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Abstract

Biomedical research is fundamentally driven by the ability to image biological processes
and structures. Thereby, optoacoustic imaging techniques are capable of providing not only
structural, but also functional and molecular information enabling researchers to investi-
gate diseases on an unprecedented level. As a hybrid imaging technology, optoacoustics
combines the advantages of pure optical techniques and ultrasound. In effect, optoacoustic
imaging systems generate reconstructions providing optical contrast and ultrasonic reso-
lution. Thereby, optoacoustic devices are capable of surpassing the limitations of optical
techniques and image several centimeters into biological tissue.
Bearing the potential to provide complex information about biological processes, image
reconstruction in optoacoustics becomes an important task in order to assure the image
accuracy and quantifiability expected. Already the choice of the imaging model has a
major impact on the complexity and performance of eventual reconstruction algorithms.
Thereby, algebraic inversion algorithms offer superior modeling flexibility over analytic in-
version algorithms, resulting in more accurate reconstructions. Including the geometry of
ultrasonic transducers into the imaging model is proven to have significant influence on
the image quality of optoacoustic reconstructions. This work implements, analyzes and
evaluates approaches to incorporate geometric detector properties into model-based re-
construction algorithms. In this process, a theoretical background of optoacoustic signal
generation and ultrasonic detection is given. Superior performance of the enhanced model-
based algorithm is demonstrated in simulations and experiments with tissue-mimicking
Agar phantoms containing micro-particles and biological tissue.
In order to handle the increasing size of a sophisticated imaging model, efficiency strategies
based on symmetries in the detection geometry are implemented. Furthermore, this the-
sis presents a framework for model-based tomographic image reconstruction using wavelet
packets. The framework decomposes a large imaging problem into a set of smaller prob-
lems, thereby, enabling the application of sophisticated inversion procedures for each of
the small problems. In consequence, memory requirements and calculation time for model
inversion decreased significantly.
Commonly optoacoustics is implemented in pulsed-mode, where nanosecond laser pulses
are applied to generate optoacoustic pressure signals. Alternatively, optoacoustics can be
performed employing inexpensive modulated light sources. This thesis presents the tomo-
graphic implementation of optoacoustic imaging using a linear frequency modulated laser
source. Thereby, the theoretical background is provided, leading to the derivation of a
dedicated reconstruction algorithm. The developed imaging system, applying a modulated
laser source, showcased for the first time the capability to operate in-vivo.
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Chapter 1

Introduction

’As to diseases, make a habit of two things – to help, or at least, to do no harm.’
– Hippocrates

1.1 Biomedical Imaging in History – From Structural

over Functional to Molecular Information

For decades, the development of improved imaging technologies proved to be a driving
factor of advancements in biological research and medicine. In the very sense of the word,
by producing an image of a patient, scientists and physicians gained insight into structure
and physiology of living tissue. Grasping a diseased body part with their eyes, enables
better understanding of cause, constitution and behavior related to a disease.
For centuries, medical diagnostics was limited to the regions of the body the physicians
could see with their proper eyes. In 1806, a medical doctor in Mainz, Philipp Bozzini,
extended that range by developing a first stiff medical endoscope. He named his invention
’Lichtleiter’ (light conductor) as it uses natural light ’for the examinations of the canals
and cavities of the human body’ [1]. In effect, physicians could extend their field of vision
by inserting the endoscope into human orifices, enabling the examination of some hollow
organs or body cavities. However, most interior parts of the body remained invisible to
medical diagnostics. This barrier fell with the first major breakthrough in medical imag-
ing. In 1895, the discovery of X-rays and its interaction with human tissue by German
physicist Wilhelm Conrad Röntgen [2] paved the way to new insights of the human body.
For the first time projection images through the entire body visualized internal structures
of the human body. In 1901, Röntgen was awarded with the first Nobel Prize in physics
for his discovery. Although X-rays refer to a part of the electromagnetic spectrum which
has an ionizing effect on human tissue, they are still among the most widely used imaging
techniques today.
The concept of sending energy in form of waves into the body, and measuring its response
after interaction with human tissue, was also at the basis of the development of medical
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ultrasound. Austrian neurologist Karl Dussik was the first to apply ultrasonic energy for
the purpose of imaging the human body. In 1942, he performed a scan of the ventricu-
lar system in the brain with a procedure he then called ’Hyperfonographie’. The theory
behind ultrasonic measurements had been developed before by Paul Langevin in France.
The initial motivation came from military needs during World War I, where the aim was
sound location of submarines. In contrast to X-ray imaging, ultrasonography is not based
on ionizing radiation and is therefore harmless for the human body. Nowadays, its applica-
tions range from real-time three-dimensional imaging in prenatal diagnostics, over Doppler
echocardiography to intravascular ultrasound (IVUS) [3].
It took until the early nineteen seventies, for fundamentally new medical imaging devices
to come to the market. Both X-ray computed tomography (XCT) and magnetic reso-
nance imaging (MRI) revolutionized medical diagnostics and intervention as for the first
time cross-sectional images of the whole human body could be generated. In the early
sixties, physicist Allan Cormack developed the theoretical basis of a computer tomograph
that in 1971 Sir Godfrey Hounsfield put into practice by building the first XCT scanner
[4],[5]. The mathematical fundament behind tomographic reconstructions dates back to
1917, when Austrian mathematician Johann Radon invented the famous transform that
would be named after him. He was able to show mathematically that a function could
be reconstructed from an infinite set of its projections [6]. Although, generating XCT im-
ages exposes the patient to ionizing radiation, the diagnostic quality of the high resolution
three-dimensional images makes XCT a valuable device in imaging. In 1979, Cormack
and Hounsfield received the Nobel Prize in medicine for their contributions in the devel-
opment of XCT. However, if a high soft-tissue contrast is requested, MRI seems to be
the imaging modality of choice. Similar to XCT, MRI provides the physician the ability
to produce whole-body three-dimensional images. In 2003, the American chemist Paul
Lauterbur together with British physicist Peter Mansfield were awarded with the Nobel
Prize in medicine for their essential contributions to the development of MRI [7],[8]. The
major advantage of MRI is the fact that a patient is not exposed to radiation, making
MRI a viable imaging technology for people who may be vulnerable to the effects of radi-
ation, such as pregnant women and babies. Furthermore, MRI has a superior soft-tissue
contrast over other imaging methods. Today, MRI provides doctors and researchers with
images of blood vessels, the heart, joints and tendons. Moreover, it possesses the ability
to generate functional images (fMRI) of the brain and to represent its nerve fibers with
a technique termed diffusion MRI (dMRI) [9]. Functional imaging summarizes modalities
that provide images which enable the measurement of metabolic changes or blood flow in
living tissue. Other functional imaging techniques, such as positron emission tomography
(PET) and single-photon emission computed tomography (SPECT), rely on nuclear probes
injected into the human body and are therefore potentially harmful [10]. Conceptually,
after injection, a short-lived nuclear tracer isotope accumulates in cancerous tissue and
starts decaying radioactively. By measuring the radioactive radiation products of the de-
cay, even small tumors can be localized with unprecedented accuracy [11]. In combination
with a XCT or MRI scanner, functional PET or SPECT images can be complemented with
structural information provided by XCT or MRI.



1.2 Optoacoustics as a Hybrid Imaging Device 3

Once externally administered molecules take part in the generation of an image, it is only a
small step towards functionalizing them as biomarkers that interact chemically with their
environment. Thereby, resulting changes on the molecular level can subsequently be cap-
tured with an imaging system. Performing so-called molecular imaging aims at enabling
researchers to study, on a molecular level, physiological processes of diseases in-vivo and
real-time. Thereby, small abnormalities on a molecular level allow a premature diagnosis
of diseases, even before external symptoms arise.
Besides MRI, PET and SPECT there is an entire range of optical imaging devices be-
ing able to perform molecular imaging. Optical methods generally exploit fluorescence,
bioluminescence, absorption or reflectance as their source of contrast [12],[13]. A main
advantage of all optical techniques is their high contrast and the utilization of non-invasive
light in the visible, ultraviolet, and infrared range. Furthermore, by selecting a variety
of wavelengths for light excitation of tissue, optical imaging can potentially generate mul-
tispectral information. A drawback of optical techniques is their low penetration depth,
as light becomes heavily diffused beyond 1 mm into biological tissue, thus, deteriorating
image resolution.

1.2 Optoacoustics as a Hybrid Imaging Device

Hybrid imaging techniques aim at combining the strengths of two or more alternative imag-
ing technologies. The contribution of each technology intends to make up for a drawback of
the other imaging technique, therefore resulting in a superior overall performance. When
Alexander Bell described in 1880 the generation of sound with a light source [14], he could
not forebode the potential that this phenomenon had for biological and medical imaging.
Today, Bell’s discovery, termed the optoacoustic (photoacoustic) effect, enables to transfer
the advantages of optical imaging techniques to deep tissue [15]. Thereby, optoacoustic
imaging devices combine the advantages of both optical and ultrasonic imaging.
By exciting biological tissue with time-varying light energy, optically absorbing structures
act as contrast sources of an optoacoustic image. After initial light excitation, optical
absorbers undergo a temperature rise in the millikelvin range which is followed by ther-
moelastic expansion [16]. Thereby, each optical absorber emits a transient pressure wave
which propagates through tissue and can be detected by ultrasonic transducers positioned
around the sample [17]. The measured pressure data is subsequently processed by a recon-
struction algorithm calculating the initial pressure distribution, which is proportional to
the optical absorption pattern [18]. As a consequence, the reconstructed image will exhibit
optical contrast and ultrasonic resolution.
In order to generate detectable optoacoustic pressure signals, a sufficient number of photons
has to reach an optical absorber. Contrary to pure optical techniques, excitation photons
in optoacoustics do not have to be exclusively ballistic in order to generate high resolution
images. Once entering scattering media like biological tissue, light photons become diffu-
sive after multiple scattering events. This limits the field of application for purely optical
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techniques to several hundreds of micrometers. However, diffusive light, particularly in the
near-infrared range, can penetrate up to several centimeters into biological tissue and de-
posit its energy there. Then, as acoustic attenuation is several orders of magnitude weaker
than optical attenuation [19], once a sufficiently strong pressure wave is generated by an
optical absorber, optoacoustic imaging allows to spatially reveal all structures emitting
ultrasonic signals. Furthermore, by selecting several excitation wavelengths in combina-
tion with dedicated unmixing algorithms, multispectral optoacoustic tomography (MSOT)
provides biomedical research with an efficient tool to image functional and molecular pro-
cesses in-vivo [20]. The spectrum of applications ranges from imaging of pharmacokinetics
[21], in-vivo physiology [22], and cardiovascular dynamics [23]. Thereby, optoacoustics
extends the advantages of optical techniques from microscopic ranges to macroscopy, en-
abling small-animal whole-body imaging [24].
Depending on the implementation of the individual imaging systems, optoacoustics offers
potentially three-dimensional, multispectral images acquired in-vivo and real-time [25].
Furthermore, as optoacoustically generated pressure signals are inherently wide-band, im-
age resolution can be adjusted according to the application by applying ultrasonic trans-
ducers with sensitivity in the appropriate frequency band. All these degrees of freedom
(DOF), turn optoacoustics into a sophisticated and powerful imaging technique. Yet,
image reconstruction becomes a cumbersome task, prone to artifacts and inaccuracies.
Meanwhile, molecular imaging applications require imaging devices that robustly generate
images meeting a particularly high standard of accuracy and quantifiability.

1.3 Challenges of Image Reconstruction in Optoacous-

tics

Conceptually, once optoacoustically generated pressure signals are recorded, they serve as
the input data of a reconstruction algorithm that calculates an image. The reconstruc-
tion algorithm intends to reverse the process, termed forward problem, that converts light
energy deposited at optical absorbers to ultrasonic pressure waves. In the derivation of a
reconstruction algorithm, physical processes involved in the conversion of optical energy
to mechanical energy are described by physical models. In doing so, optoacoustic imaging
is embedded into a framework of mathematical equations. Once a model characterizing
the imaging system is defined, image reconstruction consists of inverting the model, either
analytically or numerically. The definition of a model, incorporating the physical processes
of the imaging system, is a crucial step within the reconstruction procedure. Generally,
more complex models lead to more accurate image reconstructions. However, an overly
detailed imaging model induces impracticably long reconstruction times which may turn
an algorithm unfeasible.
Most reconstruction algorithms are merely based on the wave equation, modeling the
propagation of optoacoustically induced pressure waves [26],[27],[28],[29],[30],[31],[32]. Par-
ticularly analytic inversion algorithms in time and frequency domain do not model any
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additional physical effects, such as acoustic heterogeneities and attenuation, light prop-
agation or geometric detector properties. Yet, algebraic inversion algorithms offer the
possibility to include every linearizable physical effect into a complex imaging model
[33],[34],[35],[36],[37].
Specifically, modeling the ultrasonic detection system has been proven to be a challenging
step [36],[37],[38],[39]. The vast majority of imaging models assumes ultrasonic transducers
to be localized at points in space. However, realistic detectors have a surface or even a
focus, in order to assure a sufficient signal to noise ratio (SNR) or to measure signals from
selective regions. The discrepancy between imaging model and actually employed detection
hardware is the cause of severe artifacts and inaccuracies in the results of reconstruction
algorithms.
The aim of this thesis is to investigate the effects of complex imaging models for optoacous-
tic imaging. A key aspect is the implementation, analysis and evaluation of model-based
reconstruction algorithms incorporating geometric detector properties. In the process, the
benefits in image accuracy and quantifiability are demonstrated for a three-dimensional to-
mographic setup capable of small-animal imaging. Moreover, strategies to minimize com-
putational demands and to accelerate image reconstruction are presented. Furthermore,
this work showcases the feasibility to reconstruct cross-sectional images from pressure data
acquired by an optoacoustic tomography setup based on an inexpensive continuous wave
(cw) laser.

1.4 Outline of the Thesis

Following the present introductory chapter, this thesis is structured as follows. Chapter 2
provides the reader with the theoretical background of optoacoustics. Thereby, all physi-
cal phenomena contributing to the optoacoustic effect, light propagation, heat conduction
and sound propagation, are covered. Subsequently, the focus is directed to the transfer
of essential contributions involved in the optoacoustic effect into a mathematical model,
allowing to calculate analytical solutions. A final section is dedicated to the theory of op-
toacoustics employing cw laser excitation. In chapter 3 all relevant instrumentation for an
optoacoustic imaging system is introduced. Particular emphasis is given to laser technology
and ultrasonic detectors. Thereby, characterizing quantities and measures are presented
and explained. The chapter closes with an overview over current optoacoustic detection
geometries and the presentation of three optoacoustic imaging systems. All experimental
results shown throughout this work were acquired with either of the three imaging systems.
Chapter 4 summarizes the variety of optoacoustic image reconstruction algorithms, trying
to classify them by their theoretic approach. The chapter focuses thereby on algorithms
related to this work, as a truly comprehensive review is beyond the scope of this thesis.
Then, chapter 5 introduces two imaging models incorporating geometric detector prop-
erties in the context of a model-based reconstruction algorithm presented in chapter 4.
The superior performance of these models over commonly used reconstruction methods is
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showcased in simulations and experiments (including biological samples) performed in two
and three dimensions. Thereafter, first reconstructions of experimental data obtained by a
tomographic optoacoustic imaging system using a cw laser are shown in chapter 6. The de-
veloped imaging system in combination with the dedicated reconstruction algorithm prove
their ability to operate with in-vivo biological tissue. In chapter 7 techniques to reduce
memory requirements for model-based reconstruction algorithms are presented. Further-
more, a framework of model-based reconstruction in the wavelet domain is demonstrated,
promising a significant reduction in reconstruction time. The thesis ends with chapter
8 reviewing the results of this thesis in a conclusive summary and providing an outlook
over remaining open questions and next steps within the research of optoacoustic image
reconstruction.



Chapter 2

Theoretical Background

The present chapter provides an introduction to the physical background of optoacoustics.
Furthermore, practical considerations arising when modeling the optoacoustic effect are
presented, leading to the formulation of optoacoustic image reconstruction within a math-
ematical framework. Therein, mathematical arguments lead to the derivation of a solution
to the equations describing optoacoustic wave propagation.

2.1 Optoacoustic Effect

The physical effect at the basis of optoacoustic imaging was first discovered in 1880 by
Alexander Graham Bell [14]. It describes how a light pulse is converted into a temperature
rise, which in effect emits an ultrasound wave. In this section, the theoretical foundation of
the different physical phenomena that constitute the optoacoustic effect are given. Thereby
governing equations of each physical process are provided. The theory developed in this
chapter is mainly adapted from [16] and [18].

2.1.1 Light Propagation

The initial energy for the optoacoustic effect is deposited via photons emitting from a
light source. Upon entering biological tissue, photons are subject to a number of physical
interactions such as scattering and absorption. Commonly, photon transport in biological
tissue is modeled by the radiative transport equation (RTE). The RTE is a partial dif-
ferential equation describing the behavior of the radiance L in tissue, which is a function
with six degrees of freedom. As the RTE is difficult to solve, it is often approximated
by the diffusion equation, whose solution is computationally less demanding. In the fol-
lowing subsection, first, an overview over relevant physical quantities is given. Then the
RTE is derived via the conservation of energy principle. The subsection concludes, by pre-
senting the diffusion approximation, which leads to the deduction of the diffusion equation.

The central physical quantity of the RTE is radiance L which describes energy flow per
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unit normal area per unit solid angle per unit time. Radiance

L = L(~r, ŝ, t) (2.1)

is a function of spacial position ~r = (x, y, z)T , (normalized) direction ŝ = ŝ(φ, θ) and time
t. Its unit is

[
W

m2sr

]
.

Based on radiance L, one can derive the following other physical quantities. Fluence
rate Φ is defined as the energy flow per unit area per unit time regardless of the flow
direction and is measured in units of

[
W
m2

]
. By integrating the radiance over the entire 4π

solid angle, one obtains the fluence rate

Φ(~r, t) :=

ˆ
4π

L(~r, ŝ, t) dΩ. (2.2)

Using this, one can define the specific power deposition Ap as the optical energy absorbed
by the medium per unit volume per unit time. It can be calculated by multiplying the
absorption coefficient µa with the fluence rate Φ,

Ap(~r, t) := µaΦ(~r, t) (2.3)

and is measured in
[
W
m3

]
. Furthermore, specific energy deposition Ae is defined as the time

integral over the specific power deposition Ap,

Ae(~r) :=

ˆ ∞
−∞

Ap(~r, t) dt. (2.4)

Current density ~J is a vector that defines the net energy flow per unit area. It can be
obtained by multiplying the radiance L with the normalized directional vector ŝ and inte-
grating over the entire 4π solid angle,

~J(~r, t) :=

ˆ
4π

L(~r, ŝ, t)ŝ dΩ. (2.5)

Current density ~J is measured in
[

J
m3

]
.

In the following, the RTE is derived from the principle of conservation of energy. Thereby,
coherence and polarization of the optical radiation as well as any nonlinear effects are ne-
glected. Optical quantities listed in table 2.1 are assumed to be time-invariant, yet space-
variant.
In order to define the contributing sources, consider a stationary differential cylinder el-
ement of differential length ds. Its differential cross-section dA is perpendicular to the
photon propagation direction vector ŝ. dΩ denotes the differential solid angle element.
Below, contributions to energy change of this differential volume element within dΩ along
ŝ are considered.
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Symbol Optical Property Unit

n Refractive Index –

µa Absorption Coefficient
[
1
m

]
µs Scattering Coefficient

[
1
m

]
µt = µa + µs Extinction Coefficient

[
1
m

]
g Scattering Anisotropy –

µ′s = µs(1− g) Transport/Reduced Scattering Coefficient
[
1
m

]
µ′t = µa + µ′s Transport/Reduced Extinction Coefficient

[
1
m

]
lt = 1

µ′t
Transport Mean Free Path [m]

Table 2.1: Optical properties and their units.

1. Divergence
As no photon beam is (locally) perfectly collimated, there will be photons diverging
out of the differential volume or solid angle element, hence, reducing the differential
energy within the cylinder element. The (differential) energy per unit time due to
divergence can be calculated by

dPdiv =
∂L(~r, ŝ, t)

∂ŝ
dV dΩ = ŝ · ∇L(~r, ŝ, t) = ∇ · [L(~r, ŝ, t)ŝ] (2.6)

where dV = dsdA. This contribution is negative for beam divergence, yet can be
positive for beam convergence.

2. Extinction
The energy of each photon can be extinct due to absorption or scattering. Therefore,
the energy loss in the volume element within the solid angle element per unit time
due to extinction is given by

dPext = (µtds) [L(~r, ŝ, t) dAdΩ] . (2.7)

Here, µt = µa + µs defines the total extinction coefficient, photon energy loss by
either absorption or scattering. (µtds) is the probability of a photon being extinct
within ds.

3. Scattering
A photon from an arbitrary direction ŝ′ can be scattered into dΩ around direction ŝ
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and therefore contribute to the energy per unit time within the differential volume
element. This can be expressed by

dPsca = (NsdV )

[ˆ
4π

L(~r, ŝ, t)P (ŝ′, ŝ)σs dΩ′
]
dΩ. (2.8)

Here σs is the scattering cross section of a scatterer and Ns is the number density of
the scatterers. Their product defines the scattering coefficient µs := Nsσs. The first
part of the equation 2.8, NsdV , represents the number of scatterers in the differential
volume element. The second part, L(~r, ŝ, t)σs, denotes the energy collected by a
single scatterer within the solid angle dΩ′, multiplied by the probability of light
propagating in direction ŝ′ being scattered into dΩ around direction ŝ. Thereby,
P (ŝ′, ŝ) represents a probability density function which generally only depends on
the angle between the two directions ŝ and ŝ′, yieldingˆ

4π

P (ŝ, ŝ′) dΩ =

ˆ
4π

P (ŝ · ŝ′) dΩ = 1. (2.9)

4. Source
Light energy can be generated by an internal source in the volume element. Its energy
within the solid angle element per unit time is given by

dPsrc = S(~r, ŝ, t) dV dΩ. (2.10)

Now, all the above contributions can be combined into the conservation of energy
principle. Expressing the change in energy in the volume element within the solid angle
element per unit time, one obtains

dP =
1

c

∂L(~r, ŝ, t)

∂t
dV dΩ, (2.11)

with c denoting the speed of light in the respective medium. Then, the sum of all contribu-
tions to the energy change in the volume element per unit time is equalized with expression
2.11. Thereby, according to the respective contribution, a ′+′ or ′−′ sign precedes each
term

dP = −dPdiv − dPext + dPsca + dPsrc. (2.12)

By substituting 2.6, 2.7, 2.8, 2.10 and 2.11 into 2.12 one obtains

1

c

∂L(~r, ŝ, t)

∂t
= −ŝ ·∇L(~r, ŝ, t)−µtL(~r, ŝ, t) +µs

ˆ
4π

L(~r, ŝ, t)P (ŝ′ · ŝ)dΩ′+S(~r, ŝ, t), (2.13)

which is known as the RTE.
The RTE is a partial differential equation (PDE) modeling photon transport in biological
tissue. As introduced in equation 2.1, the sought function, radiance L, is a function with
six DOF,

L(~r, ŝ, t) = L(x, y, z, φ, θ, t). (2.14)
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Therefore, the RTE is complicated to solve and is usually approximated by the simpler
Diffusion Equation. The Diffusion Equation is a partial differential equation modeling the
behavior of the fluence rate Φ(~r, t), which is a function of only four DOF. In order to
approximate the RTE it is assumed that photons travel through a high-albedo (µs � µa)
medium where L is approximately isotropic after sufficient scattering events (diffusion ap-
proximation).
Radiance L can be expanded into a series of spherical harmonics Yn,m as a set of orthonor-
mal basis functions [40],

L(~r, ŝ, t) =
N∑
n=0

n∑
m=−n

Ln,m(~r, t)Yn,m(ŝ). (2.15)

Here, Ln,m are the expansion coefficients and the spherical harmonics Yn,m are defined as

Yn,m(ŝ) = Yn,m(φ, θ) = (−1)m

√
(2n+ 1)(n−m)!

