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Abstract

Introduction Although cultured cells are nowadays regu-

larly analyzed by metabolomics technologies, some issues

in study setup and data processing are still not resolved to

complete satisfaction: a suitable harvesting method for

adherent cells, a fast and robust method for data normal-

ization, and the proof that metabolite levels can be nor-

malized to cell number.

Objectives We intended to develop a fast method for

normalization of cell culture metabolomics samples, to

analyze how metabolite levels correlate with cell numbers,

and to elucidate the impact of the kind of harvesting on

measured metabolite profiles.

Methods We cultured four different human cell lines and

used them to develop a fluorescence-based method for

DNA quantification. Further, we assessed the correlation

between metabolite levels and cell numbers and focused on

the impact of the harvesting method (scraping or

trypsinization) on the metabolite profile.

Results We developed a fast, sensitive and robust fluo-

rescence-based method for DNA quantification showing

excellent linear correlation between fluorescence intensi-

ties and cell numbers for all cell lines. Furthermore,

82–97 % of the measured intracellular metabolites dis-

played linear correlation between metabolite concentra-

tions and cell numbers. We observed differences in amino

acids, biogenic amines, and lipid levels between trypsi-

nized and scraped cells.

Conclusion We offer a fast, robust, and validated nor-

malization method for cell culture metabolomics samples

and demonstrate the eligibility of the normalization of

metabolomics data to the cell number. We show a cell line

and metabolite-specific impact of the harvesting method on

metabolite concentrations.

Keywords Cell culture metabolomics � Normalization

method � Harvesting � Metabolite–cell number correlation

1 Introduction

Metabolomics has long been used in studies related to

human health, in which mostly body fluids were analyzed

for various clinical indications (Cuperlović-Culf et al.

2010; Beckonert et al. 2007). However, it is increasingly

applied to other matrices such as tissues (Römisch-Margl

et al. 2012) and cells (e.g., immortalized cell lines, primary

cells, or induced pluripotent stem cells) (Cuperlović-Culf

et al. 2010; Kleinstreuer et al. 2011; Dettmer et al.

2011, 2013; Meissen et al. 2012; Berthon et al. 1993; Khoo

and Al-Rubeai 2007; Ritter et al. 2008). Especially meta-

bolomics with cultured cells (cell culture metabolomics)

(León et al. 2013; Kalluri et al. 2014) has several advan-

tages like standardization, cost-efficiency, little ethics
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considerations, and easy integration with other ‘‘omics’’

data. On the other hand, there are also several challenges

like mode of harvesting, fast quenching of the metabolism,

age dependent proliferation differences, and normalization

to cope with (Cuperlović-Culf et al. 2010). In this context,

fast quenching of metabolic processes during cell har-

vesting and data normalization are the two major bottle-

necks (Bi et al. 2013; Silva et al. 2013).

Suitable normalization is still an unresolved problem in

cell culture metabolomics, although the procedure to cor-

rect for biological and/or technical variation is crucial for

avoiding erroneous data interpretation. Normalization shall

eliminate inter-run variability and batch effects [e.g., by

use of internal standards (Ejigu et al. 2013; Kohl et al.

2012; Wang et al. 2012)] as well as biological variation [by

relating measured sample data to reliable intrinsic markers

for the amount of cells, like sample cell number, wet

weight, protein or DNA content, or the total ion current

(Cao et al. 2011; Silva et al. 2013; Hutschenreuther et al.

2012)]. For metabolite measurements from cultured cells it

is commonly assumed that the metabolite concentration

increases with increasing cell number. However, although

the linear correlation between the cell number and the total

ion current has been demonstrated (Hutschenreuther et al.

2012), a linear correlation of the cell number with the

metabolite concentration has so far only been shown for a

few selected metabolites. The aspect of linear correlation

between metabolite levels and cell number was not the

major focus of the cited studies (Silva et al. 2013; Cao et al.

2011; Hutschenreuther et al. 2012) and other comprehen-

sive studies on that topic are yet missing. Therefore,

experimental evidence for the general normalization of

metabolite concentrations to cell numbers being legitimate

is yet very weak.

Direct methods for determination of the cell numbers

require either trypsinization or imaging. Trypsinization

introduces artifacts into metabolomic data (Bi et al. 2013;

Dettmer et al. 2011; Teng et al. 2009), imaging is difficult

to apply for cells growing in clumps or 3D culture, and

common staining agents often display cytotoxic effects

(Bielawski et al. 2001) making downstream applications

problematic. Additionally, both methods usually require

parallel sampling (Hu et al. 2013) and are labor-intensive,

which is unpractical and inefficient, especially in regard to

large studies. To guarantee the immediate quenching of the

metabolism, adherent cells are often harvested by scraping

the cellular layer in organic extraction solvent (Bi et al.

2013; Sapcariu et al. 2014; Dettmer et al. 2011). This

approach renders cell counting impossible and as such,

many efforts were undertaken to identify a substituting

‘‘ideal’’ reference molecule for data normalization, which

is present in the sample used for metabolomics measure-

ments (Cao et al. 2011; Silva et al. 2013). For this reference

molecule, a linear correlation between its concentration

and the cell number in the sample is desired, regardless of

sample preparation and experimental conditions. In some

studies, selected metabolites have been used for normal-

ization, which could either be derived from the cells, e.g.,

the sum of phospholipids (Ruiz-Aracama et al. 2011), or

measured in the cell culture supernatant like nutrients and

excretion products, e.g., inositol (Cao et al. 2011). The

approach seems appealing; however, it has the disadvan-

tage that each ‘‘housekeeping metabolite’’ has to be thor-

oughly validated for each cell line and each experimental

setup. Normalization to the total signal of a metabolite

class (Ruiz-Aracama et al. 2011) or the total peak area

(Hutschenreuther et al. 2012) is not applicable for the

comparison of results from different experiments. Nor-

malization of metabolomics data to the protein content of

the sample has been another option (Munger et al. 2006;

Dettmer et al. 2011; Silva et al. 2013; Cao et al. 2011).

