAME]_IDS_IDT_T = [TRACK]_
N = [SAMPLESIZE] _Baseline in ASCII text format.

Add new IDs
When the originally requested IDs are all used and new
ones are required, a new batch of IDs can be generated,
again controlling the new IDs to be distinct from previ-
ously selected ones. IDGenerator creates any new ID (if
maximum number was not reached), checks for
uniqueness from all previously generated IDs (for this
one study), and produces the two ID lists (ID-P, ID-T)
and (ID-T, ID-S) as described previously. The existing
ID files are renamed by renaming their extension from
“.txt” to “.old”, and the new ID batch is stored as:

[STUDYNAME]_IDP_IDT_T = [TRACK]_
N = [NEW_SAMPLESIZE]_Baseline and
[STUDYNAME]_IDS_IDT_T = [TRACK]_
N = [NEW_SAMPLESIZE]_Baseline.

Adding new visit
When the block [V] is selected, a new batch of IDs can
be generated for a new visit. The visit name is, again,
specified by the user (see specification of parameter set-
tings). IDGenerator checks whether the requested visit
name has been already used. The new IDs are the same
as the previous IDs except for the part of the ID that
codes the visit, which now carries the new visit (and,
eventually, a new check digit). No new ID-P and ID-T
is generated as these remain the same for all visits. In-
stead, a file with key pairs of ID-S (at first visit) and
ID-S at the new visit is created. For example, if the
baseline (visit = “1”) pairs of (ID-S, ID-T) for three par-
ticipants are (4511, 8021), (6511, 9071) and (5781,
7281), and the new visit is called “A”, the new file will
contain (4511, 451A), (6511, 651A) and (5781, 578A).
This file is stored as is stored as:

[STUDYNAME]_IDS_IDSA_T = [TRACK]_
N = [SAMPLESIZE]_V = A.

Add new track
When the block [T] is selected, new tracks may be
added to the existing ones. IDGenerator checks whether
the requested track name has already been used. It gen-
erates new empty pairs of (ID-P, ID-T) and (ID-S, ID-T)
and saves these in a file:

[STUDYNAME]_IDS_IDT _T = [NEW_TRACK]_
N = 0_Baseline.

This option is only implemented out of technical rea-
sons and should be combined with the option Add new
IDs.

Generate external IDs
External IDs are created from the key pair (ID-S, ID-T)
in form of (ID-S, ID-E) key files, where ID-S is common
for both files. They consist of three parts: a project ID, a
random number of length k + 1 and a check digit (used
only if ID-S employs also check digits). To create exter-
nal IDs, IDGenerator first loads the key pair files (ID-S,
ID-T), (ignoring the ID-T part), then generates the exter-
nal ID-E from a larger pool of numbers as ID-S (e.g. if
ID-S has k = 5 digits, the ID-E will have 6 digits for k),
attaches the project ID to the random number and ap-
plies the same check digit method as used for ID-S. For
example, if the key file (ID-S, ID-T) is: (4511, 8021), (6511,
9071) and (5781, 7281), with the random number [N] of
length k = 3 digits followed by visit [V] = 1 and without
check digit, the file for an external project “EXT” will con-
tain the key pair (ID-S, ID-E) file as: (4511, EXT8825),
(5781, EXT8042) and (6511, EXT9114). The numbers of
ID-E contain the project name “EXT” followed by 4-digit
random numbers and without check digits. These key
pairs are stored in the file:

[STUDYNAME]_IDS_IDE_T = [TRACK]_
N = [SAMPLESIZE]_Prj = EXT.

The graphical user interface
The IDGenerator workflow involves four steps, which
are reflected in a user-friendly interface (Fig. 3):

(1) Select and sort blocks: The respective blocks can be
selected and sorted.