4π(n+m)!
Pn,m(cos(θ)) exp(imφ) (2.16)

with associated Legendre polynomials

Pn,m(x) =
(1− x2)

m
2

2nn!

dm+n

dxm+n

(
x2 − 1

)n
. (2.17)

The diffusion approximation of the RTE now consists of considering the expansion 2.15 of
L only until first order, 0 ≤ n ≤ 1 (diffusion expansion). Therefore, the series only consists
of four expansion functions

• Y0,0(φ, θ) = 1√
4π

• Y1,−1(φ, θ) =
√

3
8π

sin θe−iφ

• Y1,0(φ, θ) =
√

3
4π

cos θ

• Y1,1(φ, θ) = −
√

3
8π

sin θeiφ.

Inserting equation 2.15 until the first order into equation 2.2 one obtains

Φ(~r, t) = 4πL0,0(~r, t)Y0,0(ŝ). (2.18)

Furthermore, multiplying equation 2.15 until N = 1 with ŝ and inserting it into equation
2.5 yields

~J(~r, t) · ŝ =
4π

3

1∑
m=−1

L1,m(~r, t)Y1,m(ŝ). (2.19)
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Combining 2.18 and 2.19 gives an expression of radiance L in terms of fluence rate Φ and
current density ~J ,

L(~r, ŝ, t) =
1

4π
Φ(~r, t) +

3

4π
~J(~r, t) · ŝ. (2.20)

Based on the RTE given in 2.13 one can derive two partial differential equations. First,
by substituting 2.20 into 2.13 and integrating over the full 4π solid angle one obtains the
scalar PDE

1

c

∂Φ(~r, t)

∂t
+ µaΦ(~r, t) +∇ · ~J(~r, t) =

ˆ
4π

S(~r, ŝ, t)dΩ. (2.21)

Second, substituting 2.20 into 2.13, multiplying it by ŝ and integrating over the full 4π
solid angle one obtains the vector PDE

1

c

∂ ~J(~r, t)

∂t
+ (µa + µ′s) ~J(~r, t) +

1

3
∇Φ(~r, t) = 0. (2.22)

In order to derive the Diffusion Equation from 2.21 and 2.22, one has to consider the
assumption, that fractional changes in the current density ~J are small within the transport
mean free path l′t. In mathematical terms this means that

(
l′t
c

) 1∣∣∣ ~J(~r, t)
∣∣∣
∣∣∣∣∣∂ ~J(~r, t)

∂t

∣∣∣∣∣
� 1. (2.23)

Therein,
l′t
c

can be interpreted as the transport mean free time. Assumption 2.23 implies

that 1
c
∂ ~J(~r,t)
∂t
≈ 0 thus 2.22 reduces to

~J(~r, t) =
−1

3(µa + µ′s)
∇Φ(~r, t), (2.24)

which is termed Fick’s law with diffusion coefficient

D =
1

3(µa + µ′s)
. (2.25)

Substituting 2.24 into 2.21 finally yields the diffusion equation

1

c

∂Φ(~r, t)

∂t
+ µaΦ(~r, t)−∇ · [D∇Φ(~r, t)] =

ˆ
4π

S(~r, ŝ, t)dΩ. (2.26)

The diffusion equation has been derived from the RTE by considering two simplifying
assumptions:

1. Radiance L(~r, ŝ, t) is only expanded until the first order spherical harmonics.

2. Fractional changes of current density ~J(~r, t) within transport mean free path l′t are
� 1.
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Both of the above assumptions can be summarized in the requirement that the reduced
scattering coefficient µ′s is the dominant part in photon extinction, namely µ′s � µa.
In optoacoustics, it is often assumed that the source S is approximately isotropic within
the region of interest, meaning that it has almost no directionality,

S(~r, ŝ, t) =
1

4π
S(~r, t). (2.27)

Furthermore, considering a space-invariant diffusion coefficient D, equation 2.26 reduces
to

1

c

∂Φ(~r, t)

∂t
+ µaΦ(~r, t)−D∇2Φ(~r, t) = S(~r, t), (2.28)

which for µa = 0 becomes the well-known heat diffusion equation

1

c

∂Φ(~r, t)

∂t
−D∇2Φ(~r, t) = S(~r, t). (2.29)

In many cases, optoacoustic signals are generated by a focused short-time laser pulse. These
pulses are commonly modeled by a Dirac-delta source function, S(~r, t) = δ(~r−~r ′)δ(t− t′),
at time t′ and spacial position ~r ′. For this source function, there exists a solution to
diffusion equation 2.28. The solution reads as

Φ(~r, t;~r ′, t′) =
c

[4πDc(t− t′)]
3
2

exp

[
− |~r − ~r

′|2

4Dc(t− t′)
− µac(t− t′)

]
(2.30)

and is known as Green’s function. The argument in the exponential function consists of

one part describing the broadening of the photon beam due to scattering, exp
[
− |~r−~r ′|2

4Dc(t−t′)

]
.

The second part models the exponential decay of the fluence rate due to absorption,
exp [−µac(t− t′)], known as Beer’s law. Solutions to a general source term S(~r, t) can
then be calculated by convolving the Green’s function with the source term

Φ(~r, t) =

ˆ t

0

ˆ ∞
0

Φ(~r, t;~r ′, t′)S(~r ′, t′)d~r ′dt′. (2.31)

2.1.2 Heat Conduction and Sound Propagation

In the previous subsection the diffusion equation, describing photon transport in a bio-
logical tissue has been derived. Its solution, the fluence rate Φ(~r, t), multiplied by the
absorption coefficient µa and the heat conversion efficiency ηth acts as the optoacoustic
source term (also denoted as heating function)

H(~r, t) = ηthµa(~r)Φ(~r, t). (2.32)

In order to model the physical processes following tissue excitation by a light source, one
can consider the conservation laws of fluid dynamics [41]. The linearized mass, momentum
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and energy conservation laws are

∂ρ(~r, t)

∂t
= −ρ0(~r)∇ · ~v(~r, t), (2.33)

ρ0(~r)
∂~v(~r, t)

∂t
= −∇p(~r, t), (2.34)

ρ0(~r)T0(~r)
∂E(~r, t)

∂t
= ∇ · [κ∇T (~r, t)] +H(~r, t). (2.35)

Thereby ρ, p, and T stand for changes in density, pressure and temperature, respectively.
~v denotes the particle velocity vector, E the entropy and κ the thermal conductivity.
The subscript 0 defines an ambient quantity. The deposited energy H causes a rise in
temperature T which simultaneously causes a local change in density ρ and pressure p.
This process obeys the thermodynamic equation

ρ(~r, t) = γKTρ0(~r)p(~r, t)− ρ0(~r)βT (~r, t), (2.36)

where γ denotes the heat capacity ratio, KT the isothermal compressibility and β the
volumetric pressure expansion coefficient. Consequently, equations 2.33 and 2.34 can be
simplified, by eliminating particle velocity ~v. To that end, 2.33 is multiplied by ∂

∂t
and 2.34

by −∇, resulting in

∂2ρ(~r, t)

∂t2
1

ρ0(~r)
= − ∂

∂t
∇~v(~r, t), (2.37)

− ∂

∂t
∇~v(~r, t) = ∇ ·

(
∇p(~r, t)
ρ0(~r)

)
. (2.38)

Adding equations 2.37 and 2.38 and inserting relation 2.36 yields, instead of the coupled
equations 2.33 and 2.34, a single PDE

∂2

∂t2
[γKTp(~r, t)− βT (~r, t)] = ∇ ·

(
∇p(~r, t)
ρ0(~r)

)
. (2.39)

By furthermore inserting the thermodynamic relation

ρ0(~r)T0(~r)E(~r, t) = ρ0(~r)cpT (~r, t)− γβT0(~r)p(~r, t) (2.40)

into equation 2.35 one obtains a coupled system of two partial differential equations without
entropy E,

∂2

∂t2
[γKTp(~r, t)− βT (~r, t)] = ∇ ·

(
∇p(~r, t)
ρ0(~r)

)
, (2.41)

∂

∂t
[ρ0(~r)cpT (~r, t)− γβT0(~r)p(~r, t)] = ∇ · [κ∇T (~r, t)] +H(~r, t). (2.42)

A summary including units of all parameters can be found in table 2.2.
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Symbol Thermodynamic Property Unit

ρ0 Ambient Density
[
kg
m3

]
T0 Ambient Temperature [K]

κ Thermal Conductivity
[

W
Km

]
KT Isothermal Compressibility

[
1
Pa

]
β Thermal Volumetric Expansion Coefficient

[
1
K

]
cp Specific Heat Capacity at Constant Pressure

[
J

Kkg

]
cV Specific Heat Capacity at Constant Volume

[
J

Kkg

]
γ := cp

cV
Specific Heat Ratio –

ηth Heat Conversion Efficiency –

αth Thermal Diffusivity
[
m2

s

]
Γ Grüneisen Parameter –

Table 2.2: Thermodynamic properties and their units.

The system of partial differential equations 2.41 and 2.42 has to be solved together
in cases where heat conduction cannot be neglected. In a lot of imaging scenarios, ex-
ploiting the optoacoustic effect, a series of further simplifying assumptions can be applied.
Thereby, the complexity of the governing equations of all three physical phenomena, light
propagation, heat conduction and wave propagation, can be reduced. From an image re-
construction standpoint, less complicated model equations lead to less complex and less
computationally demanding reconstruction algorithms. Thereby, a trade-off between mod-
eling accuracy on the one hand, and reconstruction speed and image quality on the other
hand, has to be made.

2.2 Modeling the Optoacoustic Effect

In the previous section all three physical phenomena constituting the optoacoustic effect
have been introduced. The most general systems of partial differential equations describing
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photon transport, heat conduction and wave propagation have been derived. This section
aims at applying the previously developed theories on the practical setting of generating
an optoacoustic signal suitable for image reconstruction. Thereby, practical considerations
of the hardware used in experiments as well as simplifying assumptions are introduced.
The resulting model will be the starting point of reconstruction algorithms presented in
this work.

2.2.1 Simplifying Assumptions

Generation of optoacoustic signals starts with the delivery of light energy to tissue. In
order to describe this process, the following two timescales are introduced.

• The thermal relaxation time, τth, defines the time needed for thermal diffusion of a
heated absorber to affect neighboring absorbers. It is estimated by

τth =
d2c
αth

. (2.43)

• The stress relaxation time, τst, characterizes the time needed for pressure to propagate
throughout the excited structures. It is defined as

τst =
dc
cs
. (2.44)

Therein, αth denotes the thermal diffusivity, cs the speed of sound and dc the characteristic
dimension of the excited structures inside the region of interest (ROI). Throughout this
thesis, ROI denotes the area containing all to be imaged optoacoustic targets.
In the most general setting, the coupled system of partial differential equations 2.41 and
2.42 has to be solved together. However, if thermal conduction can be neglected, the two
equations can be decoupled and simplified into one single PDE. To that end, the thermal
conductivity in 2.42 is set to zero, κ = 0. Then, by taking the temporal derivative, 2.42
can be converted to

∂2

∂t2
T (~r, t) = γ

βT0(~r)

ρ0(~r)cp

∂2

∂t2
p(~r, t) +

1

ρ0(~r)cp

∂

∂t
H(~r, t). (2.45)

Inserting this expression into 2.41 yields(
γρ0(~r)KT − γβρ0(~r)

βT0(~r)

ρ0(~r)cp

)
∂2

∂t2
p(~r, t)− ρ0(~r)∇ ·

(
∇p(~r, t)
ρ0(~r)

)
=
β

cp

∂

∂t
H(~r, t). (2.46)

By using the two relations

1

c2s
= ρ0(~r)KT , (2.47)

cp − cV =
β2T0(~r)

ρ0(~r)KT

, (2.48)
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equation 2.46 can be reduced to

1

c2s

∂2

∂t2
p(~r, t)− ρ0(~r)∇ ·

(
∇p(~r, t)
ρ0(~r)

)
=
β

cp

∂

∂t
H(~r, t), (2.49)

which is the optoacoustic wave equation for heterogeneous media. If the laser pulse length
is much shorter than the thermal relaxation time, τp � τth, excitation is said to be in
thermal confinement and heat conduction can be neglected. As energy in pulsed-mode
optoacoustics is delivered by a laser pulse whose duration τp is typically in the order of
less than 10 ns, disregarding heat conduction is justified. Equation 2.49 can be further
simplified by assuming a spatially uniform media and therefore setting ρ0(~r) = ρ0,

∂2

∂t2
p(~r, t)− c2s∇2p(~r, t) = Γ

∂

∂t
H(~r, t). (2.50)

Here, Γ = c2sβ
cp

is a dimensionless constant called the Grüneisen parameter.

2.2.2 Wave Equation Cauchy Problem

In order to simplify the description of the heating function 2.32 one assumes that the
fluence rate Φ is constant in space. This can be interpreted as the number of photons
throughout the excited tissue being the same at all spatial positions. Thereby the fluence
rate Φ(~r, t) can be separated into a spacial part and a temporal part,

Φ(~r, t) = Φr(~r)Φt(t). (2.51)

Accordingly, the spatial part is assumed to be constant, Φr(~r) = Φr. Assuming that the
length of the laser pulses is much shorter than the stress relaxation time, τp � τst, one
can approximate the temporal part Φt(t) by a delta impulse function, Φt(t) = δ(t). In this
case the excitation is called to be in stress confinement, as all electromagnetic energy has
been deposited before any pressure wave travels throughout the ROI. Overall, the function
considered as the source of the optoacoustic effect can be written as

H(~r, t) = Hr(~r)Ht(t) = ηthΦrµa(~r)δ(t). (2.52)

Thereby, Hr(~r) = ηthΦrµa(~r) can be considered the spatial part and Ht(t) = δ(t) is the
temporal part. In summary, the entire optoacoustic effect can be modeled by PDE 2.50
where the source function serves as an initial condition,

∂2

∂t2
p(~r, t)− c2s∇2p(~r, t) = 0 (2.53)

p(~r, 0) = ΓHr(~r), (2.54)

∂

∂t
p(~r, 0) = 0. (2.55)
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This is the optoacoustic wave equation Cauchy problem, which will serve as a starting
point for the reconstruction algorithms presented herein. The above formulation of the
wave equation is well studied and guarantees existence and uniqueness of a solution [42].
In optoacoustic image reconstruction one aims at recovering the initial condition ΓHr(~r)
by measuring the pressure p(~r, t) at several points outside the ROI. Thereby the spatial
component of the source function Hr(~r) = ηthΦrµa(~r) defines an energy absorption map,
which is the image one finally tries to reconstruct.

2.2.3 Green’s Function Solution

In the following subsection a Green’s function to the wave equation Cauchy problem is
presented. The derivation is mainly based on the concepts of [42] and [43]. By finding a
Green’s function, the solution to the inhomogeneous wave equation with any source term
can be calculated by convolution. The problem considered for finding a Green’s function
is the inhomogeneous wave equation with an impulsive source term at the origin,

∂2

∂t2
g(~r, t)− c2s∇2g(~r, t) = Sδ(~r)δ(t) (2.56)

g(~r, 0) = 0, (2.57)

∂

∂t
g(~r, 0) = 0, (2.58)

where S is a scalar defining the magnitude of the source term. In a first step, the Fourier-
transform in all three spatial variables ~r = (x, y, z)T is defined,

G̃x(ξ, y, z; t) =

ˆ +∞

−∞
g(x, y, z; t) exp(−iξx)dx, (2.59)

G̃y(x, η, z; t) =

ˆ +∞

−∞
g(x, y, z; t) exp(−iηx)dy, (2.60)

G̃z(x, y, ν; t) =

ˆ +∞

−∞
g(x, y, z; t) exp(−iνx)dz. (2.61)

Here, the sub-scripted G̃x, G̃y, G̃z correspond to the Fourier-transform in the x−, y− and
z−dimension, respectively. The respective inverse Fourier transform is defined as

g(x, y, z; t) =
1

2π

ˆ +∞

−∞
G̃x(ξ, y, z; t) exp(iξx)dξ, (2.62)

g(x, y, z; t) =
1

2π

ˆ +∞

−∞
G̃y(x, η, z; t) exp(iηx)dη, (2.63)

g(x, y, z; t) =
1

2π

ˆ +∞

−∞
G̃z(x, y, ν; t) exp(iνx)dν. (2.64)
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Furthermore, in the temporal dimension, the Laplace-transform is defined as follows

G?(x, y, z; τ) =

ˆ +∞

0

g(x, y, z; t) exp(−τt)dt. (2.65)

Applying the three spatial Fourier-transforms and the temporal Laplace-transform to equa-
tion 2.56 one can simplify the PDE into a simple algebraic equation[

τ 2 + c2s
(
ξ2 + η2 + ν2

)]
G̃?
xyz(ξ, η, ν; τ) = S. (2.66)

Here, G̃?
xyz denotes the unknown function, obtained from the Fourier-transform of function

g(x, y, z; t) with respect to all spatial dimensions and taking the Laplace-transform in the
temporal dimension. This expression can be written as

G̃?
xyz(ξ, η, ν; τ) =

S

τ 2 + c2s (ξ2 + η2 + ν2)
(2.67)

and be back-transformed with the help of the previously defined inversion formulas and
integration formulas taken from [44]. Thereby, one obtains the Green’s function g for the
three-dimensional wave equation,

g(x, y, z; t) = g(~r, t) =
S

4π|~r|
δ

(
t− |~r|

cs

)
, (2.68)

where |~r| is the euclidean distance to the source,

|~r| =
√
x2 + y2 + z2. (2.69)

The solution to a general source function can now be calculated by convolving the Green’s
function with the source term (for S = 1), [42]. Considering the optoacoustic source term
H(~r, t) in equation 2.50, one obtains

p(~r, t) = Γ
∂

∂t
H(~r, t) ∗ g(~r, t) (2.70)

=
Γ

4π

ˆ t

0

˚
R3

∂

∂t′
H(~r ′, t′)

δ(t− t′ − |~r−~r
′|

cs
)

|~r − ~r ′|
d~r ′dt′. (2.71)

This is the solution for the optoacoustic pressure wave excited by a general source function.
Now, inserting the delta-pulse excitation term 2.52 into 2.70, one gets

p(~r, t) =
Γ

4π

∂

∂t

˚
|~r−~r ′|=cst

Hr(~r
′)

|~r − ~r ′|
d~r ′, (2.72)

where Hr(~r) = ηthΦrµa(~r). The integral in equation 2.72 is now a surface integral over the
sphere with radius cst centered at position ~r in space.
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2.2.4 Optoacoustics with a cw Laser

Commonly, optoacoustic signal generation is performed in a pulsed-mode setting, where
light energy is delivered within a time period approximating a delta-like pulse. Beyond
that, however, imaging systems generating optoacoustic signals with a continuous wave
excitation laser have been suggested in [45], [46], [47]. Thereby, light energy is not delivered
by a Dirac-delta like laser pulse. Instead, an amplitude-modulated (chirped) waveform is
applied to excite the ROI. Specifically, throughout this thesis, the cw-laser is controlled
by a function generator inducing linear frequency-modulated (LFM) chirps resulting in a
laser output of

l(t) = A rect

(
t

T

)
cos
(
ω0t+ πkt2

)
. (2.73)

Here, A denotes the peak laser intensity and k the sweep rate. The initial angular frequency
ω0 of the chirp is connected to the initial frequency f0 as

ω0 = 2πf0. (2.74)

Since the rect function is specified as

rect(x) =

{
1, |x| ≤ 1

2
,

0, |x| > 1
2
,

(2.75)

T defines the duration of the chirp in 2.73. The sweep rate k is connected to the bandwidth
B of covered frequencies as

k = ±B
T
. (2.76)

The linearity of the frequency change can be seen by considering the argument in equation
2.73 which is termed instantaneous phase,

Φ(t) = ω0t+ πkt2. (2.77)

Then, by using 2.74, the instantaneous frequency results in a linear expression,

f(t) =
1

2π

dΦ(t)

dt
= f0 + kt, (2.78)

for −T
2
≤ t ≤ T

2
. As the laser excitation term is an oscillating function in time, it is

convenient to consider the modeling wave equation (see 2.50)

∂2

∂t2
p(~r, t)− c2s∇2p(~r, t) = Γ

∂

∂t
H(~r, t), (2.79)

in the frequency domain. The complex notation of the time-dependent source term is
assumed to be H(~r, t) = H̃(~r, ω) exp(iωt). Then, after taking the Fourier-transform of the
temporal variable of equation 2.79 one obtains

− ω2P̃ (~r, ω)− c2s∇2P̃ (~r, ω) = −iωΓH̃(~r, ω), (2.80)
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where P̃ (~r, ω) denotes the temporal Fourier transform of the pressure function p(~r, t).
Reformulating the equation 2.80 results in

∇2P̃ (~r, ω) + k2ωP̃ (~r, ω) = −iωβ
cp

H̃(~r, ω), (2.81)

which is known as the Helmholtz equation with kω = ω
cs

. In three dimensions, assuming
free space, the Green’s function solution to equation 2.81 is given by [48]

P̃ (~r, ω) = −iωβ
cp

˚
R3

exp (ikω |~r − ~r ′|)
4π |~r − ~r ′|

H̃(~r ′, ω) d~r ′. (2.82)

Then, the pressure emitted by a point source positioned at ~rs is measured by a point
transducer as

p(~r, t) =

∣∣∣P̃ (~rs, ω)
∣∣∣

4π |~r − ~rs|
exp

(
i

[
ω

(
t− |~r − ~rs|

cs

)
+ Φth

])
. (2.83)

|P̃ (~rs, ω)| denotes the amplitude of the pressure and Φth represents a phase constant due
to thermo-elastic expansion [49]. Now, one can consider the complex notation of the chirp
defined in 2.73,

l(t) = A rect

(
t

T

)
exp(iω(t)t), (2.84)

where ω = ω(t) = ω0 + πkt. With this, equation 2.83 signifies, that the pressure received

upon laser excitation with a LFM chirp is also a chirp, delayed by the time |~r−~rs|
cs

and with
a constant phase shift Φth

p(~r, t) =

∣∣∣P̃ (~rs, ω)
∣∣∣

4π |~r − ~rs|
exp

(
i

[
(ω0 + πkt)

(
t− |~r − ~rs|

cs

)
+ Φth

])
. (2.85)

Again, the above rationale, assumes that the heating function H(~r, t) can be divided into
a temporal and spatial part

H(~r, t) = Hr(~r)Ht(t) = Hr(~r)l(t). (2.86)
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Chapter 3

Instrumentation

In the following chapter a brief overview over the hardware needed in optoacoustics is
given. Both, the optical excitation with lasers, as well as the ultrasonic detection is cov-
ered. Furthermore, a summary of current detection geometries is presented and the special
requirements of each geometry towards ultrasonic detectors is explained. The chapter
concludes with the presentation of three optoacoustic imaging systems.

