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ABSTRACT
Adult Neural Stem Cells (aNSCs) generate new neurons that integrate into the pre-existing networks
in specific locations of the Vertebrate brain. Moreover, aNSCs contribute with new neurons to brain
regeneration in some non-mammalian Vertebrates. The similarities and the differences in the
cellular and molecular processes governing neurogenesis in the intact and regenerating brain are
still to be assessed. Toward this end, we recently established a protocol for non-invasive imaging of
aNSC behavior in their niche in vivo in the adult intact and regenerating zebrafish telencephalon.
We observed different modes of aNSC division in the intact brain and a novel mode of neurogenesis
by direct conversion, which contributes to stem cell depletion with age. After injury, the generation
of neurons is increased both by the activation of additional aNSCs and a shift in the division mode
of aNSCs, thereby contributing to the successful neuronal regeneration. The cellular behavior we
observed opens new questions regarding long-term aNSC maintenance in homeostasis and in
regeneration. In this commentary we discuss our data and new questions arising in the context of
aNSC behavior, not only in zebrafish but also in other species, including mammals.
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In the adult vertebrate brain, new neurons are pro-
duced1,4,23,39,59 and turned over38,44 throughout the ani-
mal’s life, with an age-dependent decline14,15,21,33,56

These neurons differentiate from neural stem cells
(NSCs) that reside in specialized niches within the
brain1,17,29,54 The existence of adult/ neonatal NSCs,
also in the human brain,22,23,59 raised hope for their use
in regenerative therapies for neurodegenerative diseases
or brain injuries. Indeed, adult NSCs (aNSCs) provide
new neurons engaged in the repair of the injured brain
in regeneration-competent species, such as zebra-
fish8,10,11,36,37,58,65 Although the aNSCs contribute with
new, mature neurons in some regeneration-competent
species, the first attempts to utilize the endogenous
aNSCs for repair in the mammalian brain largely
failed,7,58,61,62 probably due to the lack of understanding
of basic aNSC biology.Moreover, it also remains unclear
to which extent the regeneration of the injured brain
requires changes in the behavior of aNSCs compared to
the intact brain in order to complete the regeneration
process. For example, repair of the injured cerebral

cortex would require the generation of pyramidal neu-
rons, a cell type never produced by the aNSCs in the
intact brain.46 Therefore, it is crucial to compare the cel-
lular behavior at the single stem cell level in the intact
and injured brain of regeneration-incompetent and
regeneration-competent species. The first approaches to
understand the cellular behavior of single aNSCs in the
neurogenic zones of the intact mammalian brain based
on clonal analysis13,15 revealed the fast consumption of
a single aNSC that produces a heterogeneous neuronal
output. However, different cellular processes such as cell
death, selective proliferation and terminal differentia-
tion could yield into the described features of adult
mammalian neurogenesis. The methods used in these
studies could not provide complete information on the
continuous behavior/dynamics of aNSCs in their intact
niche, highlighting the need for complementary meth-
ods that allow repeated observation of the same aNSCs
in their biological environment.

In the mammalian brain the NSC niches are rare
(Sub-ependymal zone (SEZ), dentate gyrus (DG) and
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hypothalamus) and are located several hundreds of
mm away from the brain surface3,39,52 rendering them
inaccessible for direct observations. In contrast, the
neurogenic niches in the adult zebrafish are wide-
spread throughout the whole brain and accessible for
live imaging, particularly in the dorsal telencephalon,
due to its location at the outer surface of the brain
(Fig. 1a).1,29 The privileged location of aNCSs in the
dorsal zebrafish telencephalon, and the exceptional
regenerative potential of this brain region, makes the
zebrafish pallium an attractive system to pursue in
vivo imaging experiments.

Live in vivo imaging allows for the integrative view
on the changes in behavior of the single aNSCs and

their progeny in the regenerating and intact zebrafish
brain. This commentary will discuss the behavior of
the aNSCs in the zebrafish telencephalon in both con-
ditions and its possible implications for the processes
of aging and regeneration.