(2) Specify parameters: Provide a study name (for the
directory naming, number or characters, no spaced
allowed), a study center name (number or character,
no spaced allowed), track name(s) (number or
characters, no space allowed, multiple tracks
separated by semicolons), the number of subjects for
which IDs are requested (per track, in case of multiple
tracks separated by semicolons), random number
length (values between 2 and 9), visit name (numbers

Olden et al. BMC Medical Research Methodology (2016) 16:120 Page 7 of 10

between 1 and 9 or characters, not allowed are “i", “e”,
“o” or special characters, case sensitive, default visit is
“1”), and the algorithm to create check digits.

(3) Specify the task. When the program is used for
the first time in a study, the first task is necessarily
task 1 “Create IDs”.

(4) Submit entries and generate IDs.

All entries into the GUI are stored in an.xml file and
recalled upon restart.

Discussion
The IDGenerator software allows a fast generation of
study identifiers for small to medium epidemiologic
studies, with all processing steps done in the computer
random-access memory. The numbers generated are
guaranteed to be unique, their check digits enable the
detection of user input errors, and the barcode format
representation endows IDs to be read by barcode scan-
ners. Also, although originally developed for epidemio-
logical studies, IDGenerator may be also used in the
setting of clinical studies.

Some limitations warrant mentioning. The maximum
number of IDs is limited by the maximum size of arrays.
In.Net and other programming languages (like Java), array
lengths are limited to the highest integer 32 bit value, the
largest value that can be represented in 32-bit two's com-
plement. This enables theoretically 2,147,483,647 (231–1)
unique combinations, out of which, for k = 9 digits,
IDGenerator can create a maximum of 300,000,000
unique ID key pairs, corresponding to all numbers from
[100,000,000; 400,000,000[for ID-P, all numbers from
[400,000,000; 700,000,000[for ID-S, and for all numbers
from [700,000,000; 1,000,000,000[for ID-T. As all ID-P,
ID-S and ID-T are distinct from each other, this results in
300,000,000 × 3 = 900,000,000 unique IDs. A k = 10 digits
would result in a total number of 9,000,000,000 IDs,
which is higher than the maximum of 2,147,483,647 com-
binations that may be stored into arrays. For studies
requiring more than 300,000,000 unique key pairs, mul-
tiple instances of the software using different study centers
(e.g. study center “1”, study center “2”, a.s.o.) may be used
to produce larger unique numbers.
Another problem encountered when dealing with large

unique randomly-generated numbers is speed. In case

Fig. 3 IDGenerator graphical user interface. The interface is organized in four compartments in-line with the four workflow steps: (1) Select and sort
blocks: The respective blocks can be selected from an available list and then sorted. (2) Specify parameters: Provide a study name (for the directory
naming, number or characters, no spaced allowed), a study center name (number or character, no spaced allowed), track name(s) (number or characters,
no space allowed, multiple tracks separated by semicolons), the number of subjects for which IDs are requested (per track, in the case of multiple tracks
separated by semicolons), random number length (values between 2 and 9), visit name (numbers between 1–9 or characters, not allowed are “i", “e”, “o”
or special characters, case sensitive, default visit is 1), and the algorithm to create check digits. (3) Specify the task. When the program is used for the first
time in a study, the first task is necessarily task 1 “Create IDs”. (4) Submit entries and generate IDs. After pressing the “START” button, the software will
start computing the IDs (duration depending on chosen settings). A progress bar will show the percentage of generated IDs

Olden et al. BMC Medical Research Methodology (2016) 16:120 Page 8 of 10

the requested number of IDs is close to this maximum
number of possible IDs or the number of requested
combinations is large (k > 6 or more than 1,000,000
combinations requested), IDGenerator may take a long
time to randomly pick these numbers. This is due to the
fact that, for each new random number generated, this
must be compared to the entire array of previously gen-
erated numbers to ensure uniqueness. This process
takes seconds for k < 6 (tens of thousands of IDs), hours
for k = 6 (hundreds of thousands of IDs) or days for k > 6
(millions of IDs) on a personal computer with an Intel®
Core™ i7-3770 @ 3.4 GHz with 16 GB of RAM memory
and running Windows 7 Professional Service Pack 2.
These times vary with the memory space and processor
speed available and are necessary to ensure a qualitative
ID which is guaranteed to be unique. Multiple study cen-
ters, study tracks or complex check algorithms do not
affect the time performance of the software.
One option to speed up the ID generation would be