3.1 Laser Excitation

Optoacoustic imaging starts with excitation of tissue by a laser. Thereby, light energy
is deposited inside the tissue, triggering a pressure wave due to thermo-elastic expansion.
As presented in section 2.2, the optoacoustic effect can be readily modeled by the wave
equation Cauchy problem. The mathematical modeling assumes, that the temporal profile
of the laser pulse excitation is a delta-function. Actual lasers, however, generate pulses with
finite duration. Regardless, the model can still be considered an accurate approximation
of the optoacoustic effect if some conditions hold.

3.1.1 Thermal and Stress Confinement

In the derivation that led to the wave equation Cauchy problem 2.53 - 2.55, the excitation
was assumed to be in stress (2.44) and thermal confinement (2.43). These two assumptions
imply, that the laser pulse duration τp is short enough, so that stress relaxation and heat
conduction are on a longer time scale and can be neglected. In general, the stress relaxation
time τst poses a stricter requirement than the thermal relaxation time τth. This can be
seen by considering the following numerical example. The characteristic dimension of an
absorber is set to be dc = 15 µm and the speed of sound in water cs = 1500 m

s
. Thermal

diffusivity in human tissue can be approximated by αth = 0.13 ·10−6m
2

s
[50]. Then, the

thermal relaxation time can be calculated as τth = 1.73 ms and the stress relaxation time
as τst = 10 ns, being five orders of magnitude shorter.
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3.1.2 Laser Technology and Safety

As shown in the previous subsection, the wave equation Cauchy problem is only a valid
model for optoacoustic signal generation, if laser sources deliver pulses with a duration of
less than 10 ns. Current laser technology can easily generate laser pulses well below 10 ns
with peak powers in the gigawatt range. Thereby, pulsed lasers are commonly operated
in the Q-switching mode where an optical attenuator is included within the laser’s optical
resonator. The Q-switch enables the gain medium to be pumped for a longer time resulting
in more energy stored. Once the gain medium is saturated, the Q-switch instantaneously
triggers the optical amplification by stimulated emission process. Thereby, the stored en-
ergy is promptly released resulting in ultra-short laser-pulses with high peak powers.
In order to generate optoacoustic signals well below the surface of biological tissue, it is
crucial that light penetrates as deeply as possible. As light absorption inside tissue is
wavelength dependent, typically light in the visible to near-infrared range (650 nm - 950
nm) is used in optoacoustics [51]. Due to the favorable penetration characteristics, the
near-infrared part of the electromagnetic spectrum is referred to as ’optical window’. In
practice, solid state lasers with a neodymium-doped yttrium aluminium garnet (Nd:YAG)
crystal are frequently used. Coupled with a Q-switch, they emit light pulses with a wave-
length of 1064 nm. These high peak-power pulses can be frequency doubled to generate
laser light of 532 nm, which can be fed to an optical parametric oscillator (OPO) to vary
the wavelength in the near-infrared. In order to generate light in the visible range, fre-
quency tripled Nd:YAG pulses, which emit light with a wavelength of 355 nm, are coupled
to an OPO.
Besides pulsed-mode excitation, also cw-lasers can be applied to optoacoustically generate
pressure signals. Thereby, the population inversion of the gain medium has to be con-
stantly maintained by a steady pump source. Then, the cw-lasers are able to continuously
emit almost monochromatic light. In order to optoacoustically induce pressure waves, the
amplitude of the laser output has to be modulated, as constant light energy flux triggers
no pressure waves. Commonly cw-lasers are significantly more economic and technically
simpler than pulsed lasers.
Optical absorbers within biological tissue have distinct spectral absorption behavior. There-
fore, the application of various optical wavelengths in optoacoustic signal generation in
combination with dedicated spectral processing algorithms enables unprecedented insight
into biological mechanisms [20]. Volumetric MSOT systems have proven to be able to
visualize deep-seated biomarkers in real-time [52].
Optoacoustic signal strength scales with the peak power of the applied laser. Although
strong optoacoustic signals are desirable, uninhibited laser power can damage and destroy
biological tissue. Therefore, the optical excitation process has to comply with laser safety
standards for skin exposure, such as the American National Standard for safe use of lasers
[53], where values for the maximum permissible exposure (MPE), varying according to their
wavelength, are given. All experiments in this work, adhere to the limits given therein.
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3.2 Ultrasonic Detection

In tissue, optoacoustically induced mechanical energy propagates in form of a traveling
pressure wave. Thereby, the size of characteristic absorbers in optoacoustic imaging, de-
fines the frequency band of the emitted pressure wave to be in the ultrasound range. The
present section aims at introducing ultrasonic detectors used in optoacoustic imaging sys-
tems and gives a short summary over detection techniques and sensor design. Subsequently,
basic concepts to characterize commercially available ultrasound transducers are presented.
The section is rounded off by an illustration of currently applied optoacoustic detection
geometries.

3.2.1 Detection Technology

Over the past decades, a variety of technologies to detect ultrasound have been developed.
In medical imaging, the vast majority of these technologies rely on piezoelectricity. The
piezoelectric effect was first discovered by the brothers Jacques and Pierre Curie in 1880
[54], the same year in which the optoacoustic effect was found. It describes how mechanical
deformation of a piezo-material creates molecular dipole moments. All the small electric
dipole moments in each piezoelectric cell add up to a change of the electric field, which
gives rise to a voltage that can be measured. The piezoelectric effect is reversible, meaning
that applying a voltage to a piezo-element causes a mechanical deformation which gener-
ates an ultrasonic pressure wave.
Piezoelectricity was first observed in naturally occurring crystals such as tourmaline,
quartz, cane sugar and Rochelle salt. Today, synthetic polycrystalline ceramics are used as
piezo-elements. The most common one, lead zirconate titanate (PZT), combines robust-
ness and high sensitivity with a reasonable price. PZT has a sound velocity of about cPZTs

= 4400 m
s

and density of ρPZT = 7800 kg
m3 . This makes it a very stiff material exhibiting a

narrow frequency response. Furthermore, speed of sound and density differ substantially
from the ones of water (cwaters ≈ 1500 m

s
, ρwater ≈ 1000 kg

m3 ). The behavior in compari-
son to water is crucial, as water serves as a coupling medium in optoacoustics and is also
predominant in biological soft tissue. Therefore, the acoustic impedances Z, defined as

Z = ρcs, (3.1)

are highly mismatched between PZT and water, causing reflections and therefore loss of sig-
nal amplitude. The application of acoustically matching layers can mitigate theses effects,
however, comes at the price of further reducing the transducer bandwidth. Commercially,
PZT is usually doped to increase its piezoelectric response.
Apart from piezoelectric ceramics, however, other optoacoustic applications use ultrasonic
detection techniques based on piezoelectric polymer films, such as polyvinylidene fluo-
ride (PVDF)[55]. Here, rather than the crystal structure, the intertwined polymer-chain
molecules create the dipole moments. PVDF exhibits acoustical properties closer to the
ones of water, having a sound velocity of about cPV DFs = 2200 m

s
and density of ρPV DF =
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1800 kg
m3 . Therefore, no coupling medium is needed and the frequency range is broader than

in crystals. However, PVDF-transducers possess a significantly lower permittivity ε and
acoustic coupling coefficient kac decreasing the energy transfer through the piezo-element.
In order to take advantage of both the benefits of piezoelectric crystals and polymers, most
ultrasonic transducers in medical imaging are manufactured as piezo-composite materials.
The predominant geometrical arrangement is the so-called 1-3 piezo-composite, where a
piezo-crystal (e.g. PZT) is cut on one side into small rods. The interstitial volume is
then filled with a polymer matrix (usually epoxy) giving the piezo-composite more flex-
ibility than the relatively stiff crystals. By cutting the lower crystal layer one obtains
a three-dimensional composite-material block with one-dimensional crystal rods enclosed.
The 1-3 piezo-composite combines the high sensitivity of the piezo-crystals with the ben-
eficial acoustic properties of the polymer. The overall acoustic properties can be varied
by changing the crystal to matrix ratio. Effective sound speed velocities can be expected
to be about cCOMP

s ≈ 3500 m
s

and effective densities range around ρCOMP ≈ 4000 kg
m3 .

Thereby, large bandwidths, a high acoustic coupling rate and low acoustic impedances can
be achieved, resulting in a superior ultrasound transducer. Moreover, due to the elasticity
of the piezo-composite material, transducer surfaces can be easily curved to a focus making
the use of acoustic lenses dispensable.
Furthermore, ultrasound detection techniques based on optical phenomena, are an ac-
tive field of research with optoacoustic applications arising. They exploit the interaction of
sound and light, captured by Fabry-Pérot interferometers [56] or Fiber-Bragg gratings [57],
to detect pressure waves. However, all experimental results presented in this work were
acquired using piezo-composite-based ultrasound transducers. Further characterization of
ultrasonic transducers, refers to detectors based on piezo-electricity.

3.2.2 Acoustic Focusing

Ultrasonic transducers based on the piezoelectric effect have a sensing surface that responds
to the impinging pressure waves with a voltage change. The active part of the detector
consists of the piezo-element, which in general is manufactured as a flat surface. However,
as it is of interest to control the transducer’s regions of high sensitivity, a focus can be added
to the detector. Thereby, apart from a flat surface, ultrasonic transducers are commonly
available with a cylindrical or spherical focus. In general, there are two ways to apply
focusing capabilities to a transducer. A simple approach is to equip a flat detector surface
with an acoustic lens which imposes either a cylindrical or a spherical focus. Acoustic
lenses, however, are often made of glass or acrylic plastics (PMMA) and introduce an
additional layer in the transducer. As their basic material is a solid, which has different
acoustic properties from water, lenses are the source of additional losses and artifacts in the
received signal. Another, way to create a focus, is to simply shape the flat piezo-element.
Previously described piezo-composites incorporate material characteristics of both crystals
and polymers. Taking advantage of the flexibility of polymers, they can be bended to part
of a cylinder or a sphere in order to mechanically generate a cylindrical or spherical focus.
In this way, no additional layer has been introduced and the pressure wave can directly hit
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the piezo-element. Ultrasonic transducers with different focuses are depicted in figure 3.1.

(a) (b) (c)

Figure 3.1: Different geometries of piezoelectric ultrasound transducers. (a) shows a flat
transducer. (b) depicts a cylindrically focused and (c) a spherically focused detection
surface.

3.2.3 Transducer Characterization

The frequency response of ultrasonic transducers is often characterized by their central fre-
quency fc (MHz) and their fractional bandwidth BW (%) at -6dB. Assuming a Gaussian
distribution of the detector’s frequency response, fc denotes the frequency with maximum
detection capability. fc(1 − BW

2
) and fc(1 + BW

2
) define the lower and upper boundary

frequencies, respectively, where the detector’s sensitivity drops to 50% of the peak perfor-
mance. Consider, as an example, a transducer with central frequency of fc = 10 MHz and
fractional bandwidth BW = 60%. Then, the transducer would detect with 50% or more
of its peak sensitivity between 7 MHz and 13 MHz.
In front of the active element of the transducer, space can be separated into two zones,
the near field and the far field. In the near field, which is situated directly in front of
the transducer, the sensitivity of the transducer traverses a series of maxima and minima.
The near field region is limited by the last sensitivity maximum, denoted the near field
distance N . This distance N is referred to as the natural focus of a flat detector and can
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Far Field

Near Field

N

Figure 3.2: Near and far field of a flat transducer. α/2 defines half of the beam spread
angle.

be calculated for a round piezo-element by

N =
D2f

4cs
=
D2

4λ
. (3.2)

Here, D denotes the piezo-element’s diameter, f denotes frequency, λ is the wavelength
and cs stands for the speed of sound in the respective medium. Wavelength and frequency
are related via

f =
cs
λ
. (3.3)

From the near field distance on, the far field starts with the detectors sensitivity gradually
decreasing to zero, which can be seen in figure 3.2. By propagating through the far field,
the ultrasonic sensitivity range diverges. Although the peak of its energy stays on the
central axis, the beam becomes consistently weaker remote from the axis. The -6dB beam
spread angle α is given by the formula

sin(α/2) = 0.514
cs
fcD

. (3.4)

Focused transducers have a third region, called the focal zone, which lies between the near
and the far field. When considering cylindrically focused transducers, the -6dB length of
the focal zone FZ can be calculated as

FZ =
1.1cs

fc (1− cos(θ/2))
, (3.5)
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where θ denotes the aperture angle [58],[59]. The -6 dB height FH of the focal zone is then
given by

FH =
cs

2fc sin(θ/2)
. (3.6)

For spherically focused transducers, Hunt et al. [60] derived the extent of the focal zone
FZ as

FZ = 9.7
cs
fc

(
F

D

)2

, (3.7)

with F defining the focal length of the detector. Then, up to a constant, the -6 dB height
FH of the focal zone is given by 3.6, the formula for cylindrically focused transducers

FH = 1.41
cs

2fc sin(θ/2)
. (3.8)

3.2.4 Impulse Responses

In optoacoustics, light absorbing structures generate transient pressure waves via thermo-
elastic expansion. These pressure signals are subsequently detected and recorded by an
ultrasonic transducer and a data acquisition system (DAQ). Taking advantage of the piezo-
electric effect, the impinging pressure waves are thereby converted to a voltage signal, which
is picked up by electrodes and forwarded to a data storage unit. An ultrasound transducer,
performing the transformation of a pressure wave to a voltage signal recorded by a DAQ,
can be modeled as a linear, time-invariant system [61] [62]. Consequently, the detector is
entirely described by its response to a delta excitation. This response, termed total impulse
response (TIR) hTIR(~rc, ~r

′, t), is a characteristic function defining the detector. The TIR
is dependent on the detector position ~rc, the position of the delta-source ~r ′ and time t. A
general propagating pressure wave reaching position ~rc will therefore be detected as

pdet(~rc, t) = hTIR(~rc, ~r
′, t) ∗t p(~rc, t), (3.9)

where ∗t stands for the temporal convolution operator. The total impulse response (TIR)
incorporates all effects on the signal p due to the transducer. It can be differentiated into
a spatially dependent part describing the detector’s geometry and a spatially independent
part modeling the material components and the entire electric transduction of the detector.
The first part is termed spatial impulse response (SIR) whereas the latter is denoted as
the electrical impulse response (EIR). Overall the detected signal pdet can be expressed as

pdet(~rc, t) = hEIR(t) ∗t hSIR(~rc, ~r′, t) ∗t p(~rc, t). (3.10)

The acoustic pressure p is consecutively convolved with the SIR and EIR.

Spatial Impulse Response

Optoacoustically induced pressure waves are mathematically modeled with the wave equa-
tion Cauchy problem 2.53 - 2.55. Thereby, the ultrasonic detector is assumed to be an
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infinitesimal small point in space. In order to determine the pressure wave emitted by an
arbitrary absorber, one can use the Green’s function of the wave equation. The Green’s
function of a PDE is the solution of the inhomogeneous PDE with a delta source term.
In case of the optoacoustic wave equation this means considering an infinitesimal short
laser-pulse at an infinitesimal small position ~r ′ in space. The Green’s function for the
three-dimensional wave equation has already been calculated as 2.68. Then, dropping the
constant and assuming a delta source positioned at ~r ′, the Green’s function becomes

g(~r, ~r ′, t) =
δ
(
t− |~r−~r

′|
cs

)
4π|~r − ~r ′|

. (3.11)

An arbitrary source function Hr can then be considered as consisting of spatial delta-like
source terms. As in 2.72, the wave equation solution p with an arbitrary source function
Hr is calculated as the superposition of Green’s functions, weighted with the source Hr

p(~r, t) =
Γ

4π

∂

∂t

˚
R3

Hr(~r
′)
δ
(
t− |~r−~r

′|
cs

)
|~r − ~r ′|

d~r ′. (3.12)

Note, that the source term is only arbitrary in its spatial dimension as the temporal profile
is kept as a delta-impulse. The underlying assumption of the above rationale is that
the detector is confined to a point in space. This deviates from realistic piezo-electric
transducers where the active element has an extended surface, which may be even curved
to a focus. The actual pressure signal exciting the transducer surface, pS , is therefore
expressed as

pS(~rc, t) =

˚
S
p(~r, t)d~r =

‹
S
p(~rd, t)dS(~rd), (3.13)

the integral over the pressure reaching the active surface S of the transducer. Thereby,
~rd denotes the positions on the detector surface S. The position of the detector itself is
defined by the center ~rc of its surface S. Accordingly, the emanating pressure wave hits
different parts of the detector surface at different time instants. As a consequence, the
detected signal is stretched and appears to be longer than the actually emitted pressure
wave. This effect is modeled by the SIR of the transducer. The SIR is spatially dependent,
as it is determined by the geometry of the transducer surface and the position of the source
of the pressure wave.
In order to calculate the spatial impulse response hSIR, one has to integrate the point-source
solution 3.11 over the detector surface S,

hSIR(~rc, ~r
′, t) =

‹
S

δ
(
t− | ~rd−~r

′|
cs

)
4π|~rd − ~r ′|

dS(~rd). (3.14)
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Inserting 3.14 into 3.12 yields

pS(~rc, t) =
Γ

4π

∂

∂t

˚
R3

Hr(~r
′)hSIR(~rc, ~r

′, t)d~r ′ (3.15)

=
Γ

4π

∂

∂t

˚
R3

Hr(~r
′)

‹
S

δ
(
t− | ~rd−~r

′|
cs

)
|~rd − ~r ′|

dS(~rd)

 d~r ′, (3.16)

the expression for the pressure emitted by an arbitrary source Hr, detected on a realistic
transducer’s surface S. The expression in 3.15 can be rewritten as

pS(~rc, t) =
Γ

4π

∂

∂t

˚
R3

Hr(~r
′)hSIR(~rc, ~r

′, t)d~r ′ (3.17)

=
Γ

4π

˚
R3

Hr(~r
′)

[
hSIR(~rc, ~r

′, t) ∗t
∂

∂t
δ(t)

]
d~r ′ (3.18)

=
Γ

4π

˚
R3

|~rc − ~r ′|hSIR(~rc, ~r
′, t+

|~rc − ~r ′|
cs

) ∗t
∂

∂t

δ(t− |~rc−~r
′|

cs
)

|~rc − ~r ′|
Hr(~r

′)d~r ′, (3.19)

where ∗t again denotes the temporal convolution operator. Comparing equation 3.19 with
equation 3.12, one observes that the signal detected by a finite-size transducer can be ex-
pressed as one received by a point-detector convolved with the function |~rc−~r ′|hSIR(~rc, ~r

′, t+
|~rc−~r ′|
cs

).
Integral 3.14 can be solved analytically for several detector shapes in two and three di-
mensions [36],[63]. Geometric detector properties can severely deteriorate the accuracy of
medical imaging devices and are therefore widely-studied [38],[64],[39]. Chapter 5 of this
work is dedicated to the analysis of image artifacts arising from the geometrical shape of
the transducer surface [37]. Techniques to account for geometrical detector properties are
presented and their positive effects are showcased in simulations and experiments.

Electrical Impulse Response

Upon impinging on the detector surface, the ultrasonic wave compresses the transducer’s
piezo-element, which gives rise to a voltage. The incoming pressure signal thereby excites
oscillations of the piezo-surface. The frequencies of these oscillations are defined by the
material characteristics that specify the resonance frequency and bandwidth of the piezo-
element. Each vibration of the sensing element provokes a voltage change being measured
with electrodes connected on each side of the piezo-element. Subsequently, the electric
signal is picked up by the transducer’s wiring before it can be visualized with an oscillo-
scope. The entire conversion of the pressure signal to an electric signal is described by the
EIR. Parameters influencing the EIR are the material characteristics of the piezo-element,
possible acoustical matching layers and the transducer backing as well as the entire electric
transmission behind the sensing element. Since all the influencing parameters of the EIR
are only related to the material, it can be expressed as a spatially independent function
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hEIR(t).
Commonly, as the EIR is detector-specific, it is measured experimentally in order to cali-
brate each detector. Therefore, a delta-like source in time and space is employed to generate
ultra-wide band pressure signals. In order to decouple the SIR from the EIR, the emanat-
ing pressure wave should impact on the entire detector surface at the same time instant.
This means, that focused transducers should be impinged by spherical waves generated at
the focus. For flat transducers, spherical waves generated in the far field can be considered
as approximate plane waves exciting the detector surface.
Rosenthal et al. [65] presented two techniques to measure the TIR of piezo-electric trans-
ducers by means of optoacoustically excited absorbers. It avoids techniques where pre-
calibrated hydrophones or pulse-echo measurements are required [66] [67]. Caballero et
al. [68] built upon Rosenthal’s work to develop a robust measurement procedure that de-
termines the EIR of an ultrasound transducer. Thereby, a hybrid approach was adopted
where experimental measurements as well as theoretical results were used. Depending on
the actual geometry of the detector surface, the corresponding SIR was first calculated
either analytically or numerically [69]. After that, a point source, positioned arbitrarily
in front of the transducer was excited. In order to ensure the best SNR, the point source
was placed at the focal point of the transducer. Up to constants, the source term can be
approximated by a delta function in space and time, H(~r, t) = δ(~r)δ(t). Then by taking
2.72 and 3.10 into a account, the measured signal reduces to

pdet(~rc, t) =
∂

∂t
hEIR(t) ∗t hSIR(~rc, ~r′, t). (3.20)

Finally, to ensure that the EIR is truly independent of the source position, the effect of
the SIR at source position ~r ′ has to be taken out by deconvolution. This can be easily
done in the frequency domain where a deconvolution reduces to a division. Then, the EIR
is given as a simple integration

hEIR(t) =

ˆ t

0

pdet(~rc, t
′)dt′. (3.21)

Overall, the EIR acts as a bandpass-filter on the pressure signals, around its central fre-
quency defined by the material parameters. Once measured, its effect can be corrected by
simply deconvolving the detected signals with the EIR.