However, protein quantification showed large variations

and a low sensitivity at low cell numbers (Silva et al.

2013). Recently, the determination of the DNA concen-

tration was introduced as consistent method for normal-

ization, because the DNA concentration displayed the best

linear correlation to the cell number (Silva et al. 2013).

Moreover, the DNA can be isolated and quantified directly

from metabolomics samples generated by cell scraping in

extraction solvent. The method is however not high-

throughput feasible, due to a time consuming purification

step (Silva et al. 2013).

In the present study, we focused on current challenges in

cell culture metabolomics, namely normalization, harvest-

ing, and correlation of metabolite concentrations to the cell

number. First, we developed a robust, sensitive, and fast

assay for DNA quantification of cell culture derived sam-

ples harvested for metabolomics experiments. Second, we

analyzed how intracellular metabolites correlate with cell

numbers, using a targeted metabolomics approach. Third,

we elucidated if our novel DNA quantification assay would

be a suitable substitute for cell counting when applied on

typical cell culture metabolomics samples, i.e., cells that

are harvested by scraping. At last, we investigated the

impact of the two different cell harvesting procedures

trypsinization and scraping on the concentration of

metabolites and on the metabolite-cell number correlation.

2 Materials and methods

2.1 Chemicals

Methanol (MeOH; UPLC grade) and isopropanol (HPLC

grade) were purchased from AppliChem (Darmstadt, Ger-

many), acetonitrile (HPLC grade) was purchased from
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Roth (Karlsruhe, Germany), and formic acid (mass spec-

trometry grade) from Sigma-Aldrich (Hamburg, Germany).

Hoechst 33342 was purchased from Life Technologies

(Darmstadt, Germany).

2.2 Cell culture

Different human cell lines were selected to cover diverse

properties like cell size or tissue origin. All cell lines were

maintained at 37 �C and 5 % CO2 in a humidified atmo-

sphere and were regularly confirmed to be free of myco-

plasma contamination. The identity of all lines was ensured

by the cell line authentication service provided by the

DSMZ (Braunschweig, Germany). THLE-2 cells, derived

from a healthy human liver (ATCC, Wesel, Germany),

were cultivated in BEGM (Lonza, Basel, Switzerland)

supplemented with 10 % FBS Gold (PAA, Pasching,

Austria), 5 ng/mL human recombinant EGF (Life Tech-

nologies, Darmstadt, Germany), and 70 ng/mL phospho-

ethanolamine (Biochrom, Berlin, Germany) according to

ATCC guidelines. Cells were cultivated in vessels pre-

coated with bovine collagen type I (0.03 mg/mL, BD

Biosciences, Heidelberg, Germany), fibronectin (0.01 mg/

mL, Sigma Aldrich, Hamburg, Germany), and bovine

serum albumin (0.01 mg/mL, Sigma Aldrich, Hamburg,

Germany) in BEGM medium. The proximal tubular cell

line HK-2, derived from normal human kidney (ATCC,

Wesel, Germany), was cultivated in K-SFM (Life Tech-

nologies, Darmstadt, Germany) supplemented with

0.05 mg/mL bovine pituitary extract (Life Technologies,

Darmstadt, Germany) and 5 ng/mL human recombinant

EGF according to ATCC guidelines. The human hepato-

carcinoma cell line Hep G2 was purchased from the DSMZ

(Braunschweig, Germany) and cultivated in DMEM (Life

Technologies, Darmstadt, Germany) supplemented with

10 % FBS Gold. The human preadipocyte cell strain SGBS

(Wabitsch et al. 2001; Fischer-Posovszky et al. 2008),

kindly provided by Dr. Wabitsch, was cultivated in DMEM

F-12 HAM (Sigma-Aldrich, Hamburg, Germany) supple-

mented with 10 % FBS Gold, 33 lM biotin (Sigma

Aldrich, Hamburg, Germany) and 17 lM panthothenate

(Sigma Aldrich, Hamburg, Germany).

All cell numbers given in the following refer to the

number of cells per sample.

2.3 Harvesting of cells by trypsinization

Cultured cells were washed with warm PBS, incubated for

5 min with 2 mL 0.05 % trypsin containing 0.53 mM

EDTA (Life Technologies, Darmstadt, Germany) per

75 cm3 flask at 37 �C, and resuspended in 6 mL of the

appropriate culture medium. The cells were sedimented at

500 9 g and room temperature for 5 (Hep G2 and SGBS)

or 10 min (HK-2 and THLE-2). Subsequently, the super-

natant was removed and the cell pellet was resuspended in

warm PBS. The cells were counted using the Cellometer

Auto T4 Plus (PeqLab, Erlangen, Germany), and split into

aliquots containing the desired cell number (between

1.0 9 104 and 2.5 9 106) in micro tubes (0.5 mL, Sarstedt,

Nümbrecht, Germany). The samples were centrifuged, the

supernatants were removed, and the cell pellets were either

stored at -80 �C or directly processed for analysis. For

analysis, 80 mg glass beads (0.5 mm; VK-05, PeqLab,

Erlangen, Germany) and 300 lL of 88 % MeOH precooled

on dry ice were added to the tubes and cells were

homogenized.