serial number drawing. However, a single key set of (ID-
P, ID-S) and (ID-S, ID-T) is enough to derive subsequent
IDs. E.g. the key pairs (2410, 9071) and (6511, 9071)
with k = 3 digits and visit = 1 (0 for ID-P) may be used
to determine the next key sets: (2420, 9081) and (6521,
9081). This option is therefore not implemented in
IDGenerator, as it would conflict with the concept of
layered ID separation.
Another option of accelerating the creation process for

large numbers is by using permutation algorithms like
Fisher-Yates-Shuffle [21], which first generate a sequen-
tial array of numbers and then shuffle every element to a
random position.
A third option for fast ID generation is to create just a

part of the total number of IDs and extend the ID pool
with new IDs when needed. In case of multiple study
centers, multiple instances of the software with distinct
study center [C] could generate in parallel parts of the
overall IDs. Our software is designed to facilitate such
approaches.
There is also potential for further advancement. For

example, the software may be converted from.Net to an-
other programming language such as Java or Python, if
the study intends to use it on other operating systems
such as UNIX.
Our software is designed to accommodate enough IDs

for currently running or prospective epidemiologic or
clinical studies. In case future studies would need to use
more IDs than arrays can store, the software may be
adapted to handle large numbers as text and store them
into clusters of text files instead of arrays. This method
would have the advantage that it may be parallelized, but
would need a computer cluster or computer cloud to
run instead of a standard desktop computer. The gener-
ation of random numbers in the cloud will require

separation into chunk intervals of numbers to avoid du-
plicates. Furthermore, studies may need approval from
ethics committees to generate sensitive information such
as IDs in the cloud.
Also, there may be potential scenarios when studies

would need to include other options such as user-
specified intervals for all layers of IDs, other barcode
types (e.g. Code 39) or even other types of IDs (e.g. own
ID-B for biobank).
In its current form, IDGenerator addresses towards

small to medium epidemiologic or clinical studies in
need of a simple yet secure concept and tool for ID cre-
ation management. The software may be used by study
personnel without programming training and on a
standard Windows computer.

Conclusions
IDGenerator provides an automated tool to generate IDs
with multiple features, particularly for modern epidemio-
logical or clinical studies. The software enables the gener-
ation of structured IDs to facilitate study organization,
layered IDs to enhance data protection, and check digits
to detect entry errors. It runs without installation on Win-
dows systems, requires no programming skills to use, and
provides IDs as standard text and 128B barcode.

Abbreviations
ASCII: American standard code for information interchange; C: Study center;
GUID: Globally unique identifier; ID: Identifier; ID-B: Biobank identifier; ID-
E: Identifier for data to be transferred to external partners; ID-P: Personal data
identifier; ID-S: Study data identifier; ID-T: Temporary identifier; N: Unique
random number; T: Study track; V: Study visit; X: Check digit; XML: Extensible
markup language

Acknowledgements
We gratefully acknowledge the supporting contribution from Martina E.
Zimmermann and Sabine C. Schelter.

Funding
The AugUR study is supported by grants from the German Federal Ministry
of Education and Research (BMBF 01ER1206 and 01ER1507).

Availability of data and materials
The IDGenerator software is available for download as source code and
compiled EXE at:
Open Science Framework website: https://osf.io/urs2g/
The program is distributed “as is” under GNU General Public License version 3.

Authors’ contribution
MO, RH, IMH, KS conceived the study and participated in the design of the
program. MO, IMH, KS drafted the manuscript. MO carried out the software
implementation and testing. KS coordinated the manuscript draft, software
implementation and testing. All authors read and approved the final
manuscript.