3.3 Detection Geometries

Currently, there exists a huge variety of optoacoustic imaging systems. In preclinical
research, they cover the range from microscopy of single cells to volumetric small-animal
tomography systems. In clinical applications, hand-held systems for breast imaging, as well
as intra-vascular plaque imaging have been reported. Depending on the imaging target,
optoacoustic setups differ in acquisition geometry and transducers applied. The present
section aims at providing an overview of conventional imaging setups.
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Figure 3.3: Rasterscanning a spherically focused transducer in optoacoustic microscopy.

3.3.1 Microscopy

In optoacoustic microscopy (OAM) systems a single transducer is positioned perpendicu-
larly on top of the ROI. In order to obtain the best resolution possible, optical excitation as
well as ultrasonic detection are focused and aligned. Thereby, the beam diameter is tight-
ened with lenses and positioned on the same axis as the transducer. This can be achieved
by either illuminating through the detector [70] or by generating a ring shaped illumination
pattern enclosing the transducer [71]. The ultrasound detector is spherically focused with
a central frequency of several tens to 100 MHz. As excitation and detection are aligned
co-axially and con-focally, signals generated laterally to that axis are effectively rejected.
In this configuration, at each detector position, a 1D signal is recorded corresponding to
an amplitude-mode (A-mode) measurement. Thereby, depth information about the ROI
is recovered by multiplying the detected time signal by the speed of sound cs of tissue.
Then, by scanning the transducer along a line, 2D images can be generated by stacking a
series of A-mode measurements. 3D volumes can readily be obtained by raster-scanning
the transducer in the xy-plane, see figure 3.3.

3.3.2 Endoscopy

Optoacoustic endoscopy (OAE) aims at imaging internal organs such as the colon or arteries
[72], [73]. Thereby, both laser excitation and ultrasound detection are miniaturized to fit
into an endoscope. Laser light is delivered by a multimode optical fiber directly into the
lumen. There, it is deflected by a mirror positioned at an angle, in order to excite tissue
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Figure 3.4: Schematic representation of an optoacoustic endoscope. The laser light source
is guided by an optical fiber within the endoscope. Deflected by a mirror, the light source
excites tissue surrounding the endoscope. The sensitivity field of the ultrasonic transducer
overlaps with the laser beam.

parallel to the catheter axis. A single ultrasound detector is positioned at the end of
the catheter. Oriented perpendicularly to the catheter axis it captures the ultrasound
generated in the adjoining tissue. Thereby, the field of view of the detector overlaps with
the tissue region excited by the light source (figure 3.4). Both laser light and transducer
are rotated to obtain a full-view dataset. Entire volumes can be imaged by simply pulling
back the entire catheter.

3.3.3 Tomography

Optoacoustic tomography (OAT) systems generate cross-sectional images of the ROI.
Thereby, the entire ROI is excited by an expanded optical beam. A set of measure-
ments is acquired at multiple positions surrounding the ROI, serving as the input of a
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Figure 3.5: Linear scan in a two-dimensional OAT.

dedicated reconstruction algorithm. OAT systems can be divided into two-dimensional
and three-dimensional systems.

Two-dimensional OAT

As light can not be focused beyond the ballistic regime of photons, optoacoustic pressure
signals are inherently generated in three dimensions. Furthermore, pressure waves emitted
by small absorbers will also propagate in all spatial directions. However, by focusing the
sensitivity region of the ultrasonic detection to a plane, pressure waves can be considered
to emanate from two dimensions only. Thereby, cylindrically focused transducers aim at
rejecting all signals generated outside the focal plane. A set of measurements is then taken
by scanning the transducer either along a line (figure 3.5) [74] or along a circle (figure 3.6)
enclosing the plane with the ROI [22] [75]. In order to enable real-time imaging, transducer
arrays with parallel data acquisition are commonly applied.

Three-dimensional OAT

Three-dimensional OAT aims at reconstructing a volumetric ROI. For that, similarly as in
the 2D case, optoacoustically generated pressure waves have to be measured on a surface
enclosing the volume to be reconstructed. Commonly, there are two preferred geometries
to position detectors in 3D.
First, extending the approach from 2D OAT, a detector ring is additionally scanned in
elevational direction to form a cylindrical detection surface (figure 3.7) enclosing the ROI
[22] [76]. Thereby, either a set of 2D images is reconstructed and stacked together to form
a 3D volume, or a three-dimensional reconstruction algorithm recovers the volumetric ROI
taking into account all data acquired. The cylindrical detection approach is widely-used
as it allows to combine both a 2D and a 3D detection scheme in one system.
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Figure 3.6: Circular scan in a two-dimensional OAT system.

Figure 3.7: Three-dimensional OAT with a cylindrical detection geometry obtained by
translating and rotating a single transducer.

Second, ultrasonic detectors are positioned to cover a sphere enclosing the ROI. This
geometry has been implemented by either rotating an arc-shaped detector array [77], as
can be seen in figure 3.8, or by actually positioning the transducers on a spherical surface
[78],[79],[80].

Both, cylindrical geometry and spherical geometry, consider the optoacoustic effect in
three dimensions. In order to assure consistent excitation conditions, wide-beam illumina-
tion is necessary. Furthermore, in the spherical case, ultrasound transducers should be as
point-like and omnidirectional as possible. However, imaging systems including extended
or focused transducers require reconstruction algorithms taking the detection surface into
account.
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Figure 3.8: Three-dimensional OAT with detectors positioned to cover a sphere.

3.4 Optoacoustic Systems

In this section three optoacoustic systems are presented. They are all tomographic systems,
acquiring pressure signals on a circumference surrounding the ROI. The first two have the
ability to scan in elevational direction in order to acquire data from a cylindrical detection
surface. All experimental results presented in this work were acquired with the systems
introduced in this section.

3.4.1 Single Transducer System

The layout of the first tomographic optoacoustic system can be seen in figure 3.9. Optoa-
coustic signals are measured by a standard cylindrically focused piezoelectric immersion
transducer (Panametrics V320-SU, Olympus NDT Inc., Waltham, MA, USA) with a diam-
eter of 1.3 cm and a focal length of 2.54 cm (see figure 3.1). The central frequency of the
transducer is fc = 7.5 MHz with a fractional bandwidth BW of 70%. Optoacoustic pres-
sure waves are excited with a tunable optical parametric oscillator (OPO) laser (Phocus,
Opotek Inc., Carlsbad, California, USA), delivering ≈ 5 ns duration pulses with a repeti-
tion frequency of 10 Hz. The wavelength of the exciation laser can be tuned from 680 to
950 nm. As a pump laser within the OPO serves a frequency doubled Nd:YAG solid state
laser with an output wavelength of 532 nm. The OPO laser output is set at a wavelength of
760 nm, corresponding to the maximum power of the laser in the near-infrared spectrum.
Acquired signals at each projection are averaged 10 times for better SNR. Subsequently,
the signals are deconvolved with the EIR and bandpass filtered from 0.5 to 12 MHz. The
laser beam is guided with a fiber bundle into the water tank and, due to spatial limitations,
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deflected with a mirror in order to uniformly illuminate the sample from the bottom. The
transducer is kept at a fixed position while the sample is rotated and moved in elevational
direction by means of rotation and translation stages (PRM1/M-Z7 and NRT150, Thorlabs
GmbH, Dachau, Germany). The Q-switch output of the laser is used to trigger the data ac-
quisition card (Spectrum, M3i.4121, Spectrum Systementwicklung Microelectronic GmbH,
Grosshansdorf, Germany) embedded in the personal computer controlling the stages.

Figure 3.9: Schematic of an optoacoustic imaging system scanning a single focused trans-
ducer along a cylindrical detection geometry.

3.4.2 Transducer Array System

The second tomographic system is the first version of a commercially available small animal
optoacoustic imaging system. It is based on a custom-made 64-element curved transducer
array (Imasonic SaS, Voray, France) covering a solid angle of 172◦ around the imaged object,
as shown in figure 3.10. The individual elements are manufactured using piezo-composite
technology with a central frequency of fc = 5 MHz and a fractional bandwidth BW of more
than 50%. The sensitivity of each element is ≈ 18 µV/Pa. The entire transducer array
is shaped to create a cylindrical focus at 40 mm. According to the ultrasonic diffraction
limit and focal width at the central frequency, the effective spatial resolution of the array
is estimated at 150 µm in plane [38] and 800 µm in elevational direction, see equation
3.6. Again, excitation light originates from the tunable OPO laser (Phocus, Opotek Inc.,
Carlsbad, CA, USA), delivering ≈ 5 ns duration pulses with a repetition frequency of
10 Hz. The tuning range enables a laser wavelength from 680 to 950 nm. The beam is
guided into a silica-fused-end fiber bundle (PowerLightGuide, CeramOptec GmbH, Bonn,
Germany) consisting of 630 fibers partitioned into 10 arms. The arms are positioned 3
cm from the ROI and create a ring-shaped illumination pattern of ≈ 7 mm width upon
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the surface of the ROI, coinciding with the ultrasound detection plane. The beam is
sufficiently broadened to keep the laser pulse fluence on the surface of the imaged objects
under 20 mJ/cm2. The detected signals are digitized at a frequency of 60 megasamples/s by
eight multichannel analog-to-digital converters (PXI5105, National Instruments, Austin,
Texas, USA) having a noise floor of ≈ 3.8 nV/

√
Hz. Before used for image reconstruction,

the opotacoustic signals are bandpass filtered from 0.1 to 7 MHz. To facilitate in-vivo
measurements, the system contains an imaging chamber that holds animals inside a water-
impenetrable membrane that avoids animal contact with water while providing a wide
tomographic view of ≈ 180◦. Recent versions of the system offer a detection arc with
256 individual transducers covering an angle of 270◦. A linear stage (NRT150, Thorlabs
GmbH, Dachau, Germany) allows linear translation of the animal holder in the elevational
z-direction over a 150 mm range with a minimal step size of 2 µm for acquisition of 3D
data sets. The data acquisition is synchronized so that the signals are acquired only when
the stage comes to a complete rest.

Figure 3.10: Schematic of an optoacoustic transducer array imaging system.

3.4.3 cw-Laser System

Optoacoustic imaging with a cw-laser is performed by a system (figure 3.11) employ-
ing a temperature-stabilized diode laser (Omicron A350, Omicron-Laserage Laserprodukte
GmbH, Dudenhofen, Germany), [47]. The laser emits a collimated cw beam at 808 nm
with a peak power of 500 mW achieving an illumination spot of ≈ 5 mm diameter. LFM
laser chirps are generated using a function generator (33210A, Agilent Technologies, Santa
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Clara, California, USA) with the capability to analog modulate the laser intensity at
a frequency range of 0 − 350 MHz. However, all experimental data shown herein was
acquired applying a frequency sweep from 1 to 5 MHz within a duration of 1 ms. Ultra-
sonic pressure waves are detected by a cylindrically focused transducer (Panametrics V382,
Olympus-NDT Inc., Waltham, Massachusetts, USA) with a central frequency of 3.5 MHz,
a focal distance of 38.1 mm and a fractional bandwidth of 76%. Simultaneous rotation
of the optical excitation system and detector is realized with a rotation stage (PR50PP,
Newport Corporation, Irvine, California, USA). Then, optoacoustic signals are acquired
every 2◦, resulting in 180 projections and ≈ 10 min acquisition time per full rotation. For
better SNR the signals are averaged 50 times at every detector position. In comparison
to pulsed optoacoustic systems, which use high energy pulses of typically more than 10
mJ per pulse, cw-laser systems provide lower energies, yet operate at significantly higher
duty cycles, partially compensating for SNR losses. A portion of the emitted modulated
light is concurrently captured by a photo-diode for reference. Both, the optoacoustic and
laser reference signals, are digitized by a digital phosphor oscilloscope (DPO 7254, Tek-
tronix Inc., Beaverton, Oregon, USA) after amplification with a low-noise 65 dB amplifier
(AU-1291, Miteq, Hauppauge, New York, USA) at 50 megasamples/s. In order to assure
the synchronization of the data acquisition system and the function generator driving the
diode laser, a trigger generator (MXG5181, Agilent Technologies, Santa Clara, California,
USA) is interconnected. Data acquisition, positioning, and post-processing is enabled by a
custom-made code developed within MATLAB (Mathworks, Natick, Massachusetts, USA).
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Figure 3.11: Schematic representation of the optoacoustic imaging system employing
chirped excitation by a cw-laser.
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Chapter 4

Reconstruction Algorithms

In this chapter, an overview of optoacoustic reconstruction algorithms is given, which
contains concepts adapted from [81]. Thereby, a distinction between analytic inversion
formulas in time- and frequency-domain and algebraic inversion procedures is made. Un-
derlying assumptions of each algorithm are explained and its advantages and shortcomings
are presented. Starting point of all reconstruction algorithms presented herein, is the for-
ward solution of the wave equation Cauchy problem 2.53 – 2.55 without constants (see
2.72)

p(~r, t) =
∂

∂t

˚
|~r−~r ′|=cst

Hr(~r
′)

|~r − ~r ′|
d~r ′. (4.1)

Furthermore, all simplifying assumptions from section 2.2.1 apply.
The aim of every reconstruction algorithm is to recover the spatial distribution Hr(~r) from
pressure measurements p(~r, t) obtained on a boundary B enclosing the ROI. Thereby, the
boundary B is defined by the dimension of the optoacoustic system. In two dimensions, B
will be a theoretically infinite line or a circle, whereas three-dimensional systems consider
commonly infinite planes, cylinders or spheres.
The image one tries to recover is defined by the spatial distribution of the heating function
H(~r) = ηthΦrµa(~r). Thereby, it is assumed that heat conversion efficiency ηth and optical
fluence rate Φr are constant in space. Therefore, reconstructed images will only depend on
the spatially varying optical absorption coefficient µa(~r).

4.1 Analytic Inversion Algorithms

Analytic reconstruction techniques are characterized by inverting the mathematical model
of the optoacoustic pressure propagation by means of analytical inversion of the mathe-
matical equations. Inexactness arises only in the discrete numerical implementation of the
algorithms.
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4.1.1 Time Domain Algorithms

First analytic inversion formulas for optoacoustic imaging devices have been suggested in
the time domain by Kruger et al.[26]. In general, time-domain algorithms are designed in
a way that can be separated into three parts.

1. Preprocessing
The input data of any optoacoustic reconstruction algorithm consists of a set of
pressure measurements p(~ri, t) obtained at M positions ~r1 . . . ~rM on the measurement
boundary B. This set of one-dimensional time-domain signals is, depending on the
algorithm, mathematically altered to define a new function b(~ri, t).

2. Back-Projection
The set of functions b(~ri, t) is propagated back into the ROI. Thereby, based on the
time of flight principle, each position in space at a distance of cst from detector
position ~ri gets assigned with the value b(~ri, t). Accordingly, in three dimensions, a
radial function

bir(~r) = b(~ri,
‖~r − ~ri‖

cs
) (4.2)

gets defined, specifying values on concentric spheres centered at detector position
~ri. In two dimensions, these spherical shells reduce to circles. Depending on the
algorithm, additional spatial operations like weighting may be performed.

3. Integration
The final step of the algorithm combines all the data back-projected into the ROI
from the previous step. Thereby, an integration over all detector positions ~ri lying
on boundary B reduces to a summation of all functions bir.

The most elementary realization of an above described inversion algorithm is the so-called
’delay-and-sum’ algorithm [27]. Thereby, the set of functions b being defined in the pre-
processing step are simply the pressure measurements itself,

b(~ri, t) = p(~ri, t). (4.3)

Then, the reconstruction formula of the delay-and-sum algorithm reads as

H(~r) =

‹
B

[
p(~r′, t)

]
t=|~r−~r ′|/cs

dS(~r ′). (4.4)

One of the most prominent optoacoustic time-domain inversion formulas is the Universal
Back-Projection algorithm, which has been published in 2005 [28]. The algorithm was
initially derived for planar, cylindrical and spherical detection geometries by analytically
inverting equation 4.1. In this case, function b defined during the preprocessing step is

b(~r, t) = 2p(~r, t)− 2t
∂p(~r, t)

∂t
. (4.5)
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Apart from a varying weighting-factor, compensating for different solid angles belonging
to different detection geometries, the inversion formula reduces to

H(~r) =

‹
B

[
2p(~r ′, t)− 2t

∂p(~r ′, t)

∂t

]
t=|~r−~r ′|/cs

dS(~r ′), (4.6)

for all geometries.
Implementation of the back-projection formula 4.6 is straightforward as can be seen exem-
plary for the two-dimensional case and a circular detection boundary in figure 4.1. Thereby,

Figure 4.1: Geometry for the two-dimensional Universal Back-Projection formula.

the ROI is discretely represented by their pixel values with x- and y-coordinates, H(~r) =
H(x, y). The pressure data is measured at M distinct detector positions ~r1 . . . ~rM , with
coordinates ~ri = (xi, yi). Then, the temporal dimension is discretely sampled at Q time
points t1 . . . tQ with a sampling frequency of fS resulting in a time vector ~t = (t1, . . . , tQ)T .
Spatial and temporal discretization enable the definition of p(~ri,~t) = pi(~t), the discrete
pressure values reaching a transducer at position ~ri. Thereby, the pressure value detected
by a transducer located at ~ri at time-point tj is denoted by

p(~ri, tj) = pi,j. (4.7)

The temporal derivative of a pressure signal at position ~ri is taken numerically by subtract-
ing adjacent pressure values and dividing them by the inverse of the sampling frequency

∂

∂t
pi,j ≈

pi,j − pi,j−1
1/fS

. (4.8)
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Thereby, ∂
∂t
pi,1 ≡ 0 for all detector positions. Equation 4.8 defines a set of discrete pressure

derivative vectors ∂
∂t
pi(~t).

In two-dimensional optoacoustics the surface integral in equation 4.6 simplifies to a line
integral. Now, in the case where all detectors are positioned along a circle, the line integral
reduces to a discrete summation over all transducer positions ~ri,

H(x, y) =
M∑
i=1

[
2pi(~t)− 2~t

∂

∂t
pi(~t)

]
tj=
√

(x−xi)2+(y−yi)2/cs
. (4.9)

In general, no time instant tj ∈ ~t will fulfill the constraint tj =
√

(x− xi)2 + (y − yi)2/cs
in the above summation. Therefore, simple rounding will define the time instant tj closest
to meeting the constraint.
Initially, analytical inversion formulas dominated image reconstruction in most optoacous-
tic systems. Their simplicity and low memory requirements, as shown above, made im-
plementation easy and led to very fast reconstruction times. Nowadays, parallelization
on graphics processing units (GPU) enables ultra-fast volumetric reconstructions of large
datasets [78].

4.1.2 Frequency Domain Algorithms

Optoacoustic image reconstruction algorithms in the frequency domain transfer the in-
version problem, originally stated in temporal and spatial variables (2.53 – 2.55), to the
frequency domain. Taking advantage of Fourier techniques such as the Fast Fourier Trans-
form (FFT) algorithm, the algorithms efficiently solve the inversion problem in the fre-
quency domain and back-transform the solution into the spatial domain. Algorithms have
been suggested for all important detection geometries, namely planar [29],[31], cylindrical
[30],[32]) and spherical [32] geometry.
Before deriving a reconstruction algorithm, the solution to the wave equation Cauchy
problem is transferred to the frequency domain. As demonstrated in chapter 2, the optoa-
coustic effect, generated by an electromagnetic energy Dirac-pulse, can be modeled by the
optoacoustic wave equation 2.50. Under the assumptions made in section 2.2.2, the wave
equation in 2.50 can be equivalently reformulated as the wave equation Cauchy problem
(2.53 – 2.55). Then, the time domain solution has been found with a Green’s function
approach, where the Green’s function g(~r, t) satisfies

∂2

∂t2
g(~r, t)− c2s∇2g(~r, t) = δ(~r − ~r ′)δ(t− t′) (4.10)

g(~r, 0) = 0, (4.11)

∂

∂t
g(~r, 0) = 0, (4.12)

the wave equation Cauchy problem with a Dirac-source term at position ~r ′ and time
instant t′. Now, transferring equation 4.10 to the frequency domain, a three-dimensional
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Fourier-transformation with respect to ~r and a one-dimensional Fourier transformation
with respect to t is performed, yielding

− ω2G̃(~k, ω) + c2sk
2G̃(~k, ω) = exp(−iωt′) exp(−i~r ′ · ~k), (4.13)

where ~k = (kx, ky, kz)
T denotes the three-dimensional wavenumber vector with norm k :=∥∥∥~k∥∥∥ =

√
k2x + k2y + k2z . Now, by algebraically solving for G̃ and applying a four-dimensional

inverse Fourier transform, the Green’s function g in the time domain can be (up to a
constant) easily expressed as

g(~r, t;~r ′, t′) =
1

(2π)4

˚
R3

ˆ ∞
−∞

exp(iω(t− t′)) exp(i~k · (~r − ~r ′))
k2 − (ω/cs)2

dωd~k. (4.14)

In equation 2.68, the Green’s function is expressed as a spherical wave, whereas above
equation 4.14 is a representation by means of a sum of plane waves with direction ~k and
frequency ω. When solving the integrals in equation 4.14 one can first consider the inner
integral with respect to ω for t′ = 0

ˆ ∞
−∞

exp(iωt) exp(i~k · (~r − ~r ′))
k2 − (ω/cs)2

dω, (4.15)

which has two singularities at ω = ±csk. Applying Cauchy’s residue theorem [82] one can
solve the above inner integral and inserting the result in 4.14 gives a new expression for
the Green’s function with a source term at t′ = 0

g(~r, t;~r ′) =
cs

(2π)3

˚
R3

sin (cskt)

k
exp(i~k · (~r − ~r ′))d~k. (4.16)

Referring to equation 2.70, the forward solution of the optoacoustic wave equation Cauchy
problem can be expressed as

p(~r, t) = ΓHr(~r)
∂

∂t
δ(t) ∗ g(~r, t) (4.17)

=

ˆ ∞
−∞

˚
R3

ΓHr(~r
′)
∂δ(t′)

∂t′
g(~r, t;~r ′, t′)d~r ′dt′ (4.18)

= Γ

˚
R3

Hr(~r
′)
∂

∂t
g(~r, t;~r ′)d~r ′. (4.19)

Thereby, the above rationale takes advantage of the following properties

•
´ ∂δ(t−t0)

∂t
f(t)dt = −f ′(t0) ,

• ∂
∂t
g(~r, t;~r ′, t′) = − ∂

∂t′
g(~r, t;~r ′, t′).
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Inserting 4.16 into 4.19 leads to

p(~r, t) = Γ
c2s

(2π)3

˚
R3

˚
R3

Hr(~r
′) cos(cskt) exp(i~k · (~r − ~r ′)) d~k d~r ′. (4.20)

By closely looking at equation 4.20, one can separate the calculation of pressure p(~r, t) into
two parts.