2.4 Harvesting of cells by scraping

Different cell numbers (7.5 9 104 to 5.0 9 105 for THLE-

2 and SGBS; 7.5 9 104 to 7.5 9 105 for HK-2, and

2.5 9 105 to 2.5 9 106 for Hep G2) were seeded in

12-well plates in six replicates. Cells were incubated at

37 �C and 5 % CO2 for 4 h (THLE-2 and HK-2), 5 h

(SGBS) or 16 h (Hep G2). The incubation time was chosen

to allow for complete attachment, but short enough to

prevent cell proliferation. For the harvest, cells were

washed twice with warm PBS, and their metabolism was

subsequently quenched by the addition of 200 lL 88 %

MeOH, precooled on dry ice. Cells were scraped off the

culture vessel using rubber tipped cell scrapers (Sarstedt,

Nümbrecht, Germany) and together with the solvent col-

lected in pre-cooled micro tubes containing 80 mg glass

beads. The culture well was rinsed with another 100 lL
ice-cold 88 % MeOH and the liquid was also transferred to

the tube. The samples were stored at -80 �C until further

use.

2.5 Homogenization of cells

Cells (supplied with 80 mg glass beads and 300 lL ice-

cold 88 % MeOH) were homogenized using a Precellys24

(PeqLab, Erlangen, Germany) at 4–10 �C for two times

over 25 s at 5500 rpm. After this, the resulting homo-

genates were ready to use for the fluorometric DNA

quantification as well as for metabolomic analyses.

2.6 Novel fluorometric DNA quantification method

For the development of the fluorometric DNA quantifica-

tion method, cell homogenates containing 5.0 x 105 of

trypsinized cells per sample (Hep G2, SGBS, THLE-2, or

HK-2) in 300 lL 88 % MeOH, were used. Pure 88 %

MeOH substituted cell homogenates in blank measure-

ments. For the assay, the fluorochrome Hoechst 33342

(10 mg/mL in H2O) was diluted in PBS to the according
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concentrations, as stated below. The indicated amounts of

those Hoechst 33342 solutions were put into the wells of a

black 96-well plate (F96, Nunc, ThermoFisher, Schwerte,

Germany). After brief vortexing of the cell homogenates

(samples) or 88 % MeOH (blank), the according aliquots

were added to the Hoechst solutions to gain a total volume

of 100 lL per well, and the assay components were thor-

oughly mixed by pipetting. Next, the plate was incubated in

the dark for 30 min at room temperature. For quantification

of the fluorescence, a GloMax Multi Detection System

(Promega, Mannheim, Germany) with an UV filter (kEx
365 nm, kEm 410–460 nm; Promega, Mannheim, Ger-

many) was used. Evaluation of raw data was performed as

described below.

In order to determine the dye concentration for optimal

assay readout, the Hoechst 33342 stock was diluted to the

final concentrations of 0.2, 2.0, 10.0, 20.0, and 30.0 lg/mL.

Assays contained 80 lL of the according Hoechst dilutions

(corresponding to 0.016, 0.16, 0.8, 1.6 and 2.4 lg dye per

assay) and 20 lL of the cell homogenate or 88 % MeOH

(blank). For each cell line, six samples per Hoechst 33342

concentration were analyzed in duplicates.

In the next step, the cell homogenate volume required

for optimal assay readout was determined. The Hoechst

33342 stock was diluted to the final concentrations of 16.8,

17.8, 18.8, 20.0, 21.3, 22.9, 24.6, 26.7, 29.1, and 32.0 lg/
mL. Assays contained 95, 90, 85, 80, 75, 70, 65, 60, 55,

and 50 lL of according Hoechst dilutions to get in each

case a final amount of 1.6 lg dye per assay. Cell homo-

genate volumes of 5, 10, 15, 20, 25, 30, 40, and 50 lL were

added to the Hoechst solutions to gain a final volume of

100 lL per assay. The final Hoechst 33342 concentration

was 20 lg/mL. For each cell line, six samples per Hoechst

33342 concentration were analyzed.

To assess the correlation of cell number to DNA fluo-

rescence intensity, standard curves were generated using

the optimized parameters. The assay was thus performed

using 80 lL of the optimal Hoechst 33342 solution (20 lg/
mL). Cell homogenates with cell numbers ranging from

1.0 9 104 to 1.0 9 106 (THLE-2, HK-2, and SGBS) or to

2.5 9 106 (Hep G2) cells in 300 lL 88 % MeOH were

prepared from trypsinized cells. Of these, 20 lL (the

optimal cell homogenate volume) each were added to the

Hoechst solution. For each cell line, five samples per cell

number were analyzed.

2.7 Quantification of metabolites

For targeted metabolomics analysis of cell culture homo-

genates, the AbsoluteIDQTM p180 kit (Biocrates Life Sci-

ences, Innsbruck, Austria) was used. The assay is based on

tandem mass spectrometry measurements (MS/MS) and

allows for the simultaneous quantification of 188 metabolites

fromdifferent compound classes (21 amino acids, 21 biogenic

amines, 40 acylcarnitines, 38 acyl/acyl phosphatidylcholines,

38 acyl/alkyl phosphatidylcholines, 14 lyso-phosphatidyl-

cholines, 15 sphingomyelins, and the sum of hexoses). The

metabolites were identified according to MSI Level 1 or 2

(Salek et al. 2013). The complete list of metabolite names,

HMDB IDs, and MSI level of identification are given in the

Online Resource, Table S-1. The assay has been validated for

a number of matrices and showed high precision and repro-

ducibility. The lipids and the hexoses were determined by

FIA-MS/MS,while the amino acids and biogenic amineswere

measured by LC–MS/MS. The method has been described

earlier (Zukunft et al. 2013), but was slightly adapted for this

study as detailed: 30 lL of the homogenized cell samplewere

applied manually onto the filter inserts of the 96-well plate

provided by the p180 kit by alternation of 10 lL sample with

subsequent liquid evaporation.