Competing interests
The authors declare that they have no competing interests.

Consent for publication
Not applicable.

Ethics approval and consent to participate
Not applicable.

Olden et al. BMC Medical Research Methodology (2016) 16:120 Page 9 of 10

https://osf.io/urs2g/

Author details
1Department of Genetic Epidemiology, Institute of Epidemiology and
Preventive Medicine, University of Regensburg, Regensburg, Germany.
2Institute of Health Economics and Health Care Management, Helmholtz
Zentrum Munich, Neuherberg, Germany.

Received: 20 February 2016 Accepted: 3 September 2016

References
1. Pohlabeln H, Reineke A, Schill W. Data Management in Epidemiology. In:

Ahrens W, Pigeot I, editors. Handbook of Epidemiology. Heidelberg:
Springer; 2014. p. 979–1022.

2. German National Cohort Scientific Concept. 2015. http://nationale-kohorte.
de/wp-content/uploads/2015/07/Wissenschaftliches-Konzept-der-NAKO2.
pdf. Accessed 2 May 2016.

3. Holle R, Happich M, Löwel H, Wichmann HE, MONICA/KORA Study Group.
KORA–a research platform for population based health research.
Gesundheitswesen. 2005;67 Suppl 1:S19–25.

4. Dean AG, Arner TG, Sunki GG, Friedman R, Lantinga M, Sangam S, Zubieta
JC, Sullivan KM, Brendel KA, Gao Z, Fontaine N, Shu M, Fuller G, Smith DC,
Nitschke DA, Fagan RF. Epi Info™, a database and statistics program for
public health professionals. Atlanta: CDC; 2011.

5. Sullivan KM, Dean A, Soe MM. OpenEpi: a web-based epidemiologic and
statistical calculator for public health. Public Health Rep. 2009;124(3):471–4.

6. Lauritsen JM, Bruus M. EpiData (version 3.1). A comprehensive tool for validated
entry and documentation of data. Odense: The EpiData Association; 2003–2005.

7. Askimed: a software product to collect clinical study or register data
using electronic case report forms (eCRF). http://www.askimed.com/.
Accessed 2 May 2016.

8. Cavelaars M, Rousseau J, Parlayan C, de Ridder S, Verburg A, Ross R, Visser
GR, Rotte A, Azevedo R, Boiten JW, Meijer GA, Belien JAM, Verhaul H.
OpenClinica. J Clin Bioinforma. 2015;5 Suppl 1:S2.

9. Online GUID Generator Tool. https://www.guidgenerator.com/. Accessed
2 May 2016.

10. UUID / GUID specifications. https://www.ietf.org/rfc/rfc4122.txt. Accessed
2 May 2016.

11. GS1 Check Digit. http://gs1-check-digit.software.informer.com/. Accessed
2 May 2016.

12. Bulk Check Digit Calculator. http://www.morovia.com/bulk-check-digit-
calculation/. Accessed 2 May 2016.

13. Stark K, Olden M, Brandl C, Dietl A, Zimmermann ME, Schelter SC, et al. The
German AugUR study: study protocol of a prospective study to investigate
chronic diseases in the elderly. BMC Geriatr. 2015;15:130.

14. Excel specifications and limits (Excel 2010). https://support.office.com/en-us/
article/Excel-specifications-and-limits-1672b34d-7043-467e-8e27-
269d656771c3?ui = en-US&rs = en-US&ad = US. Accessed 2 May 2016.

15. Hoffmann W, Latza U, Terschuren C, Deutsche Arbeitsgemeinschaft für
Epidemiologie (DAE), Deutsche Gesellschaft für Medizinische Informatik,
Biometrie und Epidemiologie (GMDS), Deutsche Gesellschaft für
Sozialmedizin und Prävention (DGSMP), Deutsche Region der
Internationalen Biometrischen Gesellschaft (DR-IBS). Guidelines and
recommendations for ensuring Good Epidemiological Practice (GEP) –
revised version after evaluation. Gesundheitswesen. 2005;67(3):217–25.