1. 3D Fourier transform H̃r(~k) of the initial pressure

H̃r(~k) = Γc2s

˚
R3

Hr(~r
′) exp(−i~k · ~r ′) d~r ′. (4.21)

2. Propagation of the initial pressure to time point t and 3D inverse Fourier transform

p(~r, t) =
1

(2π)3

˚
R3

H̃r(~k) cos(cskt) exp(i~k · ~r) d~k. (4.22)

The two steps 4.21 and 4.22 can be realized computationally very fast and effective with
the FFT algorithm and are at the basis of the freely available optoacoustic simulation
toolbox k-Wave, [83].
Now, considering optoacoustic imaging in three dimensions, the reconstruction problem
can be characterized as follows. The pressure function p(~r, t) may be written as a sum of
separable product functions

p(~r, t) =
∑
j

αj s1,j(r1)s2,j(r2)s3,j(r3)s4,j(t), (4.23)

where ~r = (r1, r2r3)
T are the three spatial variables, which depend on the geometry of the

imaging problem, and αj is a scalar defining the contribution of the j-th base function.
The infinite sum over j in equation 4.23 has to be understood symbolically and may also
represent an integration over a continuous parameter as in the case of a Fourier transform.
The image one tries to recover, corresponds to the pressure distribution p(~r, t) upon laser
excitation at time point t = 0. Expressing it by means of the same spatial expansion
functions, it can be written in 3D space as

p(~r, 0) =
∑
j

βj s1,j(r1)s2,j(r2)s3,j(r3). (4.24)

Likewise, equation 4.23 can be evaluated at time point t = 0

p(~r, 0) =
∑
j

αj s1,j(r1)s2,j(r2)s3,j(r3)s4,j(0), (4.25)

with βj as scalar coefficients defining the contribution of the spatial base functions. Com-
paring equation 4.24 and equation 4.25 requires the coefficients to correspond to

βj = αjs4,j(0) ∀j, (4.26)
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a unique dependance referred to as dispersion relation.
Optoacoustic measurements are obtained via detectors commonly positioned on a possibly
infinite plane, an infinite cylinder or a sphere enclosing the ROI. In mathematical terms
this means that pressure data is obtained on a two-dimensional manifold (plane, cylinder,
sphere) in three-dimensional euclidean space R3. Using the above representation of the
pressure function, the set of measurements p(~r, t) can be expressed as

p(r1, r2, r3 = C, t) =
∑
j

αj s1,j(r1)s2,j(r2)s3,j(C)s4,j(t), (4.27)

where the two spatial degrees of freedom of the measurement boundary are r1 and r2.
Without loss of generality the manifold where the detectors are positioned, can be expressed
by the constant r3 = C. Now, optoacoustic image reconstruction consists of calculating
p(r1, r2, r3, t = 0) with the input data being p(r1, r2, r3 = C, t). Considering the four-
dimensional space consisting of three spatial and one temporal dimension, knowing p(~r, t)
entirely over two spatial and the temporal variable (through optoacoustic measurements)
one tries to calculate p(~r, t) over the three spatial variables at just the single time point
t = 0. Finally the identity p(~r, 0) = Hr(~r) yields the image one tries to reconstruct.
As shown in the beginning of this section, a solution of the wave equation Cauchy problem
can be decomposed into a set of planar waves by means of a 3D Fourier transformation
(see 4.14). The representation of an optoacoustic pressure function by means of planar
waves corresponds to a planar detection geometry. Accordingly, cylindrical or spherical
detection geometries demand a representation of the pressure by cylindrical or spherical
waves. However, the application of cylindrical or spherical waves leads to a complicated
mathematical formulation of the inversion problem. In contrast to that, as shown above, a
planar geometry benefits from its simple mathematical formulation via Fourier transforms,
which can be realized numerically efficient with the FFT algorithm. Therefore, in the
following, the deduction of a frequency domain reconstruction algorithm is merely shown
for planar detection geometry. The rationale is based on [83].
Without loss of generality, it is assumed that the detection plane is positioned at z = 0,
and that ~r = (r1, r2, r3)

T = (x, y, z)T holds. The solution of the wave equation Cauchy
problem p(~r, t) can be decomposed into a set of separable functions, as introduced in 4.22,

p(~r, t) =
1

(2π)3

ˆ ∞
−∞

ˆ ∞
−∞

ˆ ∞
−∞

H̃r(kx, ky, kz) cos(cskt)e
i(kxx+kyy+kzz) dkxdkydkz. (4.28)

In order to simplify the following rationale, above pressure function is symmetrically ex-
tended for negative time points, p(~r,−t) = p(~r, t). Then, the pressure measurements on
the plane z = 0 are denoted by M(x, y, t) and its Fourier transform by M̃(kx, ky, ω),

M(x, y, t) =
1

(2π)3

ˆ ∞
−∞

ˆ ∞
−∞

ˆ ∞
−∞

M̃(kx, ky, ω)ei(kxx+kyy+ωt) dkxdkydω. (4.29)
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By definition, M(x, y, t) is symmetric in t and real. Therefore, also M̃(kx, ky, ω) is sym-
metric in ω leading to

M(x, y, t) =
1

(2π)3

ˆ ∞
0

ˆ ∞
−∞

ˆ ∞
−∞

2M̃(kx, ky, ω) cos(ωt)ei(kxx+kyy) dkxdkydω (4.30)

as an alternative expression for the measurement function M . Now, as in equations 4.24
and 4.25, the pressure measured can also be expressed by setting z = 0 in 4.28

M(x, y, t) =
1

(2π)3

ˆ ∞
−∞

ˆ ∞
−∞

ˆ ∞
−∞

H̃r(kx, ky, kz) cos(cskt)e
i(kxx+kyy) dkxdkydkz. (4.31)

Comparing equations 4.30 and 4.31 gives an expression for the dispersion relation

ω = csk = cs

√
k2x + k2y + k2z (4.32)

and its differential

dω = c2s
kz
ω
dkz. (4.33)

Then, by inserting the dispersion relation 4.32 and its differential 4.33 into equation 4.31
and comparing the result to equation 4.30 one gets

H̃r

kx, ky,
√(

ω

cs

)2

− k2x − k2y

+H̃r

kx, ky,−
√(

ω

cs

)2

− k2x − k2y

 =
2c2skz
ω

M̃ (kx, ky, ω) .

(4.34)
Equation 4.34 illustrates, that symmetric optoacoustic sources atHr(x, y, z) andHr(x, y,−z)
generate identical pressure measurements on their symmetry plane z = 0. However, as-
suming a symmetric source with H̃r(kx, ky, kz) = H̃r(kx, ky,−kz), formula 4.34 reduces
to

H̃r

kx, ky,
√(

ω

cs

)2

− k2x − k2y

 =
c2skz
ω

M̃ (kx, ky, ω) . (4.35)

In summary, a frequency domain reconstruction algorithm comprises of the following three
steps.

1. Time-symmetry and Fourier transform of measurement data.
The optoacoustic measurements M(x, y, t) are symmetrically extended for t < 0,

M(x, y, t) = p(x, y, z = 0, t) + p(x, y, z = 0,−t), (4.36)

and its three-dimensional Fourier transform M̃(kx, ky, ω) is calculated,

M̃(kx, ky, ω) =

ˆ ∞
−∞

ˆ ∞
−∞

ˆ ∞
−∞

M(x, y, t)e−i(kxx+kyy+ωt) dxdydt. (4.37)
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2. Image reconstruction in the frequency domain.
The Fourier transform H̃r(kx, ky, kz) is calculated via equation 4.35. Numerically, as
only discrete values of ω are given, interpolation techniques are needed, to obtain
discrete values for kz.

3. Inverse Fourier transform of image and positivity constraint.
The reconstructed image Hr(x, y, z) is calculated by an inverse Fourier transform

Hr(x, y, z) =
1

(2π)3

ˆ ∞
−∞

ˆ ∞
−∞

ˆ ∞
−∞

H̃r(kx, ky, kz)e
i(kxx+kyy+kzz) dkxdkydkz. (4.38)

As the reconstructed image will be symmetric with respect to z = 0, the negative
part is omitted.

The interpolation method chosen in step two has a major effect on image quality. Some
interpolation methods even require the application of regularization techniques to recon-
struct an accurate image [84].

4.2 Algebraic Inversion Algorithms

Algebraic reconstruction techniques differ conceptually from analytic formulas as the in-
version is performed numerically instead of analytically. Thereby, the solution of the
optoacoustic wave equation Cauchy problem without constants

p(~r, t) =
∂

∂t

‹
|~r−~r ′|=cst

Hr(~r
′)

|~r − ~r ′|
dS(~r ′) (4.39)

is discretized in space and time resulting in a matrix vector equation

~p =M · ~H. (4.40)

Here, vector ~p represents the (measured) pressure data and vector ~H stands for the spatially
varying optical absorption coefficient defining the image. The two vectors are connected by
the model matrix M, incorporating measurement geometry and constants related to the
optoacoustic effect. Reconstruction techniques relying on a model (matrix) for the forward
problem which is subsequently inverted, are often referred to as model-based algorithms.

4.2.1 IMMI Algorithm

In the following section, a recent version of the 2010 suggested interpolated-matrix-model
inversion (IMMI) algorithm [85] is presented. Starting point is the solution of the optoa-
coustic forward problem shown in 4.39. In three dimensions, the surface integral has to be
solved over spherical shells. Assuming a source Hr(x, y, z) confined to the plane z = 0,

Hr(x, y, z) = Hr(x, y)δ(z), (4.41)
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reduces the surface integral in 4.39 to a line integral over concentric arcs. The restriction
in equation 4.41, essentially defines a two-dimensional problem where both sources and
detectors are located in a plane. As the derivation of the algorithm is less complex for
the planar case, all concepts of the IMMI algorithm will be presented in two dimensions.
However, all basic ideas translate analogously to the three-dimensional case. Therefore,
for the rest of this section, all vectors are restricted to the xy-plane, ~r = (x, y)T . Then,
the solution of the optoacoustic wave equation reads as

p(~r, t) =
∂

∂t

˛
|~r−~r ′|=cst

Hr(~r
′)

|~r − ~r ′|
dl(~r ′). (4.42)

In order to discretize equation 4.42, first, temporal and spatial domain have to be dis-
cretized. Therefore, a time vector withQ equidistant time points is defined, ~t = (t1, . . . , tQ)T ,
where the sampling frequency is given as fS = 1/(t2− t1). The spatial domain is discretely
represented by a set of pixels, defined by the x- and y-coordinates of their center. The
pixel size in each dimension is denoted by dx and dy. For simplicity, a square pixel grid
centered in the xy-plane and n pixels in each dimension is assumed, resulting in a total of
N = n2 image pixels with coordinates ~r1, . . . , ~rN .
The left hand side of equation 4.42 represents a pressure measurement of an optoacoustic
point transducer positioned at ~r. By sampling the pressure at the time points defined by
the time vector ~t, a pressure vector ~p is defined. Then, a set of pressure measurements
obtained by M transducers located at positions ~r1, . . . , ~rM defines M distinct pressure vec-
tors. By lexicographically arranging them into a single pressure vector ~p, the left hand side
of equation 4.42 can be discretized for multiple measurements.
The right hand side of equation 4.42 can be essentially divided into a time derivative and
a line integral along a circle,

p(~r, t) =
∂

∂t
I(t), (4.43)

where

I(t) =

˛
|~r−~r ′|=cst

Hr(~r
′)

|~r − ~r ′|
dl(~r ′). (4.44)

Then, by considering the discrete time points of time vector ~t, the time derivative can be
approximated by a difference quotient

∂

∂t
I(tj) ≈

I(tj + δt)− I(tj − δt)
2δt

, (4.45)

defining a time derivative vector. δt denotes an incremental time step. The integral I itself
has to be calculated along a circle with radii cstj centered at ~r. In practice, integration
over a part of the circle line will be sufficient as optoacoustic sources will be confined to the
ROI and be zero outside. In order to simplify the calculation of the integral, each circle is
approximated by a set of L straight lines defined by L+1 points ~rj,1, . . . , ~rj,L+1 distributed
equidistantly on the circle line. The length of the lines is calculated for g = 1, . . . , L as

lj = |~rj,g − ~rj,g+1| . (4.46)
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cstj

lj

rj,1

rj,L+1

r1

Figure 4.2: (a) Grid with N = n2 pixels. (b) Approximation of the detection arc by a set
of straight lines.

On each of the lines the value of function Hr(~r′)/(~r − ~r ′) is estimated as the mean of the
line end points,

Hj,g
r =

1

2

[
Hr(~rj,g)

|~r − ~rj,g|
+
Hr(~rj,g+1)

|~r − ~rj,g+1|

]
. (4.47)

Then, the integral can be approximately expressed as

I(tj) ≈ lj

L∑
g=1

Hj,g
r . (4.48)

Now, in general, the auxiliary points ~rj,g on the circle line will not coincide with the pixel
positions for which Hr has to be determined. Therefore, the function value for each circle
point, Hr(~rj,g), will be interpolated by pixel grid points. Several interpolation schemes have
been implemented, with linear interpolation providing the best tradeoff between accuracy

and calculation velocity [85],[86]. Accordingly, each circle point ~rj,g =

(
xj,g
yj,g

)
lies on a

square, limited by four adjacent pixels with coordinates

(
x1
y1

)
,

(
x2
y1

)
,

(
x2
y2

)
,

(
x1
y2

)
as vertices (figure 4.3). Thereby, x1 ≤ xj,g < x2 and y1 ≤ yj,g < y2. Then, the function
value at a circle point can be written as

Hr (xj,g, yj,g) =
1

(x2 − x1)(y2 − y1)
[ Hr (x1, y1) (x2 − xj,g)(y2 − yj,g) +

Hr (x2, y1) (xj,g − x1)(y2 − yj,g) +

Hr (x2, y2) (x2 − xj,g)(yj,g − y1) +

Hr (x1, y2) (xj,g − x1)(yj,g − y1) ] .

(4.49)
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(x2,y2)(x1,y2)

(x1,y1) (x2,y1)

xj,g - x1

y2 - yj,g

x2 - xj,g

yj,g - y1

(xj,g,yj,g)

Figure 4.3: Bilinear interpolation of the point (xj,g, yj,g) by four pixels.

Inserting 4.49 into 4.47, one can express Hj,g
r as a linear combination of the function values

at the grid points ~rk,

Hj,g
r =

N∑
k=1

λ̃kHr(~rk). (4.50)

Now, inserting equation 4.50 into equation 4.48 and grouping the terms, one obtains

I(tj) =
N∑
k=1

λkHr(~rk), (4.51)

as an expression for the line integral at time instant tj. λk depends on the interpolation
method applied and the number of lines taken to approximate the circle line. Then, taking
the time derivative and reordering the terms one can discretely express the pressure ~pi

measured by a single point transducer positioned at ~ri as

p(~ri, tj) =
N∑
k=1

mi,j
k Hr(~rk). (4.52)

By compactly arranging the coefficients mi,j
k one obtains the matrix formulation of the

optoacoustic forward problem
~pi =Mi · ~H, (4.53)
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where ~pij = p(~ri, tj), Mi
j,k = mi,j

k and ~Hk = Hr(~rk). In case when a set of pressure
measurements is considered, vector ~p is defined as stated above. M is obtained by stacking
the matrices Mi of each measurement position ~ri. Overall this results in

~p =M · ~H. (4.54)

Once equation 4.39 has been discretized to a matrix-vector equation 4.54, image reconstruc-
tion is reduced to numerically inverting equation 4.54. If M is small enough, its inverse
can be calculated in a decent amount of time. As, in general, M will not be square, its
Moore-Penrose-Pseudoinverse defined as

M† =
(
MTM

)−1MT (4.55)

has to be calculated. Reconstructing an image is then reduced to a simple matrix-vector
multiplication,

~H =M† · ~p, (4.56)

which can effectively be performed in real-time. In case of very big system matrices M,
iterative reconstruction techniques are preferred [87]. These inversion algorithms aim at
iteratively minimizing the residual

~H = arg min
~Hit

∥∥∥~p−M · ~Hit

∥∥∥ . (4.57)

In cases where the inversion problem is badly conditioned, regularization techniques might
be necessary to reconstruct a meaningful image. The most prominent regularization tech-
nique, Tikhonov-regularization, aims at minimizing the cost function

~H = arg min
~Hit

∥∥∥~p−M · ~Hit

∥∥∥+
∥∥∥T · ~Hit

∥∥∥ , (4.58)

where T is denoted the Tikhonov matrix [88]. Commonly, if no further information about
the equation system is known, the Tikhonov matrix T is chosen to be the identity matrix
which results in a new cost function

~H = arg min
~Hit

∥∥∥~p−M · ~Hit

∥∥∥+ t
∥∥∥ ~Hit

∥∥∥ , (4.59)

where the scalar regularization parameter t determines the amount of regularization of the
penalty term in equation 4.59. Thereby, commonly used minimization algorithms such as
the gradient descent or conjugate gradient methods are applied to find the optimal ~Hit.
The LSQR-algorithm [89] is a particularly efficient and fast algorithm, which has been
especially designed for large and sparse matrices. In the above described time-domain
optoacoustic model the resulting matrixM is inherently sparse, as nonzero elements arise
only due to the line integral, which affects merely a few pixels in proximity of the circle
line. Furthermore, by applying a positivity constraint to the admissible iteration steps ~Hit,
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negative values commonly appearing in reconstructions obtained from analytic inversion
algorithms, can be circumvented,

~H = arg min
~Hit,‖ ~Hit‖≥0

∥∥∥~p−M · ~Hit

∥∥∥ . (4.60)

The major advantage of model-based algorithms is that any linearizable physical effect,
such as acoustic heterogeneities ([33],[90],[91],[92]) or detectors’ spatial impulse responses
([36],[37],[39]) can be included in the model. In this way, a more complex and realistic model
of the actual physical processes is generated, thus minimizing the discrepancies between
measurements of the imaging system and signals predicted by the theoretical model.
A crucial step [93], defining the accuracy of the model and thus the quality of reconstructed
images, is the choice of the technique applied to express the continuous function Hr by its
values at discrete locations

Hr(~r) =
N∑
k=1

λkHr(~rk). (4.61)

In case of the IMMI algorithm, λk represents previously defined interpolation functions.
Interpolation techniques suggested include linear interpolation on rectangular triangles
[85], bi- and trilinear [86] or higher-order interpolation. Apart from the presented IMMI
algorithm, there are several other suggested models in the literature. The scope of imag-
ing models includes cubic [87] or spherical [39] voxels as expansion functions λk as well
as parabolic basis functions [94]. Recently, an imaging model using radially symmetric
Kaiser-Bessel window functions has been suggested [95]. Kaiser-Bessel windows have been
previously used as expansion functions in other tomographic imaging systems such X-ray
CT [96].

4.3 Signal Recovery and Image Reconstruction in cw-

Optoacoustics

Another way to generate a depth-resolved optoacoustic signal is to use amplitude-modulated
electromagnetic excitation sources [45], [49], [47]. Thereby, as described in section 2.2.4, the
cw-laser source is controlled by a function generator applying a linear frequency modulated
(LFM) chirp resulting in a laser output (figure 4.4) of

l(t) = A rect

(
t

T

)
cos

(
2πt(f0 +

k

2
t)

)
, (4.62)

or in its complex notation

l(t) = R

[
A rect

(
t

T

)
exp

(
i2πt(f0 +

k

2
t)

)]
, (4.63)

where R denotes the real part of a complex number. Here, A denotes the peak laser
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Figure 4.4: (a) LFM chirp l(t). (b) Single-sided amplitude spectrum after Fourier transform
of a LFM chirp l(t).

intensity, f0 the initial frequency of the chirp and k the sweep rate. The sweep rate k is
defined as in 2.76, where in this work only the plus sign, defining a positive chirp with
increasing frequencies, is considered. After optical absorption and subsequent thermo-
elastic expansion within the ROI, a delayed LFM pressure signal 2.83 can be detected by a
set of transducers positioned around the imaged object. As the strength of the optoacoustic
effect depends on the first derivative of the temporal laser profile, signals generated with a
cw-laser are much weaker as in the case of pulsed laser optoacoustic systems [49]. In effect,
signals emitted by absorbers due to chirped excitation are hardly visible, being almost
buried in noise. The technique presented herein to detect optoacoustic signals hidden in
noise, is termed matched filter pulse compression, which is known to be the linear filter
providing the maximum SNR [97]. Thereby, the impulse response h(t) of the filter has to
satisfy the condition

h(t) = l(−t). (4.64)

Considering a LFM chirp, as described in equation 4.62, the impulse response (without
constants) becomes

h(t) = rect

(
t

T

)
cos
(
ω0t− πkt2

)
. (4.65)

Then, according to the theory of linear time-invariant systems, the output of the filter,
CC(t), is calculated by convolving impulse response and signal,

CC(t) = (h ∗ l)(t) =

ˆ ∞
−∞

h?(τ)l(t− τ)dτ =
1

2π

ˆ ∞
−∞

H̃?(ω)L̃(ω) exp(iωt)dω, (4.66)

and is termed cross-correlation function. H̃ and L̃ denote the temporal Fourier transform
of h and l, respectively, and ? represents the complex conjugate. Now, if the detected signal



58 4. Reconstruction Algorithms

was an exact replica of the excitation chirp 4.62, the output of the matched filter would be

CC(t) = A
ˆ T /2
−T /2

cos
(
ω0τ − πkτ 2

)
cos
(
ω0(t− τ) + πk(t− τ)2

)
dτ. (4.67)

In the specific case, where the filter’s impulse response is a time-reversed copy of the input
signal, the output is termed auto-correlation function. The above integral can be solved
analytically for a LFM chirp [98], which results in

CC(t) = AT Λ

(
t

T

)
sin
(
πtkT Λ

(
t
T

))
πtkT Λ

(
t
T

) cos(ω0t)

= AT Λ

(
t

T

)
sinc

(
πtkT Λ

(
t

T

))
cos(ω0t).

(4.68)

In the above equation, the triangular function Λ is defined as

Λ(x) =

{
1− |x|, |x| ≤ 1,

0, |x| > 1,
(4.69)

and can be seen in figure 4.5. Correlation signal processing can be implemented in time-

Figure 4.5: (a) Rectangular function. (b) Triangular function.

domain, however, the efficiency and speed of FFT-routines advocates an implementation in
frequency-domain. As shown in section 2.2.4, the optoacoustically induced pressure upon
laser excitation with a LFM chirp is a time-delayed LFM chirp with constant phase-shift
Φth. Specifically, the pressure detected by a point transducer positioned at ~r will be

p(~r, t) = Ap cos

(
ω(t)

(
t− |~r − ~rs|

cs

)
+ Φth

)
, (4.70)

where Ap denotes the amplitude and ω(t) = ω0+πkt. Taking the detected pressure p as the
signal function and 4.64 as the matched filter impulse response yields a cross-correlation
function CC(t), which serves as the input data of an inversion algorithm,

CC(t) =

ˆ ∞
−∞

p?(~r, τ)l(t+ τ)dτ. (4.71)
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Figure 4.6: Cross-Correlation Function CC(t).