Sample liquid handling steps were performed by a

Hamilton Micro Lab STARTM robot (Hamilton Bonaduz,

Bonaduz, Switzerland) following the manufacturer’s proto-

col UM-P180. Evaporation steps were performed using a

nitrogen evaporator (Ultravap, Porvair Sciences, Leather-

head, Great Britain), and mass spectrometry analyses were

done on an API4000 LC–MS/MS system (ABSciex, Darm-

stadt, Germany) coupled to an Agilent 1200 Series HPLC

(Agilent, Böblingen, Germany), and a HTC PAL autosam-

pler (CTC Analytics, Zwingen, Switzerland) controlled by

the Analyst 1.5.2 software (ABSciex, Darmstadt, Germany).

On each plate, three plasma samples spiked with dif-

ferent concentrations of reference analytes (QC1-3) and

five reference plasma samples were run to serve as quality

control and for the evaluation of plate effects, respectively.

2.8 Data analysis

Data obtained from the development of the fluorometric DNA

quantification method were plotted using SigmaPlot 12.0

(Systat Software, Erkrath, Germany). SigmaPlot was further

used to perform linear regression analysis. The limit of blank

(LOB) and the limits of detection (LODs) were calculated

according to Armbruster and Pry (Armbruster and Pry 2008).

Signal to noise (S/N) ratios were calculated using the Eq. (1)

(O’Brien et al. 2005; F. Fan and Wood 2007), where RFU

represents relative fluorescence units and SD the standard

deviation. A S/N ratio[5 was considered acceptable.

S=N ratio =
RFU meansample

� �
� RFU meanblankð Þ

SDblank

ð1Þ

Data evaluation for the quantification of metabolites and

quality assessment was performed with the MetIDQTM

software, which is part of the AbsoluteIDQTM p180 kit.

Amino acids and biogenic amines were quantified absolutely

by using internal standards and calibration curves consisting
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of 7 calibrators, while acylcarnitines, glycerophospholipids,

and hexoses were evaluated semi-quantitatively by using 13

internal standards for lipids and one for the hexoses. All

metabolite concentrations are given in lmol/L.

Statistical analysis of metabolomics data was performed

using the software R 3.1.2 (R Core Team 2012). Only those

metabolites with C50 % of samples per cell line displaying

a concentration above the LOD (defined by Biocrates for

the AbsoluteIDQTM p180 kit), were considered for further

data processing and interpretation. Linear regression anal-

ysis was performed to assess the correlation of metabolite

concentrations to cell numbers.

To test the applicability of a common standard normal-

ization procedure, which follows the assumption that the

slope of the metabolite concentrations, if plotted against the

cell number, equals 1, the normalization of the metabolite

concentrations of the trypsinized samples to a specific ref-

erence cell number (Nc) was done using the Eq. (2). Nc was

set to 5.0 9 105. Mm represents the measured metabolite

concentration and Nd the determined cell number. Mcn is the

metabolite concentration normalized to Nc.

Mcn ¼ Mm � Nc

Nd

� �
ð2Þ

For the comparison of the two harvesting procedures

(trypsinization and scraping), we plotted the means of the

metabolite concentrations against the means of the deter-

mined cell numbers, performed linear regression analysis,

and used the obtained metabolite specific linear equations

[similar to Eq. (3)] for the calculation of the metabolite

concentrations (Mcn) at the constant reference cell number

of 5.0 9 105 cells (Nc). b0 represents the intercept and b1
the according slope.

Mcn ¼ b0 þ b1 � Nc ð3Þ

The testing for statistical significant differences in

metabolite concentrations of multiple groups was per-

formed using the non-parametrical Kruskal–Wallis test.

For correction of multiple testing, the Bonferroni method

was applied. Plots were generated using R 3.1.2 (R Core

Team 2012) and the ggplot2 package (Wickham 2009).

3 Results and discussion

3.1 Development of the fluorometric DNA

quantification method for cell culture

metabolomics samples

The quantification of DNA was recently introduced as

consistent approach for normalization of metabolomics

data from cultured cells (Silva et al. 2013). Since this DNA

quantification method is time-consuming and laborious, we

developed a robust, sensitive, and fast method for DNA

quantification for cell culture derived samples harvested for

metabolomics experiments. The principle of the here

described DNA quantification assay is the detection of

fluorescence after the direct addition of cell homogenates

used for metabolomics analyses to a Hoechst 33342 stain [a

dye selective for double-stranded DNA (Müller and Gau-

tier 1975)] solution. Assays are performed in a 96-well

format. We developed this DNA quantification assay using

four different human cell lines, namely Hep G2 (hepato-

carcinoma), HK-2 (kidney), THLE-2 (liver), and SGBS

(pre-adipocyte), which were harvested by trypsinization.