Output of the adult neural stem cells in the
intact and injured brain

The neurogenic niche in the adult zebrafish pallium,
accessible for live imaging, contains radial glia-like
aNSCs (Fig. 1b) with their cell bodies lining the ven-
tricular wall. Radial processes of aNSCs span the brain
parenchyma to contact the basement

Figure 1. Neurogenic niches in the adult zebrafish telencephalon and behavior of aNSCs in the pallium. (a) Representation of a coronal
section through the adult zebrafish telencephalon illustrating the ventricular zone (green), containing aNSCs and progenitors, and the
parenchyma (brown), mostly composed of neurons. The two hemispheres are linked by a dorsal ependymal lining (DEL) that closes the
ventricle (v). (b) and (c) Scheme of the dorsal (b) and ventral (c) ventricular zones, composed of different progenitor types: RG-like
aNSCs, non-glial intermediate progenitors and neuro-epithelial-like cells. (d) and (e) Modes of cell division and neurogenesis in the
intact (d) and injured (e) zebrafish telencephalon, assessed by live imaging.10 In the intact brain (d) the newborn neurons are deposited
immediately adjacent to the progenitor cells. After injury (e) there is an increase in proliferating aNSCs at the VZ, a change in their
mode of cell division and the migration of progeny to the injured parenchyma, where the newborn neurons contribute to tissue regen-
eration. The dashed circle marks the region where the lesion was. Abbreviations: DEL-dorsal ependymal lining; NE-neurepithelial; RG-
radial glia; VZ-ventricular zone.
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membrane.10,24,42 The morphology and the antigen
profile of aNSCs in the zebrafish pallium are reminis-
cent of radial glial (RG) cells in the developing mouse
telencephalon.24,27,28,30,42 The aNSCs in the zebrafish
pallium do not only share the morphological and
immunohistochemical characteristics with the mam-
malian RG cells in the developing brain, but also have
the capacity to generate new neurons. However, in
contrast to the new neurons produced in the develop-
ing mammalian cerebral cortex,6,46 the new neurons
produced by the pallial aNSCs in the intact brain of
zebrafish do not migrate away from the stem cell zone
and are instead deposited directly below the progeni-
tor zone (Fig. 1d)1,29,42,53 These new neurons are inter-
mingled with fast dividing progenitors (Fig. 1b) that
do not have stem cell characteristics (intermediate
progenitors (IPs) or non-glial progenitors).24,42,53

Traumatic brain injury induces a specific program in
the aNSCs and intermediate progenitors resulting in
the production of new neurons necessary for regenera-
tion.35 In contrast to the intact brain, these newborn
neurons migrate larger distances to repopulate the
damaged brain areas (Fig. 1e).10,36 Importantly, the
small stab wound injury induces the restorative neuro-
genesis without an impact on the ongoing neurogene-
sis present in the intact brain.11 This indeed raises the
question of the origin of the new neurons engaged in
the repair process. Moreover, it remains unclear to
which extent the cellular processes underlying restor-
ative neurogenesis recapitulate those sustaining the
normal generation of adult-born neurons.

To address these questions, we repetitively imaged
aNSCs in the Tg(gfap::GFP)mir2001 transgenic fish
line that expresses GFP in all aNSCs. To reliably re-
identify aNSCs in different imaging sessions, we
sparsely labeled a small number of them by electropo-
ration of a reporter (TdTomatomem) encoding plas-
mid. As the ubiquitous cytomagalovirus (CMV)
promoter drives the expression of the reporter, we
could follow not only aNSCs, but also their progeny
that lost the radial morphology and glial marker
expression.10 Our results confirmed previous observa-
tions that in the intact brain aNSCs are mostly quies-
cent and only a small proportion of aNSCs divide or
change their identity to generate progeny (aNSCs acti-
vation) at any discrete time point. Both live imag-
ing10,19 and clonal analysis10,53 suggest that aNSCs
predominantly generate neurons upon their activa-
tion. In addition, we could observe the generation of

gfap::GFP-positive glial cells indistinguishable from
the mother cell10 indicative of self-renewal. Indeed, all
aNSC divisions in the intact brain generated at least
one cell with radial morphology and also expressing
gfap::GFP. Whether some of these glial cells are
already a differentiated cell type (possibly homologous
to the ependymal cells in the mammalian brain) or a
quiescent stem cell is not clear yet. However, virtually
all GFAP-positive glial cells in the zebrafish pallium
can be recruited into the cell cycle upon Notch inhibi-
tion,5 strongly suggesting that at least some of the
newly generated gfap::GFP-positive cells with radial
morphology are quiescent aNSCs.10 Longer imaging
periods would be required to tackle this question in a
comprehensive manner.