As matched filter correlation processing optimizes the SNR of a measured signal, hardly
visible optical absorbers will become visible in the time signal of the correlation function
CC(t). Finally, any time-domain inversion algorithm reconstructs an image of the ROI.
Ideally, any point absorber lying within the ROI will be visible in the cross-correlation
function by showing a distinct peak, as it can be seen in figure 4.6 for a noise-free case. The
width of the peak determines the resolution of the imaging system and is mainly influenced
by the width of the main lobe of the sinc-function in 4.68. The width of the main lobe
in turn is determined by the first root of the sinc-function, which can be calculated as
≈ 1

kT = 1
B , [98]. Therefore, by increasing the bandwidth B of swept frequencies per chirp,

a better resolution of the imaging system is expected.
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Chapter 5

Incorporation of Geometric Detector
Properties

The previous chapter 4 gave an overview of available reconstruction algorithms currently
used in optoacoustic imaging. All of them have in common, that they assume the ultra-
sonic detector to be confined to a point ~r in space, which stems from the mathematical
modeling with the wave equation. Realistic ultrasonic transducers, however, have an ex-
tended surface, sometimes even combined with a focus (see section 3.2.2). In case of the
predominant ultrasonic detectors based on piezoelectric materials, larger detection surfaces
imply higher SNR. The discrepancy between theoretically assumed point-like transducers
and realistic finite-size detectors is the source of severe imaging artifacts that hinder correct
interpretation and quantification of optoacoustic reconstructions.
Model-based algorithms, as presented in section 4.2, offer the possibility to incorporate
any linear physical effect of the imaging system. Therefore, geometric detector properties
can readily be included into the forward model. In the following chapter, two concepts to
incorporate geometric properties of an ultrasonic transducer into the model matrix of the
IMMI algorithm are presented. After summarizing the theoretical rationale, the benefit of
the two concepts is shown in simulations and experiments for two- and three-dimensional
optoacoustic imaging systems.

5.1 Discretization by Points

The IMMI algorithm presented in 4.2.1, realizes a discretization of the forward solution of
the optoacoustic wave equation Cauchy problem,

p(~r, t) =
∂

∂t

‹
|~r−~r ′|=cst

Hr(~r
′)

|~r − ~r ′|
dS(~r ′), (5.1)

into a matrix-vector equation
~p =M · ~H. (5.2)
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Now, for a realistic transducer, where the detector cannot be assumed point-like, the
acoustic pressure measured is spatially averaged on the active surface. Thereby, the signal
detected by a transducer having a detection surface S can be expressed as

pS(~rc, t) =

‹
S
p(~r ′, t)dS(~r ′), (5.3)

where ~rc denotes the center of the extended detector surface S. In order to calculate the
surface integral in 5.3, the transducer surface S can be discretized by a set of n evenly
distributed surface elements with central positions ~ri, Pn = {~ri}ni=1 ⊂ S, and size ∆S,~ri .
Thereby, equation 5.3 is approximated by

pS(~rc, t) ≈
∑
~ri∈Pn

p(~ri, t)∆S,~ri . (5.4)

Then, for each of the n points, a point-model matrixM~ri can be calculated. The effect of
the entire surface S is accordingly captured by a new model matrix Msum, generated as
the sum of the individual point-model matrices,

Msum =
n∑
i=1

M~ri∆S,~ri . (5.5)

If the size of the surface elements ∆S,~ri is constant, the term in the above equation can be
dropped for simplicity. Overall, reconstructing optoacoustically generated pressure data
~pS , measured with a finite-size detector, with a model-based algorithm, results in inverting
the new matrix-vector equation

~pS =Msum · ~H. (5.6)

5.2 Discretization by Lines

Previously, in section 3.2.4, it has been shown, that an ultrasonic transducer can be entirely
described by its TIR hTIR. Moreover, the TIR can be divided into the SIR describing the
detectors geometry and the EIR modeling the material components and the entire electric
transduction of the detector,

hTIR = hSIR ∗t hEIR. (5.7)

For certain, regular geometries, a SIR can be calculated analytically. Rosenthal et al.
presented the case of a line detector in a two-dimensional setting and integrated the solution
into the IMMI algorithm [36]. Thereby, in order to obtain the SIR, equation 3.14 was solved
analytically,

hSIR(~rc, ~r
′, t) =

˚
S

δ
(
t− | ~rd−~r

′|
cs

)
4π|~rd − ~r ′|

dS(~rd). (5.8)

Now, in two dimensions, any finite-size transducer is modeled as a line or can be approxi-
mated by a set of lines. Then, in three-dimensional OAT, also the three dimensions of the
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ultrasonic detector’s surface S can be included in the model. In practice, high-resolution
volumetric optoacoustic imaging is largely performed by cross sectional tomographic sys-
tems, which make use of cylindrically focused transducers to selectively collect signals
originated in the imaging plane. Volumetric imaging is then achieved by translating the
transducer in the elevational direction, [22].
A cylindrically focused detector surface S can be approximated by a set of m lines centered
at ~ri, Lm = {~ri}mi=1 ⊂ S. For each of these lines, an analytical SIR h~riSIR can be calculated.
Now, the effect due to the SIR of the entire surface S can be approximated by summing
up all the SIR of the lines,

hSIR ≈
m∑
i=1

h~riSIR. (5.9)

Finally, recalling equation 3.19, the effect of the SIR can also be incorporated into the
IMMI algorithm model matrix. This results in an expression for the pressure pS , detected
by a three-dimensional finite-size transducer,

pS(~rc, t) =
Γ

4π

˚
R3

|~rc − ~r ′|hSIR(~rc, ~r
′, t+

|~rc − ~r ′|
cs

) ∗t
∂

∂t

δ(t− |~rc−~r
′|

cs
)

|~rc − ~r ′|
Hr(~r

′)d~r ′, (5.10)

where ∗t denotes the temporal convolution operator and ~rc the center of the detection
surface S. The temporal convolution in the above equation has been implemented with
high numerical efficiency within the framework of the IMMI algorithm, resulting in a
new model matrix MSIR. Now, model-based reconstruction of optoacoustically generated
pressure data, measured with a finite-size detector, consists of inverting the new matrix-
vector equation

~pS =MSIR · ~H. (5.11)

5.3 Simulations in Two Dimensions

In order to examine the capabilities of the two models described in the previous sections,
numerical simulations were employed. Thereby, an optical absorption distribution Hr(x, y)
was assumed by a two-dimensional truncated paraboloid, positioned at (x0, y0) with radius
r0, i.e.,

Hr(x, y) =

{
1− (x−x0)2+(y−y0)2

r20
, (x− x0)2 + (y − y0)2 ≤ r20,

0, (x− x0)2 + (y − y0)2 > r20.
(5.12)

For this absorption pattern, the laser-induced pressure wave detected at a point in space
can be calculated analytically (see appendix A.1.1). Then, the surface of a finite-size
detector was discretized uniformly and very densely with >100 equidistant points, and the
analytical signals corresponding to each point were summed by equation 5.4 to determine
the response of the entire detector area. Henceforth, the signals calculated in this manner,
are referred to as the analytical signals.
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5.3.1 Line Transducer

In the first simulation, a 1 cm line transducer was considered as a detector. In order
to assess the accuracy of the models, the analytical signals were compared to the ones
estimated by the two models introduced in section 5.1 and 5.2. For this purpose, the
pressure vector predicted by the models was calculated from the matricesMsum andMSIR

using equations 5.6 and 5.11. The discrete ROI considered, consists of 201 × 201 pixels,
equivalent to 2 × 2 cm2, resulting in a uniform resolution of about 100 µm. The optical
absorption distribution contained four different absorber sizes with radii of r0 = 200 µm,
r0 = 500 µm, r0 = 1 mm and r0 = 2 mm, see figure 5.3 (a).
The signals shown in figure 5.1 (a) correspond to a single transducer, positioned at (x,y) =
(4 cm, 0 cm). Both models replicate almost identical copies of the analytical signals. For all
other positions on a detector ring with radius 4 cm, analytical signals and signals predicted
by the models match equally. As absorbers with different sizes emit pressure waves at
different frequencies, it is important that the whole frequency spectrum of broadband
signals is accurately calculated. Therefore, the Fourier transforms of the signals were
compared (figure 5.1 (b)) and proved good accuracy of the two models throughout the
frequency spectrum.
Then, in a second step, the analytical signals were calculated for a tomographic geometry
(figure 5.2). For this purpose, a 1 cm line transducer was scanned along a circumference
surrounding the object with a 2◦ step so that 180 transducer positions are taken. In order
to show the effects in absorbers of different sizes, the same absorption distribution as in
the previous paragraph, corresponding to absorbers with radii of r0 = 200 µm, r0 = 500
µm, r0 = 1 mm and r0 = 2 mm, was considered. Model inversion was performed iteratively
by means of the LSQR algorithm [89], with a preset tolerance as a stopping criterion.

When inverting model matrix M, representing a point detector, severe image artifacts
can be observed (figure 5.3 (b)). Specifically, smaller absorbers get considerably damped
in its absorption coefficient. Furthermore, the more off the rotation axis of the detection
circumference an absorber lies, the more smeared it will appear in the reconstruction.
This is due to the discrepancy between signals detected by a line transducer and the model
assuming a point detector. A point transducer positioned at ~rdet, will only register a
pressure wave emitted by a point absorber, positioned at ~rabs, at the time instant t =
|~rdet − ~rabs|/cs. Compared to that, a line transducer will receive signals from absorbers off
the rotation axis for a longer amount of time. Moreover, the smearing effect visible in figure
5.3 (b) is frequency dependent. Smaller absorbers, emitting higher frequencies, get more
severely affected than bigger absorbers, where the effect is hardly visible. However, by
including geometric detector properties into the model, image distortions can be corrected.
As expected from the analysis performed above, both models, Msum and MSIR, achieve
equally good results (5.3 (c) and (d)).
In case of the point model, the 1 cm line of the transducer was approximated by 21 points.
The number of points is a key factor in the evaluation of the two models. Calculation time
Tsum of the model matrix Msum scales linearly with the number of points n applied to
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Figure 5.1: (a) Time-domain signal (blue) emitted by the two-dimensional absorption
pattern shown in figure 5.3 (a) and the signals predicted by model matrices MSIR (red)
and Ssum (green). (b) Corresponding frequency-domain representation of the signals in
(a).
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Figure 5.2: Tomographic detection geometry with a line transducer.

discretize the line,

Tsum = nT , (5.13)

where T denotes the time to calculate a single (point-detector) model matrix. The more
points used to approximate the line, the more accurate the model will perform. However,
after a threshold depending on the spatial resolution of the reconstruction, no further
improvement in the model is observed. In contrast to that, calculation of the model matrix
MSIR takes always the same amount of time TSIR. It consists of calculating a single model
matrix M, the SIR hSIR (calculation time ThSIR

) and the time Tconv needed for temporal
convolution,

TSIR = T + ThSIR
+ Tconv. (5.14)

Especially for long line transducers, where a lot of points would be needed to approximate
the line, model matrix MSIR is preferable, as it can be calculated much quicker in this
case than model matrixMsum. When holding the matrix in the computer memory, it must
be noted, that, depending on the length of the detector line, Msum and MSIR occupy
roughly up to ten times the memory as compared to the point detector model matrix M.
For the setting of the above simulations the memory requirements can be seen in table 5.1.
However, at the expense of inversion speed, storing the matrix can be circumvented by
only computing the action of the model matrix in each step of the iterative reconstruction.



5.3 Simulations in Two Dimensions 67

x [cm]

y 
[c

m
]

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1 −0.2

0

0.2

0.4

0.6

0.8

x [cm]

y 
[c

m
]

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1
0

0.2

0.4

0.6

0.8

1

x [cm]

y 
[c

m
]

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1 0

0.2

0.4

0.6

0.8

1

x [cm]

y 
[c

m
]

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1 0

0.2

0.4

0.6

0.8

1(a) (b)

(c) (d)

Figure 5.3: (a) Original image. (b) Model-based reconstruction assuming point detectors.
(c) Reconstruction applying model matrix Msum. (d) Reconstruction applying model
matrix MSIR.

Model Matrix Memory [MB]

M 700

Msum 5130

MSIR 6310

Table 5.1: Memory requirements for two-dimensional model matrices with n = 201
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Figure 5.4: Two-dimensional geometry of line scan with a focused transducer.

5.3.2 Focused Transducer Scanning

In the following simulation a focused transducer was scanned along a line as depicted in fig-
ure 5.4. The transducer considered had a width of 1.5 cm and a radius of curvature of 4 cm.
The scan was performed along a line of 8 cm length, taking optoacoustic measurements at
801 equally spaced detector positions. As an optical absorber a two-dimensional truncated
paraboloid of radius r0 = 1 mm was placed at the center of the ROI which covered 2 × 2
cm2 and was discretized by 101 × 101 pixels. The focused detector geometry was modeled
by approximating the surface with 51 evenly distributed points. Then, as in the previous
section, analytical signals were calculated by summing signals received at 151 surface po-
sitions representing 151 surface elements. Image reconstruction was performed by means
of the IMMI algorithm. First, model matrix M, representing point detectors was taken
for inversion. Then, model matrixMsum, incorporating geometric detector properties was
considered for image reconstruction.
The parabolic absorber placed in the center of the ROI can be seen in figure 5.5 (a), whereas
the model-based reconstruction with matrix M is depicted in sub-figure (b). Clearly, the
absorber is smeared all over the ROI in x-direction losing all spatial resolution in that
dimension. This results from the discrepancy between the assumed point detectors in the
model and the actually recorded signals. Sub-figure 5.5 (c) shows the reconstruction ob-
tained by inversion of model matrix Msum. A drastic improvement of the resolution in
x-direction can be observed, closely approximating the actual size of the absorber. Due
to inherently missing projection angles for a limited line scan, it is not expected that a
reconstruction would perfectly match the original image, as the geometry only covers a
limited view of the ROI.
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Figure 5.5: (a) One parabolic absorber placed in the center of the ROI. (b) Image recon-
struction obtained with the IMMI algorithm assuming point detectors. (c) Model-based
image reconstruction taking the detector geometry into account. All reconstructions show
only the central part of the ROI.
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Figure 5.6: Condition number of the model matrix Msum for different scan lengths.

It should be noticed, that the improvement of the resolution in x-direction is strongly
dependent on the length of the line scan. The longer the scan, the better conditioned
the model matrix Msum became, therefore facilitating the model inversion. In order to
corroborate this assertion, the condition number of the model matrix Msum has been cal-
culated for different scan lengths. The results shown in figure 5.6 show a steady decrease of
the condition number for increasing scan length, indicating a better conditioned inversion
problem.

5.4 Simulations in Three Dimensions

As a physical phenomenon, the optoacoustic effect involves all three spatial dimensions and
is most accurately modeled in three dimensions. This applies both to the optical absorption
distribution as well as to the ultrasonic detection surfaces. Therefore, three-dimensional
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model-based inversion techniques, incorporating the geometric detector properties, offer a
holistic possibility to calculate quantitatively and qualitatively most comprehensive image
reconstructions. In order to present the capabilities of model-based reconstruction algo-
rithms in a noise-less setting, computer simulations were performed in a first step. To
this end, again, optoacoustically excited pressure waves emitted by the optical absorption
pattern of a three-dimensional truncated paraboloid, positioned at (x0, y0, z0) with radius
r0,

Hr(x, y, z) =

{
1− (x−x0)2+(y−y0)2+(z−z0)2

r20
, (x− x0)2 + (y − y0)2 + (z − z0)2 ≤ r20,

0, (x− x0)2 + (y − y0)2 + (z − z0)2 > r20,
(5.15)

are calculated analytically for the case of a point-like detector, as shown in appendix
A.2.1. Then, optoacoustic pressure signals detected by a finite-size transducer with a
three-dimensional detection surface S can be approximated by discretizing the surfaces S
with more than 2000 equidistant points and summing the signals detected at each of the
surface points. As in the previous section, the signals calculated by this procedure are
referred to as the analytical signals.

5.4.1 Cylindrically Focused Transducer

Widely-used cross sectional optoacoustic tomographic systems make use of cylindrically
focused transducers to selectively collect signals originating in the imaging plane. There-
fore, in this section, image reconstruction of optoacoustic data measured with cylindrically
focused transducers is investigated. Specifically, the cylindrically focused transducer used
in the imaging system introduced in section 3.4.1 is considered. It has a circular shape of
1.3 cm diameter and a focal length of 2.54 cm.
Then, the two model-based approaches presented in sections 5.1 and 5.2, capable of in-
cluding geometric detector properties, are evaluated. Therefore, the transducer’s detection
surface S is approximated by points as well as lines. In order to assess the accuracy of
both models, the analytical signals are compared to the ones predicted by the two model
matricesMsum andMSIR. For this purpose, the pressure vector is calculated from the two
matrices using equations 5.6 and 5.11. MSIR is calculated by approximating the surface
of the transducer with 21 lines, which can be seen in figure 5.7 (b). No significant changes
in the signals are produced if a higher number of lines is used to approximate detection
surface S. Msum is calculated by considering 350 equally spaced points on the transducer
surface, shown in figure 5.7 (a), so that the distance between the points for calculating
Msum is approximately the same as the distance between the lines for calculating MSIR.
The discrete ROI considered, consists of 101 × 101 × 21 voxels, equivalent to 2 × 2 × 0.4
cm3, resulting in a uniform resolution of 200 µm. The detector receiving the optoacoustic
signals is positioned at ~r = (2.54 cm, 0 cm, 0 cm). In order to cover a wide range of
frequencies emitted by optical absorbers, first, four truncated paraboloids with radius r0
= 200 µm and then with radius r0 = 1 mm are considered. The paraboloids are positioned
along the positive x-axis in the middle plane at z = 0, starting at the center of the ROI
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Figure 5.7: Approximation of a cylindrically focused transducer by (a) points and (b) lines.
(c) Cylindrically focused transducer used in the imaging system described in 3.4.1.
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as can be seen in figure 5.8 (a) and (d). The signals predicted by the two model matrices
show good agreement with the analytical ones, ensuring that the models precisely capture
the cylindrical detector surface. A comparison of the signals for one detector position is
depicted in figure 5.8 (b) and (e). As absorbers with different sizes emit pressure waves
at different frequencies, it is important that the whole frequency spectrum of broadband
signals is accurately calculated. The Fourier transform of the signals, illustrated in figure
5.8 (c) and (f), showcases the good accuracy of the two models throughout the frequency
spectrum. There is, however, a discrepancy between the analytical signals and the sig-
nals predicted by the models for the smaller absorbers. The reason for this difference is
mainly due to fact, that the small absorbers are in the order of the pixel size. Therefore
discretization errors are produced by approximating the actually continuous absorption
distribution within the discrete ROI. Furthermore, to showcase the equivalent behavior of
the two models, a stack of cross sectional images of a mouse is positioned inside the ROI
and the signals predicted by the two matrices are compared. The central slice of the stack
of images is depicted in figure 5.8 (g). Also here, figure 5.8 (h) and (i) corroborate, that
the signals are almost identical, both in time and frequency domain. As the two models
demonstrate the same behavior, only model matrix MSIR is considered for image recon-
struction in the rest of the simulations and experiments, due to the lower computational
time for wide detectors.
Thereupon, the analytical signals of four point absorbers with radius r0 = 200 µm and
radius r0 = 1 mm are calculated for a tomographic geometry. For this, a cylindrically
focused transducer is considered to be scanned along a circumference surrounding the ROI
with a 2.25◦ step, resulting in 160 projections per plane. Then, the detector is additionally
scanned linearly along 0.6 cm in the elevational direction with a 200 µm step size (31
steps), so that overall 4960 transducer positions are taken into account, which is shown in
figure 5.9.
The inversion is performed using two alternative methods. First, a two-dimensional model
matrix, capturing the 160 detector positions in one plane, is calculated. Thereby, each
plane is reconstructed separately with this matrix. The inversion is done by means of
the LSQR algorithm, resulting in a stack of 2D reconstructions representing the volumet-
ric ROI. Here, no Tikhonov regularization needs to be employed, as the LSQR algorithm
converges for full-view acquisition in the two-dimensional case, i.e., the optimal regular-
ization parameter for Tikhonov regularization is t = 0 in equation 4.59. Second, the full
three-dimensional model matrix MSIR, incorporating the SIR of the transducer, is calcu-
lated. The inversion in this case is performed with the LSQR algorithm including standard
Tikhonov regularization. Then, the results obtained by reducing the reconstruction prob-
lem to two dimensions can be compared with those obtained by a full three-dimensional
reconstruction including the geometric shape of the transducer.
Figure 5.10 shows the results obtained by the two reconstruction procedures. The recon-
struction achieved by inverting a 2D model for each plane, shows the expected smearing
in the imaging plane of the absorbers located away from the center of the image. These
in-plane artifacts can be seen in figure 5.10 (b) and (h) and are due to the assumed point
transducers in the model which do not correspond to the actual signals collected by the
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Figure 5.8: Comparison of pressure signals emitted by four absorbers of different size. (a)
and (d) show the middle plane of the three-dimensional ROI with four parabolic absorbers
of radius 200 µm and 1 mm placed along the positive x-axis. (b) and (e) depict the signals
predicted by the model matrices MSIR (dashed red) and Msum (dotted green) together
with the analytical signals (blue) for a cylindrically focused transducer positioned at (x,y,z)
= (2.54 cm, 0 cm, 0 cm). (c) and (f) display the Fourier transforms of the signals in (b)
and (e), respectively. (g) Middle plane of a stack of cross-sectional images of a mouse. (h)
and (i) show the signals emitted by the mouse cross-sections predicted by the two matrices
and their Fourier transforms.
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Figure 5.9: Detector positions and ROI for the cylindrical detection geometry used in
simulations and experiments. For better visibility only every second z-scan position is
depicted.

transducer. The effect has already been described in section 5.3 about two-dimensional
measurements of a line transducer. Also, the reconstructed absorption values are severely
reduced for peripheral absorbers, resulting in significant quantification errors. Figure 5.10
(e) and (k) demonstrates smearing of the absorbers over almost the entire ROI in the
z-direction, corresponding to strong out-of-plane artifacts. In contrast to that, the recon-
structions retrieved with the full three-dimensional model including the SIR of the detector
significantly reduce the smearing in the out-of-plane (figure 5.10 (f) and (l)) and in-plane
directions (figure 5.10 (c) and (i)). Altogether, the resolution in all spatial dimensions can
be strongly improved with the 3D model incorporating the SIR of the transducer.
Furthermore, it is shown that the error in the reconstructed absorption value is size de-
pendent. More precisely, figure 5.11 (a) and (d) shows the horizontal profiles of the four
absorbers along the x-axis in the middle plane. In case of two-dimensional model-based
reconstructions, the values of the ratio between the retrieved amplitudes for the outer and
the inner absorbers are ≈ 10% for the small absorbers and 40% for the big absorbers,
respectively. When the full 3D model is applied, these values increase to 40% and 75%,
respectively, which indicates that the quantitative errors are considerably reduced with
the latest approach. It is important to notice that the overall improvement of the recon-
struction was also influenced by the length of the scan in the z-direction. The influence of
the scan length on the reconstruction was already shown for the two-dimensional case in
section 5.3.2. Overall, longer scans led to a better conditioned model matrix and thereby
inversion problem, so that better quality reconstructions were generally obtained.
Considering computational requirements, building a three-dimensional model matrix for
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Figure 5.10: Simulation of four absorbers with radius r0 = 200 µm (a) and (d) and radius
r0 = 1 mm (g) and (j) placed along the positive x-axis in the center of the ROI. (b)
and (h) depicts the maximum intensity projection (MIP) along the z-axis of the stack of
2D reconstructions and (e) and (k) its MIP along the y-axis. (c) and (i) show the MIP
along the z-axis of the 3D reconstruction taking the spatial impulse response (SIR) of the
transducer into account. The MIP along the y-axis is depicted in (f) and (l).
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Figure 5.11: (Normalized) absorption values along the x-axis in the middle plane for four
absorbers with radius r0 = 200 µm are shown in (a) and r0 = 1 mm in (d). Relative
improvement of the absorption values in the z-direction is depicted for the central absorber
in (b) and (e) and the outmost absorber in (c) and (f).

the entire detection geometry, assuming point detectors, took about 130 seconds. There-
fore, calculation of the entire matrix Msum, which is the sum of 350 such point detector
matrices, would have taken over 12 hours and require 12.8 GB of memory for storage.
In contrast, computation of the model matrix MSIR comprised of three steps. First, a
three-dimensional point-detector matrix M had to be calculated. Then, for each of the
lines defining the surface S of the transducer, an analytic SIR was calculated. The entire
surface’s SIR, hSIR, was then approximated as in equation 5.9, by summing the individual
SIRs of the lines. Finally, model matrix M and SIR hSIR had to be convolved, yielding
MSIR. In total, the calculations had a duration of roughly 8 hours. Memory requirements
for storage of MSIR were the same as for Msum. All three-dimensional model matrices
were computed on a workstation computer 2× Intel Xeon DP X5650 (6 × 2.67 GHz) with
144 GB of random-access memory (RAM).