The first step during the assay development was the

determination of the optimal assay concentration of the

fluorescent Hoechst 33342 dye. The manufacturer recom-

mends 0.1–12 lg/mL dye for staining of different cell

types. Thus, we tested final dye concentrations ranging

from 0.2 to 30 lg/mL. For all cell lines tested, we observed

the highest signal intensities and highest S/N ratios at

10–20 lg/mL Hoechst 33342 (Fig. 1). A further increase

of the dye concentration to 30 lg/mL led to a slight

decrease in fluorescence intensity accompanied by a slight

increase in sample variation (Fig. 1). Furthermore, the

background signal of the blanks increased with increasing

Hoechst 33342 concentration (µg/mL)
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Fig. 1 Determination of the optimal Hoechst 33342 concentration for

the fluorometric DNA quantification method. 80 lL of differently

diluted Hoechst 33342 dye in PBS were mixed with 20 lL of cell

homogenate containing 5.0 9 105 cells in 300 lL 88 % MeOH.

Blanks contained 20 lL of 88 % MeOH instead of cell homogenate

(a). Signal to noise ratios for each Hoechst concentration and each

cell line (b)
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dye concentration, leading to lower S/N ratios with

increasing Hoechst dye content (Fig. 1). The cell line

independent decrease in fluorescence intensity at high dye

concentrations might be explained by self-quenching, a

phenomenon described earlier for other fluorescent dyes

(Penzkofer and Leupacher 1987; Penzkofer and Lu 1986).

Based on the excellent S/N ratios for all cell lines at 20 lg/
mL Hoechst 33342 (corresponding to a total amount of

1.6 lg dye per assay), we continued the assay development

keeping to this dye concentration.

The next step in method development was the deter-

mination of the optimal sample volume. To this end, we

analyzed different ratios of Hoechst 33342 solution (in

PBS) to cell homogenate (in 88 % MeOH). In an assay

volume of 100 lL we changed the volume of the Hoechst

solution (95–50 lL) but kept the Hoechst 33342 amount

with 1.6 lg per assay constant. Cell homogenate volumes

ranged from 5 to 50 lL. For all cell lines tested, we

observed an increase of the fluorescence signal with

increasing homogenate volume. However, three out of four

cell lines, namely SGBS, THLE-2, and HK-2, displayed

signal saturation (Fig. 2) at cell homogenate volumes

higher than 25–30 lL, whereas Hep G2 cell signals

reached no plateau (Fig. 2). A possible explanation for this

observation might be that Hep G2 homogenates exert less

matrix effect related quenching of the fluorescent signal

due to the smaller cell volume, which might correlate with

a lower amount of potential interfering intracellular com-

pounds. With increasing homogenate volume, also the

measured background of the blanks increased, diminishing

the S/N ratios. Considering the necessity to use as little

sample as possible but as much as necessary to obtain an

optimal S/N ratio, we decided on the optimal sample vol-

ume being 20 lL.
We performed all subsequent measurements with the

following fixed assay composition: assays contained 80 lL
of a 20 lg/mL Hoechst 33324 solution (in PBS; final

Hoechst 33342 content of 1.6 lg per assay) and 20 lL of

cell culture homogenate (in 88 % MeOH) in a total assay

volume of 100 lL.
To assess the correlation of cell number to DNA fluo-

rescence intensity, we recorded a standard curve for each

cell line. Therefore, we used homogenates with cell num-

bers ranging from 1.0 9 104 to 1.0 9 106 per sample. For

all four cell lines tested, we observed excellent linear

correlation of the relative fluorescence units (RFUs) with

the cell numbers over two orders of magnitude (Fig. 3).

The same observation was made for other cell lines,

namely HEK293, Hepa1-6, COS-1, HeLa, and 3T3-L1 (R2:

0.9889–0.9997; data not shown). The limit of blank (LOB)

was calculated to be 225.1 RFUs, while the limit of

detection (LOD) was calculated for each cell line indi-

vidually. The LODs for THLE-2, HK-2, Hep G2, and

SGBS were 244.9, 233.8, 230.4, and 266.8 RFUs, respec-

tively. These LODs corresponded to 2.5 9 104 (THLE-2),

1.0 9 104 (HK-2), 2.5 9 104 (Hep G2), and 5.0 9 104

(SGBS) cells per 300 lL sample. Considering a S/N ratio

of larger than 5 as acceptable, the lower limit of quantifi-

cation (LOQ) was found to be at 5.0 9 104 cells per

sample for all cell lines analyzed in this study. In some

cases we noticed a slight tendency to reach a signal satu-

ration of fluorescence intensity at 1.0 9 106 cells (Fig. 3).

However, the linear range of our assay was found to be

within 5.0 9 104 and 1.0 9 106 cells per 300 lL sample

for THLE-2, HK-2, and SGBS cells (R2: 0.9928 - 0.9961)

and within 5.0 9 104 and 2.5 9 106 cells per 300 lL
sample for Hep G2 cells (R2: 0.9713).

It was recently shown that the DNA concentration

determined in cell culture metabolomics samples has an

excellent linear correlation with the cell number of these

samples (Silva et al. 2013). However, the authors applied a

complicated and time-consuming workflow by first isolat-

ing and purifying genomic DNA from the samples and in a

second step quantifying the DNA spectrophotometrically.