The generation of oligodendrocytes from aNSCs in
the zebrafish pallium has not been directly assessed.
However, aNSC-derived cells mostly express either
GFAP or neuronal lineage markers (Sox2 and HuCD)
(unpublished data), accentuating the idea that only
neurons and aNSCs/ependyma are generated from
NSCs in this brain region. This is indeed very similar
to the adult mouse DG, where aNSCs do not generate
oligodendrocytes.13 Oligodendrocytes are generated in
this region exclusively by neural/glial antigen2 (NG2)-
positive progenitors32 In the adult mouse SEZ oligo-
dendrocytes are also generated, but the neuronal and
oligodendroglial lineages are separated in two inde-
pendent populations of progenitors.15,48

Although the predominantly neuronal output
appears to be a hallmark of aNSCs in the Vertebrate
brain, the cohort size produced by a single aNSC dif-
fers greatly between species and analyzed areas
(Fig. 2). Despite the difference in clone size, the output
of a single aNSC seems to be defined by the number of
divisions of intermediate progenitors. In the zebrafish
pallium, these progenitors divide once or twice before
terminally differentiating into neurons10,53 Interest-
ingly, this low degree of lineage amplification in the
zebrafish pallium is reminiscent of the behavior of
progenitors in the adult mouse DG,13,21,40 supporting
the suggested homology between the two regions
(Fig. 2).25,51,64 Also in the developing rodent dorsal tel-
encephalon, basal/intermediate progenitors divide few
times before generating neurons (Fig. 2a).26,44,46 How-
ever, this situation contrasts with the mouse ventral
telencephalon, in which multiple rounds of division of
progenitors greatly amplify the neuronal output
(Fig. 2a)49 Similarly, in the SEZ niche a high degree of
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amplification occurs at the transit amplifying progeni-
tor (3–4 divisions) and neuroblast (1–2 divisions)
level15,50 Moreover, aNSCs also divide asymmetrically
several times each 2–3 weeks to produce a larger neu-
ronal output containing several cohorts (Fig. 2b).15

Unlike in the pallium, the neurogenic niche in the
zebrafish subpallium appears more similar to the
mouse SEZ (Fig. 1c), as there are proportionally more
IPs24,42 and some of these also migrate to the olfactory
bulb.34 Interestingly, in the zebrafish subpallium the
aNSCs exhibit low levels or no expression of glial
markers and, because they express nestin and the tight

junction component zona occludens 1 (ZO-1),24 they
resemble neuroepithelial cells (Fig. 1c). The mixture of
radial and tangential migration of the NSC progeny in
this region makes a clonal analysis challenging. Thus,
the behavior of subpallial aNSC in the zebrafish at the
single cell level remains to be assessed.

The broad spectrum of the single aNSC behaviors
leading to the production of differently sized neuronal
cohorts prompted us to search also for the mecha-
nisms enlarging the neuronal output during regenera-
tion, that allow the replacement of the lost neurons
without an obvious impact on the ongoing