16. Data protection and IT security concept of the linkage unit in the German
National Cohort. http://nationale-kohorte.de/wp-content/uploads/2015/07/
Treuhandstellenkonzept.pdf. Accessed 2 May 2016.

17. Meyer J, Ostrzinski S, Fredrich D, Havemann C, Krafczyk J, Hoffmann W.
Efficient data management in a large-scale epidemiology research project.
Comput Methods Programs Biomed. 2012;107(3):425–35.

18. Kirtland J. Identification Numbers and Check Digit Schemes. 1st ed.
Washington: MAA Service Center; 2001.

19. Gumm HP. Enconding of Numbers to Detect Typing Errors. Int J Appl
Engng Ed. 1986;2(1):61–5.

20. Damm HM. Total anti-symmetrische Quasigruppen. Marburg: Philipps-
Universität Marburg; 2004.

21. Fisher RA, Yates F. Statistical tables for biological, agricultural and medical
research. 3rd ed. London & Edinburgh: Oliver and Boyd; 1948.

• We accept pre-submission inquiries

• Our selector tool helps you to find the most relevant journal

• We provide round the clock customer support

• Convenient online submission

• Thorough peer review

• Inclusion in PubMed and all major indexing services

• Maximum visibility for your research

Submit your manuscript at
www.biomedcentral.com/submit

Submit your next manuscript to BioMed Central
and we will help you at every step:

Olden et al. BMC Medical Research Methodology (2016) 16:120 Page 10 of 10

http://nationale-kohorte.de/wp-content/uploads/2015/07/Wissenschaftliches-Konzept-der-NAKO2.pdf
http://nationale-kohorte.de/wp-content/uploads/2015/07/Wissenschaftliches-Konzept-der-NAKO2.pdf
http://nationale-kohorte.de/wp-content/uploads/2015/07/Wissenschaftliches-Konzept-der-NAKO2.pdf
http://www.askimed.com/
https://www.guidgenerator.com/
https://www.ietf.org/rfc/rfc4122.txt
http://gs1-check-digit.software.informer.com/
http://www.morovia.com/bulk-check-digit-calculation/
http://www.morovia.com/bulk-check-digit-calculation/
https://support.office.com/en-us/article/Excel-specifications-and-limits-1672b34d-7043-467e-8e27-269d656771c3?ui=en-US&rs=en-US&ad=US
https://support.office.com/en-us/article/Excel-specifications-and-limits-1672b34d-7043-467e-8e27-269d656771c3?ui=en-US&rs=en-US&ad=US
https://support.office.com/en-us/article/Excel-specifications-and-limits-1672b34d-7043-467e-8e27-269d656771c3?ui=en-US&rs=en-US&ad=US
http://nationale-kohorte.de/wp-content/uploads/2015/07/Treuhandstellenkonzept.pdf
http://nationale-kohorte.de/wp-content/uploads/2015/07/Treuhandstellenkonzept.pdf

	Abstract
	Background
	Results
	Conclusion

	Background
	Implementation
	Use case in the AugUR study
	Comparison against semi-manual techniques
	Overall software architecture
	Ensuring uniqueness of generated identifiers
	Concept of layered IDs
	Concept of structured IDs
	Control for ID entry error
	Technical implementation

	Results
	Layered IDs
	Blocks for structured IDs
	Parameter settings
	Random numbers in the identifiers
	The main tasks of the software
	Create IDs
	Add new IDs
	Adding new visit
	Add new track
	Generate external IDs

	The graphical user interface

	Discussion
	Conclusions
	show [a]
	Acknowledgements
	Funding
	Availability of data and materials
	Authors’ contribution
	Competing interests
	Consent for publication
	Ethics approval and consent to participate
	Author details
	References