In comparison, our fluorometric method for DNA quan-

tification has only little time and material requirements,

since the method is fast and needs only a DNA-binding
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Fig. 2 Determination of the optimal cell homogenate volume for the

fluorometric DNA quantification method. Different volumes

(5–50 lL) of cell homogenates containing 5.0 9 105 cells in

300 lL 88 % MeOH were mixed with different volumes of diluted

Hoechst 33342 dye in PBS (50–95 lL; the dye amount per assay was

kept constant at 1.6 lg) in a final volume of 100 lL. Blanks

contained according volumes of 88 % MeOH instead of cell

homogenate (a). Signal to noise ratios for each sample volume and

each cell line (b)
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dye, multi-well plates, and a plate reader. Furthermore, the

method has a low error-proneness, a wide linear range and

is quite robust. For instance, cell numbers can be deter-

mined regardless of cell size, cell line, and tissue of origin

(Fig. 3). Also, the methanol content of the homogenization

(extraction) solvent, within a range of 60–100 %, does not

have a significant impact on the obtained signal (data not

shown). Additionally, the method provides a large flexi-

bility regarding e.g., sample volume or dye concentration,

as can be concluded from the optimization experiments.

However, as with every method, there are certain limita-

tions to consider. For instance, compound induced ploidy

changes in cells might have an impact on the measured

fluorescence intensity. To circumvent this effect, we would

recommend to record standard curves in any new experi-

mental cell culture setup. Furthermore, our method fails at

very low cell numbers due to insufficient sensitivity.

However, as the method is very flexible this issue might be

overcome by adjusting single assay parameters (e.g., the

Hoechst 33342 concentration). In conclusion, the use of

such a universal molecule like DNA for normalization of

metabolomics from cell culture in combination with a

robust, but still flexible quantification method entails only

little validation work when applied to different cell lines.

3.2 Correlation between cell number and metabolite

concentration

For the normalization of metabolomics data from cells, it is

usually assumed that an increase of cell number gains an

increase of metabolite signals, and the ideal case would be

a linear correlation. However, to the best of our knowledge,

this assumption was not yet proven systematically with a

broad panel of quantified metabolites and cell lines. For the

cell lines Hep G2, THLE-2, SGBS, and HK-2 we therefore

assessed the correlation between cell number and

metabolite concentration by quantifying the metabolite

levels of different amounts of trypsinized cells. We selec-

ted cell numbers lying within the linear range of the DNA

standard curves. We determined metabolite levels using a

validated targeted metabolomics kit, the AbsoluteIDQTM

p180 kit from Biocrates. Although this targeted metabo-

lomics approach allows for the parallel quantification of a

limited panel of metabolites (188 metabolites from six

different compound classes (amino acids, biogenic amines,

acylcarnitines, phospho- and sphingolipids as well as the

sum of hexoses)), the kit was chosen for two good reasons:

first, it contains the largest set of metabolites quantifiable at

the same time, and second, it provides absolute concen-

trations, which is essential to perform correlation analyses.

Only metabolites which passed the quality threshold cri-

terion (C50 % of samples per cell line displaying con-

centrations above the LOD) were taken into account for

further calculations and evaluations. These measures were

taken to minimize the distortion of the results due to

technical limitations of the analysis. Depending on the cell

line, 85–114 metabolites were found to be above the LOD

(Table 1). The performance of a linear regression analysis

showed that more than 90 % of these metabolites displayed

an excellent linear correlation (R2 C 0.9) between con-

centration and cell number (Online Resource, Fig. S-1),

and more than 50 % surpassed even an R2 value of 0.99.

However, the slopes of the regression lines were found to

be metabolite and cell line dependent (Online Resource,

Fig. S-3, Table S-2). The different rates of increase might

originate from matrix and analyte dependent differences in

ionization properties and ion suppression as well as from

cell line specific utilization of metabolic pathways (Jain

et al. 2012; Neermann and Wagner 1996).
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Fig. 3 Correlation of Hoechst

33342 fluorescence intensity

with cell number. 20 lL of cell

homogenates, containing

different amounts of cells per

sample (1.0 9 104 to 1.0 9 106

in 300 lL 88 % MeOH), were

added to 80 lL of a Hoechst

33342 solution (20 lg/mL in

PBS). Blank measurements

were carried out using 20 lL of

88 % MeOH instead of cell

homogenate. Coefficient of

determination (R2) for each cell

line is given in the legend (a).
Signal to noise ratio for each

cell number and each cell line

(b)
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Around 10 % of metabolites which passed the quality

threshold criterion did not exhibit sufficient linearity for

normalization purposes (Online Resource, Fig. S-2), in

most of the cases probably due to concentration values very

close to the LOD, as shown exemplarily for the acylcar-

nitine C16:1 (Online Resource, Fig. S-4). In addition, many

of the affected metabolites were part of the lipid panel of

the Biocrates AbsoluteIDQTM p180 kit. The lipids are

measured using only a semi-quantitative approach (no

individually matching internal standard for every single

metabolite, but one internal standard for several similar

metabolites). Hence, the concentration values of these

metabolites are more prone to evaluation errors, because

metabolite and internal standard might show different

matrix effects or ionization efficiencies.

Published data on correlation of metabolite concentra-

tions to cell numbers are rare and our data thus overlap

only with those for one metabolite, namely glutamic acid.

Glutamic acid was found to correlate linearly with the cell

number in a LC–MS (Silva et al. 2013) and a GC-TOF–

MS (Cao et al. 2011) approach supporting our observa-

tions. The other metabolites analyzed in these studies

(Cao et al. 2011; Silva et al. 2013) were organic com-

pounds, which were not included in our method. How-

ever, those compounds showed as well linear correlation

with cell number leading to the assumption that the linear

correlation behavior holds true for most metabolites. On

the other hand, metabolites of different chemical classes

as well as metabolite analyses techniques are so diverse

that a reliable prediction of metabolite behavior in ana-

lytics is difficult.