Figure 2. Neuronal output of single NSCs. (a) Different modes of neuron generation in the developing brain. In the zebrafish hindbrain
and Xenopus optic tectum, some NSCs directly convert into neurons (direct conversion), depleting themselves. At early embryonic
stages in the zebrafish and mouse telencephalon, NSCs proliferate (1–4 rounds in the mouse) to increase their number (symmetric pro-
liferative divisions).18,26 As development advances, NSCs divide asymmetrically to give rise to another NSC and a neuron directly (direct
neurogenesis, red box) or to a NSC and an intermediate progenitor, that amplifies the neuron production (indirect neurogenesis). In the
mouse cortex, NSCs can undergo 2–3 rounds of asymmetric division.26 The degree of amplification via intermediate progenitors differs
in the cortex and the ventral telencephalon of the mouse (asterisk), since cortical IPs divide once or twice before generating neurons,
whereas in the lateral ganglionic eminence they divide several times. At the end of neurogenesis, most NSCs undergo a terminal divi-
sion (symmetric neurogenic divisions). (b) NSC lineage in the adult mouse SEZ. Adult NSCs have a limited self-renewal capacity, and gen-
erate neurons via transit amplifying progenitors (TAPs) and neuroblasts. Despite the high degree of amplification, many neurons die and
only a few manage to survive and integrate in the olfactory bulb circuits.15 (c) NSC lineage in the adult mouse DG. In this region aNSCs
undergo a few rounds of asymmetric divisions to generate neurons via intermediate progenitors, after which they terminally differenti-
ate into astrocytes. Compared to the SEZ, there is a lower amplification at the intermediate progenitor level.13,21 (d) Modes of neurogen-
esis and division in the intact adult zebrafish pallium. Neurogenesis occurs either through direct conversion, depleting the NSC, or
asymmetric division, maintaining the aNSC. Besides the self-renewing asymmetric division, NSCs also undergo symmetric amplifying
divisions (symmetric aNSC division). The thickness of the arrows represents the relative frequency of each behavior. (e) Modes of neuro-
genesis and division in the injured adult zebrafish pallium. After injury, aNSCs divide not only asymmetrically, as in the intact brain, but
also symmetrically to generate two intermediate progenitors, increasing the neuronal output. The thickness of the arrows represents
the relative frequency of each behavior. Abbreviations: aNSC-adult neural stem cell; DG-dentate gyrus; IP-intermediate progenitor; RG-
radial glia; SEZ-sub-ependymal zone; TAP-transit amplifying progenitor.
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neurogenesis.10,11 Several cellular mechanisms such as
increased aNSC proliferation, proliferation of the
non-glial progenitors, decreased cell death etc. could
account for this net increase in neuronal production.
Indeed, both aNSCs and non-glial progenitors
increase their proliferation after brain injury11,36,43

However, we could not observe multiple divisions of a
single aNSC using live imaging in vivo, but rather
increased recruitment of quiescent aNSCs.10 Interest-
ingly, we observed that some of the aNSCs dividing
after injury did not self-renew, but rather exhausted
themselves by a symmetric division generating two
non-glial progenitors.10 This mode of division, not
present in the intact brain, might constitute an advan-
tage after injury, since it generates a larger neuronal
output from a single aNSC compared to an asymmet-
ric division. On the other hand, it also leads to the
depletion of stem cells. Curiously, enhanced aNSC
depletion has also been observed in the DG of a mouse
model of neuronal hyperactivity, suggesting some con-
servation of aNSC reaction to challenge in different
Vertebrate species.57 This NSC exhaustion phenome-
non would predict a decreased capacity of the zebra-
fish brain to regenerate damages induced by the
repetition of the insult. Alternatively, aNSCs in the
zebrafish might be heterogeneous and could contain
more primitive, undifferentiated cells16 with the
capacity to repopulate aNSCs depleted after injury
and enable proper regeneration even after multiple
injuries. Indeed, in the zebrafish caudal fin amputation
paradigm, progenitor cells completely reconstitute the
entire damaged tissue without losing efficiency even
after repeated amputations.9,55 Therefore, it would be
important to address if aNSCs have the capacity to
repopulate the neurogenic zone and allow tissue resto-
ration even after multiple insults or if the different
organs have different regeneration capacity depending
on the characteristics of the somatic stem cells residing
within the given organ.

Direct conversion

An important novel feature of adult neurogenesis in
the zebrafish telencephalon uncovered by our in vivo
imaging was the direct conversion of a considerable
proportion of aNSCs (50 % of all aNSCs generating
neurons) into a neuron without any cell division.10

Interestingly, this type of neurogenesis is also
described in developing brains. In fact, single

progenitors labeled at the neural rod stage directly
convert into neurons without cell division in the
developing zebrafish hindbrain.41 Also in Xenopus lae-
vis, time-lapse imaging demonstrated that the major-
ity of RG cells in the developing optic tectum directly
differentiate into neurons.12 As direct conversion had
never been observed in the adult brain, this could
either mean that aNSCs in the zebrafish telencephalon
possess this unique capacity, or that direct conversion
has not yet been detected in the adult brain of other
species due to the lack of suitable technical approaches
such as live imaging.