5.5 Experiments in Two Dimensions

In order to emphasize the benefits of including the detector size into the reconstruction
algorithm, experiments with tissue-mimicking Agar phantoms containing micro-particles
were carried out. The cylindrical phantoms with a diameter of 2 cm were prepared using a
gel made from distilled water, containing Agar (Sigma-Aldrich, St. Louis, Missouri, USA)
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Figure 5.12: Transducer positions along a circumference enclosing the ROI with four micro-
particles. At each detector position a pressure wave is recorded with a line transducer.

for jellification (1.3% w/w) and an Intralipid 20% emulsion (Sigma-Aldrich, St. Louis,
Missouri, USA) for light diffusion and more uniform illumination (6% v/v), resulting in a
gel presenting a reduced scattering coefficient of µ

′
s ≈ 10 cm−1. Then, four polyethylene

micro-particles with an approximate diameter of 200 µm (BKPMS 180 to 212 µm, Co-
spheric LLC, Santa Barbara, California, USA) had been placed in one plane, starting at
the center of the ROI, moving outwards on a line (figure 5.12). Imaging was performed
with the system described in 3.4.1, using a cylindrically focused transducer with a 1.3 cm
diameter. Within the focal plane, the transducer acts approximately as a line transducer.
Thereby, optoacoustic signals were acquired every 2.25◦, resulting in 160 projections of a
single plane. The radius of the detection circumference was set identical to the focal width
of the transducer at 2.54 cm (see figure 5.12). Again, the ROI consisted of 201×201 pixels,
equivalent to 2× 2 cm2, resulting in a uniform resolution of 100 µm.
Image reconstruction was performed in three different ways. First, an image was calculated
by means of the Universal Back-Projection formula presented in 4.6. Then, model-based
inversion by means of the IMMI algorithm was employed. Thereby, a model matrix M
assuming point transducers and model matrices MSIR and Msum (31 points) incorporat-
ing the detector geometry were calculated. Inversion was performed iteratively by means



78 5. Incorporation of Geometric Detector Properties

(a) (b)

(c) (d)

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

x [cm]

y 
[c

m
]

−0.2

0

0.2

0.4

0.6

0.8

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

x [cm]

y 
[c

m
]

0

0.2

0.4

0.6

0.8

1

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

x [cm]

y 
[c

m
]

0

0.2

0.4

0.6

0.8

1

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

x [cm]

y 
[c

m
]

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8
−0.2

0

0.2

0 0.2 0.4 0.6 0.8
−0.2

0

0.2

0 0.2 0.4 0.6 0.8
−0.2

0

0.2

0 0.2 0.4 0.6 0.8
−0.2

0

0.2

Figure 5.13: (a) Reconstruction of four micro-spheres using the Universal Back-Projection
formula. (b) Model-based reconstruction assuming point detectors. Image reconstruction
applying (c) model matrix Msum and (d) applying model matrix MSIR.

of the LSQR-algorithm.
In analogy to the results shown in the simulations section, the discrepancy between theoret-
ically assumed point detectors and actually applied finite-size transducers, affects heavily
the reconstructions, as can be seen in figure 5.13. Thereby, figure 5.13 (a) and (b) clearly
show the characteristic smearing and damping of the absorption coefficients in the cases
where point absorbers are assumed. Again, the effect becomes more explicit with increas-
ing distance of the absorbers from the rotation center of the detection circle. However, the
micro-particle positioned approximately in the center of the ROI gets reconstructed per-
fectly. When applying the enhanced model matrices MSIR and Msum for reconstruction,
figure 5.13 (c) and (d) demonstrate, that the smearing effect vanishes and the original size
of the micro-particles can be approximately recovered.
When comparing the maximum value of the reconstructions projected along the columns of
the images (figure 5.14), it can be seen, that the algorithms assuming point-like detectors
barely recover the micro-sphere positioned at the edge of the ROI. The absorption value
reconstructed is about 10% of the peak value. In comparison to that, both model-based
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Figure 5.14: Maximum along the x-axis of the image reconstructions shown in figure 5.13.

approaches incorporating the detector shape reconstruct the absorption coefficient with
approximately 45% of the peak value. However, the micro-sphere positioned at the center
of rotation of the imaging system gets reconstructed perfectly by all inversion algorithms.
This is due to the fact, that the finite-size effect of the detector is minimal at the center
of rotation, as pressure waves originating at the center hit all detector surfaces perpen-
dicularly at the same time instant. Another effect becoming visible in the reconstructions
is that the Universal Back-Projection algorithm creates negative values around the ab-
sorbers, which have no physical interpretation. This effect is much weaker for model-based
reconstructions and can be even prevented by including a positivity constraint within the
iterative inversion of the matrix-vector equation. Moreover, figure 5.14 confirms that the
noise level of the model-based reconstruction using matrix MSIR is significantly lower as
compared to the other reconstructions.

5.6 Experiments in Three Dimensions

Finally, the advantages of modeling the entire detector shape within a three-dimensional
reconstruction algorithm were showcased by conducting several optoacoustic experiments.
Therefore, the imaging systems introduced in section 3.4.1 and 3.4.2 were used, both
covering a cylindrical detection geometry with cylindrically focused transducers. Image
reconstruction in all cases was performed in two different ways. On the one hand, a two-
dimensional model matrix M2D, representing the detector positions of a single circumfer-
ence surrounding the three-dimensional ROI, was calculated. Then, only the optoacoustic
measurements, corresponding to a single detection circumference, are considered for inver-
sion with model matrix M2D. Consecutively taking all the detector ring measurements
into account, a stack of two-dimensional images is reconstructed, representing the volu-
metric ROI. On the other hand, a full three-dimensional model matrix MSIR, including
the geometry of the transducer, is calculated. Then, image reconstruction of the entire
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ROI implies inversion of the matrix-vector equation 5.11, considering all measurements at
the same time.

5.6.1 Micro-Particles

First, the same tissue-mimicking Agar phantoms containing micro-particles, as described
in the previous section, were measured with the imaging system presented in section 3.4.1.
Briefly, the cylindrical phantoms had a diameter of 2 cm and were prepared with a gel
made from distilled water, containing Agar (Sigma-Aldrich, St. Louis, Missouri, USA)
for jellification (1.3% w/w) and an Intralipid 20% emulsion (Sigma-Aldrich, St. Louis,
Missouri, USA) for light diffusion and more uniform illumination (6% v/v). The resulting
opaque gel had a reduced scattering coefficient of µ

′
s ≈ 10 cm−1. As optoacoustic sources,

four polyethylene micro-particles with an approximate diameter of 200 µm (BKPMS 180
to 212 µm, Cospheric LLC, Santa Barbara, California, USA) were placed in a single cross-
sectional plane, starting at the center of the ROI, moving outwards on a line (figure 5.15
(a) and (d)). Optoacoustic signals were acquired for the tomographic geometry of section
5.4.1 which is depicted in figure 5.9. More precisely, 160 projections were measured along
a circumference (2.25◦ step). Subsequently, this detection ring was scanned along 0.6 cm
in elevational direction with a 200 µm step size (31 steps) resulting in 4960 total measure-
ment positions of the transducer. The radius of the detection circumference was adjusted
at 2.54 cm, to be identical to the focal width of the transducer. After discretization, the
ROI consisted of 101× 101× 21 pixels, covering 2× 2× 0.4 cm3, with a uniform resolution
of about 200 µm and centered inside the detector ring and the scanning range.
As in section 5.4.1, image reconstructions, with both M2D and MSIR, were computed on
a workstation computer 2× Intel Xeon DP X5650 (6 × 2.67 GHz) with 144 GB of RAM.
The LSQR algorithm was executed with MATLAB (Mathworks, Natick, MA, USA). For
inversion in the two-dimensional case, the LSQR algorithm showed convergence, so no
Tikhonov regularization was employed. The three-dimensional reconstruction was per-
formed by means of the LSQR algorithm with standard Tikhonov regularization, opti-
mizing the value of t to give the best possible image quality. The results of the image
reconstructions can be seen in figure 5.15. More precisely, sub-images 5.15 (a) and (d)
show the approximate position of the four micro-particles as a maximum intensity projec-
tion (MIP) along the z- and y-axis, respectively. The corresponding MIPs resulting from
the stack of two-dimensional reconstructions can be seen in sub-figures 5.15 (b) and (e).
In plane, as expected from the simulations, absorbers positioned remotely from the center
of rotation, appear smeared and with a damped pixel value in the reconstructions. The
effect becomes stronger with increasing distance from the center of rotation. By examining
the MIP along the y-axis, micro-particles actually confined to the middle plane, appear
elongated and spread out over the entire ROI, resulting in strong out-of-plane artifacts.
At the position of the outmost absorber even several peaks are expressed, suggesting the
existence of more than one absorber.
Then, sub-images 5.15 (c) and (f), depict the results obtained by inverting the full 3D
model matrix MSIR. In plane, all four micro-particles can be clearly identified, being
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confined to their actual position and size. Moreover, sub-image (f) shows four distinct
micro-particles, that are limited in their extension in z-direction. The positive effect of
the incorporation of the impulse response are corroborated by sub-images 5.15 (h) and (i).
Incorporating detector properties within model-based reconstruction, improves focusing of
both the central and outmost absorber to their actual position around image plane z=0.
Furthermore, sub-image (g) suggests, that the overall signal-to-noise level is higher in the
3D reconstruction including the detector shape. Figure 5.15 (k) depicts the middle plane
of the stack of 2D reconstructions with a threshold between 0 and 0.1 in order to make
the noise floor more visible. Clearly, the same plane, obtained via the full 3D reconstruc-
tion and the same threshold, shows visibly less noise (5.15 (l)). As a measure for the noise
level, the standard deviation σnoise of the reconstructed pixel values excluding the absorber
region has been calculated. Therefore, the regions marked in figure 5.15 (j), containing all
pixels with y-values between [−1,−0.5] and [0.5, 1], have been defined and the standard
deviation among those pixels has been determined. For the 2D model reconstruction the
value was σ2D

noise = 1.1655 whereas in the case of the full 3D model reconstruction the
calculation yielded σ3D,SIR

noise = 0.5373, corroborating the assertion of a lower noise level in
the 3D reconstruction.

5.6.2 Mouse Spleen

The present section, aims at substantiating the advantages of applying a full three-dimen-
sional imaging model incorporating the detector shape, for optoacoustic measurements of
biological tissue. To that end, an ex-vivo spleen of a mouse was embedded in a translucent
gel made from Agar and imaged with the high-throughput optoacoustic tomographic sys-
tem described in section 3.4.2. After discretization, the ROI consisted of 111 × 111 × 31
pixels, covering 2.2×2.2×0.6 cm3, with a uniform resolution of about 200 µm and centered
inside the detector ring. As the imaging system comprises of a detector ring, the size of each
transducer element is limited to approximately 2 mm in azimuthal and 15 mm in eleva-
tional directions, respectively. Due to the small width of the elements as compared to their
height, the main effect in the reconstructions is the out-of-plane spreading in z-direction
of the absorbers. Therefore, modeling of the transducer surface in this case was simplified
by discretizing it with 150 surface elements in the elevational direction and neglecting az-
imuthal extension. A comparison of the results obtained with the two-dimensional model
and the simplified three-dimensional model is displayed in figure 5.16. The 3D model shows
a visible improvement in the elevational resolution, as can be seen in the MIPs along the
y-direction (figure 5.16 (c) and (d)). The out-of-plane artifacts are especially significant
for the background absorption, which generates mainly low-frequency acoustic waves, and
the focusing capacity of the transducer is lower in this case. The reduction of the out-of-
plane artifacts corresponding to low spatial frequencies also improves the visual quality of
the MIP along the z-direction. The weak SNR observed in the stack of two-dimensional
reconstructions of figure 5.16 (a) was enhanced by applying the 3D model (figure 5.16 (b)).
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Figure 5.15: Approximate position of four micro-spheres within the three-dimensional ROI.
(a) depicts the MIP along the z-axis and (d) the MIP along the y-axis. (b) and (e) show the
corresponding MIPs of the stack of reconstructions obtained via inversion of the 2D model.
(c) depicts the MIP along the z-axis of the reconstruction obtained by inverting the full
3D model matrixMSIR. The MIP along the y-axis is shown in (f). In (g), the absorption
values of the four micro-spheres projected along the y-axis for both reconstructions are
shown. The relative improvement of the absorption values in the z-direction is shown for
the central absorber in (h) and the outmost absorber in (i). (j) The position of the four
absorbers in the middle plane with a threshold set from 0 to 0.1. The two regions used
for determining the noise level in the reconstructions are marked with the white dashed
boxes. (k) depicts the middle plane of the stack of 2D reconstructions, whereas (l) shows
the central plane of the reconstruction obtained by inverting the full 3D model with the
same threshold from 0 to 0.1.
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Figure 5.16: Reconstructions of a mouse spleen embedded in Agar. (a) and (c) show the
MIPs along the z- and y-axis resulting from the stack of reconstructions obtained via the
two-dimensional IMMI algorithm. (b) and (d) depict the corresponding MIPs resulting
from the 3D model with the detector properties incorporated.
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5.7 Concluding Remarks

This chapter introduced two strategies to incorporate geometric detector properties into
model-based image reconstruction. Thereby, the detector surface was approximated either
by points or lines. The inclusion of the transducer shape into the reconstruction algo-
rithm can be performed both in two and three dimensions. In order to substantiate the
benefits of an enhanced imaging model, a series of simulations and experiments has been
conducted. In this process, it could be shown that, both the point and line model accu-
rately capture the effects of an extended detection surface. However, especially for large
detectors, the line model should be favored over the point model, as calculation times are
significantly lower. The improvements achieved in simulations could be translated even to
experiments involving biological tissue. Overall, image resolution in all spatial dimensions
could be restored, allowing the correct interpretation and quantification of optoacoustic
reconstructions.



Chapter 6

Optoacoustic Tomography with a
cw-Laser System

Besides generating optoacoustic signals by means of a pulsed laser system, an alterna-
tive method implies the application of a cw-laser. Thereby, the output of the cw-laser
is modulated with a LFM chirp, generating a pressure wave response with an identical,
time-delayed profile, as has been shown in section 2.2.4. By using correlation processing
techniques, such as matched-filter compression, weak optoacoustic signals, mostly hidden
in the imaging system’s noise, can be recovered and serve as the input of a reconstruction
algorithm. The current chapter presents results, that demonstrated for the first time the
capability of optoacoustic cw-laser systems to operate tomographically and in-vivo [47].

6.1 Experimental Results with a cw-Laser System

Throughout this chapter, all optoacoustically generated pressure data was acquired with
the cw-laser imaging system described in section 3.4.3. Subsequent to the experimental
measurements, the detected pressure signals p(~r, t) are cross-correlated with the LFM
chirp signal l(t), which is simultaneously recorded by a photo-diode. Signal-processing
by means of matched filter pulse compression, as explained in section 4.3, generates the
cross-correlation function

CC(t) =

ˆ ∞
−∞

p?(~r, τ)l(t+ τ)dτ, (6.1)

for every detector position ~r on the detection circumference enclosing the ROI. The cross-
correlation function CC(t) serves as the input of the back-projection algorithm described
in 4.9 which was used for reconstruction of all images shown herein.
First, in order to showcase the ability to perform tomographic imaging, two cylindrical
phantoms with a diameter of approximately 4 mm were prepared. The phantoms con-
sisted of a clear gel made from distilled water containing Agar (Sigma-Aldrich, St. Louis,
Missouri, USA) for jellification (1.3% w/w), enclosing a rectangular insertion mixed from
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India ink and Agar. The rectangular absorber had an absorption coefficient of approxi-
mately µa ≈ 2 cm−1, which was determined through measurements with a spectrometer.
A photograph of the phantom and its reconstruction can be seen in figure 6.1 (a) and
(b). The boundaries at the interface of the absorber and the transparent Agar phantom
are clearly highlighted in the reconstruction and correspond to the excited frequencies 1-5
MHz of the LFM chirp. Spectral frequency components of less than 1 MHz, which would
excite the absorption distribution within the insertions, are not prominently stimulated by
the frequency band employed, and consequently do not appear in the reconstruction.
Then, a second cylindrical phantom containing a smaller insertion with a hexagonal shape
of 1.5 mm diameter was imaged. Again, the absorption coefficient was determined to be
approximately µa ≈ 2 cm−1. Photograph and optoacoustic image reconstruction of the
phantom are depicted in figure 6.1 (c) and (d). Size and shape of the smaller insertion
match exactly the original phantom, proofing the ability of the cw-laser system to optoa-
coustically image cross-sectional slices.
Assessing the SNR performance of the cw-laser imaging system, was done by the measure

SNRcw = 20 log10

(
µsignal
σnoise

)
, (6.2)

where µ denotes the mean and σ the standard deviation of the signal and noise within the
ROI. The value for the reconstruction in figure 6.1 (b) was SNRcw = 32.1 dB and for figure
6.1 (d) SNRcw = 32.3 dB. All artifacts visible in the reconstructions, especially speckles
and small oscillations, can be attributed to the signal processing procedure of calculating
the cross-correlation function, which represents a sinc-function.
Following the positive results obtained by tomographically imaging cross-sections of Agar-

phantoms, an in-vivo experiment with a mouse was conducted. Considering the experience
gained with phantom measurements, imaging the mouse-tail fitted the dimensions of the
absorbers in the previous experiments. For this purpose, the mouse tail of a female BALB/c
mouse was measured at a height of about 4 cm from the distal end. In accordance with
the measurement protocol, approved by the Government of Bavaria, the mouse was anes-
thetized by isoflurane gas, followed by catheterization of the right vein at 2 cm from the
distal end. During the experiment, in order to ensure a stable measurement, the mouse
was attached to a custom-made mouse-tail holder.
Then, a first tomographic measurement of the mouse-tail was performed to serve as a base
line dataset. Following, 130 nmol of Indocyanine green (ICG) were injected via the catheter
into the mouse tail and additional measurements were acquired at several time points. In
order to compensate the ICG clearance from the blood stream through the hepatobiliary
tract, occurring during the acquisition time of ≈ 10 minutes per image, an additional 100
nmol of ICG were administered at a projection angle of 140◦. Subsequent to the in-vivo
measurements, the mouse was euthanized and frozen to -80 ◦C, in order to cryoslice and
photograph the mouse tail for comparison with the image reconstructions. All mouse-tail
images reconstructed from the measurements can be seen in figure 6.2, with sub-figure (a)
showing the reconstruction from the base line dataset. All four major tail blood vessels,
both lateral caudal veins, the dorsal vein and the ventral artery, are visible. Accordingly,
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Figure 6.1: (a) Photograph of the Agar-phantom with a rectangular optical absorber in-
clusion of absorption µa = 2 cm−1 and (b) its tomographic reconstruction. (c) Photograph
of the Agar-phantom including a hexagonal insertion of 1.5 mm diameter and absorption
coefficient of µa = 2 cm−1. (d) Reconstruction of the hexagonal phantom.

figure 6.2 (b) and (c) depict the reconstructions of post-ICG administration measurements
obtained at two time points approximately 10 minutes apart. The aim was to investigate
the ability to record dynamic variations of optical absorption in response to the ICG clear-
ance from the blood circulation. Specifically, by comparing the scale bars, figure 6.2 (b)
depicts a two-fold increase in the absorption coefficient, whereas figure 6.2 (c) indicates
reduced intensity due to ICG clearance. Again, assessing the SNR of reconstructions with
the measure introduced in 6.2, yields a value of SNRcw = 40.7 dB for sub-figure 6.2 (a)
and SNRcw = 49.6 dB for sub-figure (b). As compared to the phantom reconstructions,
an increase of the SNR for the in-vivo images is justified by the fact that the absorption
coefficient of blood vessels before ICG injection is twice that of the Agar phantoms [99]
[100]. The photograph depicted in figure 6.2 (d) shows the frozen and cryosliced mouse-tail.
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Here, all four major blood vessels can be identified and showcase the good correspondence
of the optoacoustic reconstructions with actual cross-section of the mouse-tail.

Figure 6.2: (a) Tomographic reconstructions of a mouse tail measured in-vivo with the
cw-laser system. (b) Reconstruction of data measured during ICG injection and (c) ≈ 10
minutes after ICG injection. (d) Cryoslice of the mouse tail showing the lateral caudal
veins (LV), the dorsal caudal vein (DV) and the ventral caudal artery (VA). The dashed
circle represents approximately the tail surface.