All in all, the excellent correlation of most metabolite

concentrations to the cell number over different metabolic

classes shown in our and in previous studies demonstrates

that the assumption of increasing metabolite levels with

increasing cell numbers holds true. Further, this observa-

tion underlines the eligibility of data normalization to the

cell number.

3.3 Applicability of the fluorometric DNA

quantification as normalization method for cell

culture metabolomics

After having shown that both the fluorometric DNA signal

and the metabolite concentration are linearly correlating

with the cell number, we assessed the applicability of the

indirect cell counting, i.e., the fluorometric DNA quantifi-

cation, for cell culture metabolomics normalization. We

harvested cells according to our standard cell culture pro-

cedure for metabolomics sample generation by scraping the

cell layer in pre-cooled extraction solvent. We employed

cell numbers within the range of 7.5 9 104 to 2.5 9 106

cells. Metabolites were quantified as before by targeted

metabolomics and depending on the cell line, 51–114

metabolites were found to be above the LOD (Table 1).

These metabolites were used for further analysis. In par-

allel, the cell numbers contained in the samples were

determined indirectly using our fluorometric DNA quan-

tification method and calculated by means of standard

curves. Linear correlation analysis between the metabolite

concentration and the indirectly measured cell numbers

were performed. For THLE-2 and Hep G2 cells, more than

90 %, and for SGBS and HK-2 cells, more than 80 % of

the measured metabolites above LOD displayed an R2

value above 0.9 (Table 1). Additionally, in all cell lines,

more than 50 % of all metabolites showed an R2 value

larger than 0.95. In conclusion, we obtained linear corre-

lations of metabolite concentrations with the cell numbers

in samples harvested by scraping. Since we also obtained

linear correlations of metabolite concentrations with cell

number in samples harvested by trypsinization, we con-

clude that the fluorescent method for DNA quantification is

applicable for normalization of cell culture derived samples

in metabolomics analyses.

Normalization of metabolomics data to parameters such

as cell number, DNA, or protein content, and subsequent

statistical analysis are common procedures in data

Table 1 Quality of linear

correlation between metabolite

concentration and cell number

% of Metabolites with coefficients of determination (R2)[ 0.9

Cell line Trypsinized cell samples Scraped cell samples

THLE-2 96 % (n = 114) 93 % (n = 94)

Hep G2 94 % (n = 94) 93 % (n = 95)

HK-2 91 % (n = 85) 84 % (n = 51)

SGBS 97 % (n = 110) 82 % (n = 114)

Different numbers of cells of each cell line were harvested by trypsinization or scraping and targeted

metabolomics was performed. Exact cell numbers were determined directly by counting (trypsinized cells)

or indirectly by our new fluorometric DNA quantification method (scraped cells). Linear correlation

between cell numbers and metabolite concentrations was performed including only the metabolites passing

the quality threshold criterion (C50 % of samples per cell line displaying concentrations above the LOD)

(numbers given in brackets)
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processing (León et al. 2013; Hutschenreuther et al. 2012;

Bi et al. 2013; Silva et al. 2013) and of vital importance for

data interpretation (Silva et al. 2013; Cuperlović-Culf et al.

2010). However, massive efforts are made to eliminate bias

in data analysis (Broadhurst and Kell 2006; Burton et al.

2008; Wang et al. 2012), but up to now, the question

whether normalization of the data can introduce a bias and

false positives is strongly underrepresented in the literature.

To address one aspect of this issue, we elucidated whether

a significant difference in metabolite concentrations would

appear between samples measured at different cell numbers

but normalized to one fixed reference cell number. To this

end, normalized metabolite concentrations of all samples

with different numbers of scraped cells were calculated

according to Eq. (2) using 5.0 9 105 cells as reference cell

number. For SGBS, THLE-2, Hep G2, and HK-2 cells 87,

82, 60, and 61 % of all metabolites passing the quality

threshold criterion (C50 % of samples per cell line dis-

playing concentrations above the LOD), respectively, dis-

played constant values (Online Resource, Fig. S-5). The

observed differences between the cell lines resulted most

likely from the different cell specific metabolic profiles.

For example, of all cell lines HK-2 showed the lowest

number of metabolites meeting the quality threshold cri-

terion (Table 1), and in consequence, only a low number of

linearly behaving metabolites could be found. Addition-

ally, many measured metabolite concentrations were in

close vicinity to the LOD. Such low values are usually

overestimated in the normalization process leading mostly

to a non-linearity of the respective metabolites.

Overall, the results indicate that the concentration of the

majority of metabolites can be measured at any cell amount

(within the linear range of the method and when the

metabolite concentrations lie above the LOD) and their

concentrations can be extrapolated in a linear fashion to a

reference cell number. However, the observation that

13–40 % of all metabolites showed significant concentra-

tion differences after normalization to one fixed cell

number, underlines the importance of a thorough validation

of normalization procedures in study design and data

processing.

3.4 Impact of the harvesting method

on the metabolite concentrations

A vital prerequisite for conducting reliable metabolomics is

the immediate quenching of metabolic processes (León

et al. 2013; Dettmer et al. 2011; Bi et al. 2013; T. W.-M.

Fan 2012) at sample collection. In order to meet this

requirement, scraping of cells in an ice-cold extraction

solvent consisting of a mixture of organic and aqueous

components is currently the method applied most fre-

quently (Hutschenreuther et al. 2012; Teng et al. 2009;

Dettmer et al. 2011; Bi et al. 2013). However, trypsiniza-

tion is the standard cell culture procedure for the detach-

ment of adherent cells and allows for convenient cell

counting. Unfortunately, it is less suitable for metabo-

lomics analysis, because the metabolism is not quenched

immediately at cell harvest and a decrease in metabolite

concentration of some small and polar compounds (trypsin

leakage) was reported (Teng et al. 2009; Dettmer et al.