At present, we cannot elucidate if the population of
aNSCs that directly convert to neurons is a specific
population or if these cells also have the capacity to
divide. In fact, both in the zebrafish2,18 and in the
mouse embryo,31,44,46 dividing RG cells generate neu-
rons directly without going through an intermediate
progenitor state (Fig. 2a, direct neurogenesis). In our
study however, we followed aNSCs for at least 2 weeks
before they directly converted into neurons, suggesting
that these cells either have an extremely long cell cycle
or do not need to divide at all to generate neurons.

Notably, after injury aNSCs divide more and
change their division mode to produce large cohorts
of neuronal progeny needed in these hostile condi-
tions. In contrast, direct conversion would allow slow,
but constant addition of new neurons to the slowly
growing adult. It is still to be addressed if the aNSCs
undergoing direct conversion in the intact brain
would become activated after injury and divide in a
symmetric neurogenic manner (a mode of aNSCs
division that we observe only in the injured brain) to
produce a larger neuronal output and deplete them-
selves after injury. Alternatively, direct conversion
might be actively blocked but these aNSCs would be
kept at the VZ for the slow neuronal production after
the brain is regenerated.

Stem cell depletion-a common feature of the
vertebrate neurogenesis

In the adult zebrafish pallium, new neurons are added
either by asymmetric division of aNSCs, thus main-
taining the stem cell pool, or by direct conversion
depleting the stem cell pool. Our live imaging showed
that the proportion of aNSCs that directly convert to
neurons and deplete themselves (17%) is considerably
higher than the proportion of aNSCs dividing
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symmetrically to amplify the stem cell population
(1%) in the intact brain.10 This finding implies a grad-
ual consumption of aNSCs with age. Indeed the num-
ber of proliferating aNSCs was decreasing in 6 and
10 months old animals compared to 3 months old ani-
mals,10 which correlates with the previously described
decrease in neurogenesis in the aged zebrafish pal-
lium.20 These data therefore would support the
hypothesis that aNSC depletion is the cellular basis for
the age-dependent decline of neurogenesis in zebra-
fish. However, Edelmann et al observed that the total
number of gfap::GFP -positive glia (regardless of their
proliferative status) does not decrease with aging.20

The cellular mechanisms that maintain the ependy-
moglia in the adult brain remain to be investigated,
but one possible explanation would be that the modes
of stem cell division/behavior could be changed
toward the gliogenic/ependymoglial fate in aging ani-
mals. In our study we used 2–3 months-old animals
and followed single cells for one month but it is possi-
ble that in older animals there is a prevalence of sym-
metric aNSCs divisions that would replenish the pool
of ependymoglia. More in vivo imaging of single
aNSCs at these later stages would be needed to clarify
these issues. Importantly, in the mouse neurogenic
niches, SEZ and dentate gyrus, there is a limited num-
ber of self-renewing divisions of aNSCs followed by
terminal differentiation into the neuronal or astrocytic
lineage.13,15,21 Therefore the exhaustion of aNSCs in
Vertebrates is a common trait, possibly including the
glial fate as the final differentiation step.

Future directions

In summary, the in vivo imaging we established
allowed for the first time the visualization of aNSCs in
their natural niche in a vertebrate model, not only in
physiological conditions but also after brain damage.
Consequently, several features of the behavior of indi-
vidual aNSCs were revealed at the single cell level, at
an extent that could not be assessed by previous popu-
lation-based studies. The knowledge acquired with the
observation of NSC behavior in the zebrafish brain
may serve as a basis to conduct studies on modulating
NSC activity in the diseased brain. For the application
of these findings in mammalian disease models it will
be important to compare the NSC behavior in zebra-
fish and mammals.
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