2011; Bi et al. 2013). To elucidate the impact of enzymatic

and mechanical sample preparation on a broader panel of

metabolite classes in targeted metabolomics analysis, we

compared the metabolite concentrations of trypsinized and

scraped cells. In case of the trypsinized cells, the precise

cell number was determined after harvesting by counting

and homogenates which contained the reference cell

number of 5.0 9 105 cells were used. In case of the

scraping approach, 5.0 9 105 cells per well were seeded,

incubated in medium until full attachment was achieved

but before proliferation started, and then harvested by

scraping. As seeding and scraping might lead to a loss of

cells, the exact cell numbers in the homogenates were

determined using the fluorescence-based DNA quantifica-

tion method. Although identical cell numbers were used for

both harvesting approaches, the cell numbers in the scraped

samples of THLE-2, HK-2, and Hep G2 were slightly

lower, which is probably due to the stress during passaging

prior to seeding (data not shown). Thus, the obtained

metabolite concentrations were normalized to 5.0 9 105

cells for the data comparison. As discussed previously, the

standard normalization procedure, which assumes a slope

of 1 if the metabolite concentrations are plotted against the

cell numbers, was not applicable for all metabolites.

Therefore, linear regression analysis was performed for

each metabolite [see Eq. (3)] and the resulting parameters

(slope and intercept) were used for normalization. The

impact of the harvesting method turned out to be highly

specific in regard to metabolite class as well as to cell line

(Online Resource, Fig. S-6). Acylcarnitine levels were not

affected by the harvesting method, but we observed sub-

stantial differences between trypsinized and scraped cells

for amino acids, biogenic amines, lyso-phosphatidylcholi-

nes, phosphatidylcholines, and sphingomyelins. THLE-2

and SGBS cells contained considerably lower and Hep G2

cells slightly lower mean levels of amino acids and bio-

genic amines in trypsinized than in scraped cell samples

(Table 2). Different to the other three cell lines, HK-2 cells

showed higher amino acid and biogenic amine concentra-

tions in trypsinized than scraped cells. Interestingly,

phosphatidylcholines, which are major constituents of

cellular membranes (Colbeau et al. 1971), and their

degradation products, the lyso-phosphatidylcholines, pre-

dominantly displayed strongly elevated levels in samples

collected by trypsinization. Regarding sphingomyelins,
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trypsinized THLE-2, Hep G2, and HK-2 cells showed

1.5–3.1 fold increased levels compared to the scraped cells.

In contrast, only 60 % of the total sphingomyelin con-

centration in trypsinized SGBS cells was present when

compared to scraped cells (Table 2).

Substantial loss of intracellular metabolites in trypsi-

nized cell samples has already been reported for different

adherent cell lines (Teng et al. 2009; Dettmer et al. 2011;

Bi et al. 2013). These studies focused on small and polar

metabolites like amino acids, tricarboxylic acid cycle

intermediates, nucleobases, and sugars. The authors dis-

cussed metabolite secretion (Teng et al. 2009), passive

diffusion due to different osmotic strength of the applied

solutions (Teng et al. 2009), metabolite fluctuations caused

by rapid turnover rates in response to changes in the cell

environment and cell morphology (Teng et al. 2009; Bi

et al. 2013), and leakage of metabolites through the plasma

membrane (Dettmer et al. 2011) as possible reasons for the

depletion of intracellular metabolites upon trypsinization of

cells. Bi et al. also noted that the metabolic leakage most

likely depends on the cell type (Bi et al. 2013). Our data

strongly underline this opinion, since we observed that the

effect of trypsin on the intracellular metabolites is not only

metabolite class dependent but also cell line dependent.

Regarding amino acid and biogenic amine concentrations,

we found them to be considerably lower in trypsinized

samples of THLE-2, Hep G2, and SGBS cells, which is in

agreement with previously published work on other cell

lines (Dettmer et al. 2011; Bi et al. 2013; Teng et al. 2009).

An explanation might be metabolite leakage due to enzy-

matic decomposition of the cellular membrane and PBS

washing steps during enzymatic harvest. Why HK-2 cell

homogenates showed elevated amino acid and biogenic

amine levels in trypsinized samples can unfortunately not

yet be explained. For lyso-phosphatidylcholines, phos-

phatidylcholines, and sphingomyelins we mostly observed

increased levels in trypsinized samples (Table 2). How-

ever, trypsinized SGBS cells were found to be the

exception in displaying slightly decreased lipid levels,

thereby further underlining the cell line dependency of the

impact of the applied harvesting method.

4 Concluding remarks

We have developed a fluorescence-based DNA quantifi-

cation method for the determination of cell numbers in

metabolomics samples. This assay is robust, allows for fast

quantification of the DNA content, is easier and faster than

currently used alternative methods, and facilitates nor-

malization procedures in cell culture metabolomics. Fur-

thermore, we found the metabolite concentrations of most

metabolites from different classes to be positively corre-

lated with the cell number in a linear fashion, which pro-

vides the eligibility of data normalization to the cell

number. We also showed that the impact of the cell har-

vesting protocol is highly dependent on the metabolite

class and the cell line. Our observations that a small portion

of metabolites showed no linear correlation to the cell

number as well as the cell line specific impact of the har-

vesting procedure on the metabolite concentrations,

underline the importance of thorough optimization, stan-

dardization, and validation of cell culture metabolomics

experiments.
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