6.2 Concluding Remarks

This chapter puts the theoretically derived image reconstruction algorithm of section 4.3
into practice. It could be shown for the first time, that optoacoustic signals excited with
a cw-laser source are suited to generate cross-sectional images. The developed system in
combination with the dedicated reconstruction algorithm proofed its imaging capabilities
with Agar-phantoms and by monitoring the dynamic variations of optical absorption in
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response to ICG clearance from blood circulation within an in-vivo mouse-tail. Further-
more, in contrast to commonly used pulsed lasers, which are bulky and expensive, cw-laser
sources are relatively cheap and compact, allowing to reduce costs and size of optoacoustic
imaging systems.
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Chapter 7

Efficiency Techniques for
Model-Based Image Reconstruction

The main disadvantage of the model-based approach proposed in chapter 5 is its memory
requirements. As all algebraic reconstruction methods, also the IMMI algorithm employed
herein, become very time- and memory-consuming with increasing temporal and spatial
resolution. Extending the imaging task to three dimensions only aggravates the problem.
Both models presented, Msum and MSIR, needed each 12.8 GB of memory for storage
of the matrix. Calculation time for building the matrices was ≈ 8 hours for MSIR and
more than 12 hours for Msum. Depending on the size of the considered detector surface
the number of nonzero elements of a model matrix increases significantly. For transducers
typically used in optoacoustics, a 10-fold increase in nonzero elements is produced with
respect to the model matrix M for point detectors. Then, storage of the model matrix is
an important issue to address in order for the method to be a viable tool in algebraic image
reconstruction. This can be partially alleviated by simplifications of the model, as done
in section 5.6.2 for imaging the spleen. However, larger matrices inevitably require the
development of strategies to efficiently reconstruct high resolution images from multiple
optoacoustic measurements.

7.1 Detection Symmetries

Tomographic imaging systems tend to acquire data from as many detection angles as pos-
sible, surrounding the ROI. Optimal angular coverage minimizes reconstruction artifacts,
as the mathematical inversion of the forward problem becomes better conditioned. There-
fore, also most optoacoustic tomographic imaging systems try to fully enclose the ROI by
implementing a detection circumference (imaging systems 3.4.1 and 3.4.3) or, out of spatial
limitations, detecting on a circle segment (imaging system 3.4.2).
Considering a model-based approach for image reconstruction implies the calculation of
a model matrix, whose size, when held in storage, scales linearly with the number of an-
gular projections taken into account. However, by choosing the detector positions wisely,
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Figure 7.1: Four symmetry axes of a quadratic ROI and a 360◦ detection circumference.

calculating the entire model matrix is not necessary, as only a few projections contain the
entire information about the imaging system. All other measurement positions can be
easily obtained by taking advantage of symmetries within the detection geometry.

7.1.1 In-Plane Symmetries

In this section, the two-dimensional case of a detection circumference covering all 360◦

around a quadratic ROI, as depicted in figure 7.1, is considered. For the purpose of enabling
an easy rationale, it is assumed, that 360 measurement positions are taken, resulting in a
1◦ step. The quadratic ROI possesses four symmetry axes, also shown in figure 7.1.
In a first step, by just calculating the model matrix for the upper half of symmetry axis
I, only the first 180 transducer positions between 0◦ and 180◦ are taken into account.
Thereby, one saves half of the memory required for storing the model matrix. However,
detector position number 1 has the same relative position towards the ROI as detector
position 181, up to renumbering the pixels. By properly creating a book-keeping list of
how to renumber the pixels within the ROI for symmetry axis number I, the information
of all measurement positions can be stored in a matrix of half the size. Iteratively applying
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this technique to all four symmetry axes, merely one eighth of the measurement positions
are needed, covering 45◦ of the entire circle. Altogether, besides the book-keeping list for
reordering the pixels, the actually calculated model matrix requires now only one eighth
of the memory initially needed for all 360 projections. In order to be able to exploit
all four above described detection symmetries, the transducer positions must be equally
distributed around the detection circumference. Furthermore, the total number of detector
positions along the circle line has to be a factor of eight. For this reason, simulations and
experiments, in this work, conducted with the single transducer imaging system described
in 3.4.1 acquired 160 signals over 360◦.

7.1.2 Out-of-Plane Symmetries

A lot of three-dimensional optoacoustic tomography systems, prefer a cylindrical detection
geometry over a spherical one. This stems from spatial limitations, that hinder the ROI to
be fully enclosed, as in case of a mouse for example, an anesthesia system with breathing
tubes has to be connected to the ROI. In analogy to the rationale in the previous sec-
tion, translational symmetries apply for a cylindrical detection surface. This fact can be
exploited in order to further minimize the memory consumption of a model matrix used
for image reconstruction. For simplicity, consider a volumetric ROI with one detector ring
position per plane in z-direction (figure 7.2 (a)). It is assumed, that the number of scan
positions in z-direction is an odd number. Now, instead of calculating the model matrixM
for all detector ring positions in z-direction, only the central positionMcentral is calculated,
yet, for a ROI of double the extension in z-direction (figure 7.2 (b)). Then, if the part of
model matrix M corresponding to detector ring position 1 is needed in a calculation (7.3
(a)), the exact same sub-matrix can be extracted from model matrixMcentral, by appropri-
ately selecting a sub-ROI. From the perspective of detector ring position 1, all planes of the
ROI have a z-coordinate greater than or equal to the detector’s z-coordinate. Therefore,
the corresponding part in matrixMcentral only considers those planes of the enlarged ROI
whose z-coordinates are greater than or equal to the z-coordinate of the central detector
ring (7.3 (b)). Iteratively, all detector ring positions within model matrixM can be found
in Mcentral by stepping a sub-ROI through the enlarged ROI of matrix Mcentral (7.3 (c)
and (d)).
Overall, a model matrix for only one detector ring position has to be calculated. Even
though the considered ROI is bigger, reduction of the memory capacity needed for storing
the model matrix is significant, especially if a lot of detector positions per plane are con-
sidered. Finally, in analogy to the strategy for in-plane symmetries, taking advantage of
the symmetry axis at the central detector ring position can further cut the memory con-
sumption in half. All three-dimensional model-based reconstructions shown in this work,
have been calculated by applying the above techniques.
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Figure 7.2: (a) 2n-1 positions of a linear scan with a detector ring and the corresponding
planes of a volumetric ROI. The red line defines the symmetry axis in z-direction. (b)
Central position n of a linear scan with a detector ring and a larger ROI used for the
efficient calculation of the model matrix corresponding to the geometry defined in (a).

7.2 Wavelet Packets

High quality optoacoustic images commonly imply high resolution of the ROI to be re-
constructed and a large number of optoacoustic measurements surrounding the ROI. This
leads to very big model matrices used for algebraic image reconstruction, resulting in high
computational demands for storing and handling the matrices. In effect, image reconstruc-
tion becomes either very slow or impracticable. A large model matrix M implicates that
either the matrix inverseM† cannot be calculated due to memory limitations or even iter-
ative inversion algorithms do not converge in a decent amount of time. This constriction
can turn model-based inversion impracticable from a certain size of the matrix on.
A novel approach to handle model-based inversion and overcoming the above mentioned
limitations, was first reported by Rosenthal et al.[101], which laid the groundwork of the
following rationale. The basic concept consists of decomposing the reconstruction problem
into a set of smaller inversion problems, which in turn can be solved with a sophisticated
algorithm that would be impossible to use for model matrix M. Inversion can then be
performed, for example, by calculating the Moore-Penrose-Pseudoinverse, applying a least
squares minimization algorithm, a `1-norm minimization algorithm or by means of a sin-
gular value decomposition (SVD) for each of the matrices representing the set of smaller
inversion problems.



7.2 Wavelet Packets 95

Figure 7.3: (a) ROI as seen from detector position 1 (red). (b) Enlarged ROI with a
sub-ROI marked in red. The relative position of the red ROI towards detector position
n corresponds to the setting of sub-figure (a). (c) ROI (green) as seen from the central
detector position n and (d) the corresponding sub-ROI (green) of the enlarged ROI.
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7.2.1 Theoretical Rationale

In the following derivation, a two-dimensional tomographic geometry setting as described in
section 7.1.1 is considered (figure 7.1). In general, model-based reconstruction algorithms

establish a connection between a set of optoacoustic measurements ~p and an image ~H in
terms of the model matrix M. With this frameowrk, matrix M can be understood as
a finite-dimensional operator between the image space I ⊂ RN and the projection space
P ⊂ RMQ,

M :

{
I −→ P ,
~H 7−→ ~p =M · ~H.

(7.1)

Here, M denotes the number of transducer positions, Q the number of time samples per
detector measurement and N defines the total number of pixels in the image resulting in
matrix M∈ RMQ×N .
The forward model of the imaging system defined in 7.1 is now decomposed into a set
of smaller models by means of the wavelet packet decomposition [102]. As all practical
computations are in discrete space, also all wavelet packets in this work are presented
in their discrete form as conjugate mirror filter banks [103]. Thereby, only orthogonal
wavelets, such as the Daubechies wavelets, are considered herein. They can be defined by
a finite sequence h[n] of length 2A, acting as a low-pass finite impulse response (FIR) filter,
called the scaling filter. Then, the corresponding high-pass filter, termed the wavelet filter,
is represented by its FIR g[n] of even length 2A, and can be calculated as the quadrature
mirror filter of sequence h[n],

g[n] =

{
h[2A+ 1− n], n odd,

−h[2A+ 1− n], n even.
(7.2)

Naturally, image ~H is a discrete two-dimensional object with the number of pixels in
x- and y-direction defining its size. However, also optoacoustic measurements ~p may be
represented as discrete two-dimensional images in form of their sinogram, with Q and M,
the number of time samples and measurement positions, as the image size. Then, a first
level discrete wavelet decomposition of a two-dimensional object O[k, l], (k = 1, . . . , K; l =
1, . . . , L) is defined as

a[k, l] = AO[i, j] =
∞∑

i,j=−∞

h[i− 2k]h[j − 2l]O[i, j], (7.3)

d1[k, l] = D1O[i, j] =
∞∑

i,j=−∞

h[i− 2k]g[j − 2l]O[i, j], (7.4)

d2[k, l] = D2O[i, j] =
∞∑

i,j=−∞

g[i− 2k]h[j − 2l]O[i, j], (7.5)
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d3[k, l] = D3O[i, j] =
∞∑

i,j=−∞

g[i− 2k]g[j − 2l]O[i, j]. (7.6)

Wavelet reconstruction, on the other side, obeys the formula

O[k, l] =
∞∑

i,j=−∞

h[k − 2i]h[l − 2j]a[i, j]

+
∞∑

i,j=−∞

h[k − 2i]g[l − 2j]d1[i, j]

+
∞∑

i,j=−∞

g[k − 2i]h[l − 2j]d2[i, j]

+
∞∑

i,j=−∞

g[k − 2i]g[l − 2j]d3[i, j].

(7.7)

Applying operator A to object O[k, l] in the decomposition process, yields the approxima-
tion coefficients a[k, l], representing a down-sampled, low-passed version of O[k, l]. Equiv-
alently, the three operators D1, D2 and D3 generate the detail coefficients d1[k, l], d2[k, l]
and d3[k, l], constituting a down-sampled version of O[k, l] that is high-passed over either
one or both dimensions. In contrast to the wavelet decomposition, where only the approx-
imation coefficients are further decomposed, the wavelet packet decomposition takes all
coefficients into account for further decomposition. Any additional level of decomposition
is obtained by applying the operators A, D1, D2 and D3 iteratively to both approximation
coefficients a[k, l] and detail coefficients d1[k, l], d2[k, l] and d3[k, l]. Thereby, a so-called
full-tree decomposition of depth Z is defined as decomposition where all coefficients were
decomposed Z times. At level Z, a full-tree decomposition possesses 4Z leaves. Each leaf
represents a set of coefficients defining a down-sampled version of object O[k, l]. Thereby,
the frequency content of every leaf corresponds to a distinct spectral band, where all spec-
tral bands have approximately the same bandwidth. Furthermore, all leaves at level Z
have the same number of coefficients, approximately determined by 4−ZKL. A full-tree
decomposition for Z = 2 can be seen in figure 7.4. A set of full-tree wavelet packets is
often referred to as a pseudo-local cosine basis, as their frequency content is confined to a
certain spectral band, yet collectively covering all frequencies.
Rosenthal et al. use the fact that the integral over an arc, used in the description of optoa-
coustic detection, locally approximates an integral along a line, which is at the basis of the
formulation of the Radon-transform. Then, with rationale of the Radon transform, it can
be shown that projection data of objects that are confined in their spatial and frequency
domain (such as wavelets), can be localized in their sinogram when the projection operator
locally approximates the Radon transform. Specifically, this finding implies, that objects
which consist of a superposition of various translated wavelet packets, can be reconstructed
from a projection dataset that is smaller than the one needed when no a priori information
on the object is given.
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Figure 7.4: Full-tree wavelet packet decomposition of depth 2.

Now, for both the image ~H and its projection data ~p, a full-tree decomposition can be cal-
culated. By doing so, image and projection data are decomposed in a wavelet packet base,
where each base function has the same support in space and approximately the same effec-
tive support in frequency. Then, for each leaf in the tree, the projection dataset required
for reconstructing the decomposition coefficients can be identified. Each set of wavelet
packet coefficients demands a different piece of information of the projection data in order
to be reconstructed correctly. In case where no overlap between information datasets for
reconstructing different leaves occurs, the inversion problem may be efficiently divided into
a set of smaller problems. This means that the wavelet packet coefficients of each leaf can
be reconstructed independently from the coefficients of all other leaves.
In order to formulate image reconstruction in the wavelet domain, two column vectors,
~HW and ~pW , containing a full-tree decomposition of the image ~H and pressure data ~p are
defined,

~HW =
[
( ~H1

W )T , . . . , ( ~H4Y

W )T
]T
, (7.8)

~pW =
[
(~p1W )T , . . . , (~p4

Z

W )T
]T
. (7.9)

Here, ~Hy
W denotes the column vector containing the wavelet packet coefficients of the

image ~H, corresponding to the y-th leaf. Likewise, ~pzW represents the column vector with
the wavelet packet coefficients of pressure data ~p, associated with the z-th leaf. Y and Z
are the respective depths of the decomposition. The lengths of the vectors defined in 7.8
and 7.9 are denoted by lHW and lpW . Then, wavelet reconstruction in the formulation of
equation 7.7 can be written in matrix form as

~H = R · ~HW , (7.10)

with matrix R composed of 4Y sub-matrices, each representing a leaf

R =
[
R1, . . . ,R4Y

]
. (7.11)
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Therefore, the reconstruction formula may equivalently be written as

~H =
4Y∑
y=1

Ry · ~Hy
W . (7.12)

Then, also the wavelet decomposition process can be represented by a matrix D, leading
to the following formulation

~pW = D · ~p. (7.13)

Substituting 7.10 and 7.13 into matrix equation 4.40, representing the optoacoustic forward
problem, yields

~pW = D ·M · R · ~HW , (7.14)

the corresponding equation in the wavelet domain. Each wavelet packet, represented by a
leaf y, defines a model matrix My

W in the wavelet domain, calculated as

My
W = D ·M · Ry. (7.15)

Now, assuming that the representation in the wavelet packet basis is efficient, Rosenthal
et al. showed that most rows in model matrix My

W have little influence on an accurate
prediction of the wavelet packet coefficients ~pyW corresponding to the y-th leaf,

~pyW =My
W · ~H

y
W . (7.16)

Indeed, it is anticipated that a limited number of wavelet packet coefficients is sufficient to
specify the projection data emitted from any object spanned by the y-th wavelet-packet
base. Consequently, there is room to optimize memory consumption and calculation speed
by only considering rows of the matrix which contain important information. As it can not
be expected that the significant rows ofMy

W solely correspond to a single wavelet packet,
an upper limit LIM of rows taken into account is set. Then, a vector containing the
maximum absolute value of each row ofMy

W is built, and the LIM rows with the highest
value are considered to be of significance. Considering only the selection of important rows
yields a set of 4Y reduced model matricesMy

W,LIM , representing the optoacoustic forward
problem decomposed into wavelet packets,

~pyW,LIM =My
W,LIM · ~H

y
W . (7.17)

~pyW,LIM denotes the vector obtained from ~pyW by considering only the LIM important rows
of My

W . As the matrices defining the inversion problems represented by equation 7.17
are considerably smaller thanM, more complex inversion algorithms can now be applied.
When calculating a direct inverse, such as the Moore-Penrose-Pseudoinverse (My

W,LIM)†,
for each of the wavelet packets, inversion is reduced to a matrix multiplication,

~Hy
W = (My

W,LIM)† · ~pyW,LIM . (7.18)
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Finally, according to equation 7.12, optoacoustic image reconstruction consists of perform-
ing an inverse discrete wavelet transform and summing the contribution of each of the 4Y

wavelet packets,

~H =
4Y∑
y=1

Ry · (My
W,LIM)† · ~pyW,LIM . (7.19)

7.2.2 Results with Simulated and Experimental Data

In order to showcase the potential of model-based image reconstruction in the wavelet
domain, simulations and experiments have been conducted. To that end, analytical op-
toacoustic signals have been calculated for a tomographic detection geometry with 450
detectors equally positioned along a circumference of radius 4 cm. The ROI covered 2 ×
2 cm2, discretized by 151 × 151 pixels, resulting in a uniform resolution of approximately
130 µm. Within the ROI, the two-dimensional distribution of truncated paraboloids used
in section 5.3.1 was considered as optical absorbers (figure 7.5 (a)). In order to evaluate
the performance of the model transfer to the wavelet domain, the detectors were assumed
to be confined to points. Figure 7.5 (b) shows the reconstruction obtained by inverting the
matrix vector equation of the IMMI algorithm using model matrix M. All absorbers are
correctly reconstructed, as the model matrix fits the measurement geometry. Figure 7.5
(c) depicts the reconstruction calculated with equation 7.19 after decomposing the imag-
ing problem into 16 sub-problems in the wavelet domain. Also here, all optical absorbers
are correctly reconstructed, exhibiting only minor flaws around the biggest absorber which
could be removed by recursively improving the reconstruction with the procedure described
in [101]. Inversion in the case of the IMMI algorithm was performed with the LSQR algo-
rithm and took approximately 10 seconds per image. This value could be reduced to less
than 5 seconds by using the wavelet packet approach of equation 7.19. Holding model ma-
trix M in storage required 730 MB of memory whereas the Moore-Penrose-Pseudoinverse
(My

W,LIM)† only occupied less than 260 MB. Beyond that, in contrast to model matrixM
the direct inversion matrices (My

W,LIM)† are already densely populated. In the case, when
geometric detector properties are incorporated into the imaging model, memory require-
ments for both model matrices Msum and MSIR increase up to a factor of 10. However,
even with detector properties included, the size of the wavelet domain sub-problems cannot
increase any more.
The simulation results with a more complex absorption distribution obtained from a pho-

tograph of mouse cross-section can be seen in figure 7.5 (d) – (f). Optoacoustic pressure
signals were generated by multiplying the absorption pattern in 7.5 (d) with the model
matrix M. In order to avoid an inverse crime, Gaussian white noise with zero mean and
standard deviation of 10 % of the maximum amplitude was added to the projection data.
The reconstruction obtained with the IMMI algorithm can be seen in figure 7.5 (e) and
shows, as expected, a minimal noise floor over the entire image. The result of the wavelet
domain algorithm is depicted in sub-figure 7.5 (f). The image quality is almost identical
to the result of the IMMI algorithm, showing only slightly more negative values.
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Figure 7.5: (a) Theoretical image composed by truncated paraboloids of different sizes.
(b) Reconstruction obtained by the IMMI algorithm. (c) Wavelet packet reconstruction.
(d) Photograph of a mouse cross-section used for signal generation. (e) Model-based image
reconstruction after the addition of Gaussian white noise. (f) Reconstruction obtained by
the wavelet domain algorithm.
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Figure 7.6: (a) Reconstruction obtained by the IMMI algorithm. (b) Reconstruction re-
sulting from the wavelet domain algorithm.

As the simulation results proved the wavelet domain algorithm’s ability to reconstruct op-
toacoustic images, a tomographic data-set of a mouse tumor was acquired with the imaging
system presented in section 3.4.1. The experiment considered 500 equally spaced detec-
tor positions on a circumference of radius approximately 2.6 cm. The ROI covered 1.3
× 1.3 cm2 and was discretized with 151 × 151 pixels. Figure 7.6 shows in sub-figure (a)
the result of the reconstruction with the IMMI algorithm and in sub-figure (b) the result
of the wavelet packet algorithm. No visible difference can be observed, showcasing the
applicability of the wavelet packet framework for optoacoustic image reconstructions of
experimental data. Again, calculation time of the wavelet packet algorithm was less than
half as compared to the IMMI algorithm.
All reconstructions using the wavelet-packet framework applied a full-tree decomposition of
depth 2 to image and data space. The Daubechies 6 wavelet was chosen as mother wavelet,
corresponding to conjugate mirror filters with six coefficients. All calculations were per-
formed in MATLAB (Mathworks, Natick, MA, USA) on a personal computer with an Intel
Duo 3-GHz processor and 16 GB of RAM.

7.2.3 Wavelet Packets in Three Dimensions

The theory developed in subsection 7.2.1 can be conceptually extended to three dimensions.
In this case, the image to be reconstructed defines a volume consisting of voxels in the
image space, ~H ∈ I. The optoacoustic measurements, as element of the projection space
~p ∈ P , have to be arranged in a three-dimensional sinogram, where two dimensions define
the spatial position of the detector and the third dimension represents the time axis.
Then, a first level three-dimensional wavelet decomposition of an object O[e, f, g], (e =
1, . . . , E; f = 1, . . . , F ; g = 1, . . . , G) is defined as
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a[e, f, g] = AO[u, v, w] =
∞∑

u,v,w=−∞

h[u− 2e]h[v − 2f ]h[w − 2g]O[u, v, w], (7.20)

d1[e, f, g] = D1O[u, v, w] =
∞∑

u,v,w=−∞

g[u− 2e]h[v − 2f ]h[w − 2g]O[u, v, w], (7.21)

d2[e, f, g] = D2O[u, v, w] =
∞∑

u,v,w=−∞

h[u− 2e]g[v − 2f ]h[w − 2g]O[u, v, w], (7.22)

d3[e, f, g] = D3O[u, v, w] =
∞∑

u,v,w=−∞

h[u− 2e]h[v − 2f ]g[w − 2g]O[u, v, w], (7.23)

d4[e, f, g] = D4O[u, v, w] =
∞∑

u,v,w=−∞

h[u− 2e]g[v − 2f ]g[w − 2g]O[u, v, w], (7.24)

d5[e, f, g] = D5O[u, v, w] =
∞∑

u,v,w=−∞

g[u− 2e]h[v − 2f ]g[w − 2g]O[u, v, w], (7.25)

d6[e, f, g] = D6O[u, v, w] =
∞∑

u,v,w=−∞

g[u− 2e]g[v − 2f ]h[w − 2g]O[u, v, w], (7.26)

d7[e, f, g] = D7O[u, v, w] =
∞∑

u,v,w=−∞

g[u− 2e]g[v − 2f ]g[w − 2g]O[u, v, w]. (7.27)

(Note that g is both used as variable and operator. From the context it is clear if g is
either variable or operator.) Here, operators A,D1, . . . ,D7 yield the three-dimensional
approximation coefficients a[e, f, g] and detail coefficients d1[e, f, g], . . . , d7[e, f, g]. Three-
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dimensional wavelet reconstruction, on the other side, is performed by the formula

O[e, f, g] =
∞∑

u,v,w=−∞

h[e− 2u]h[f − 2v]h[g − 2w]a[u, v, w]

+
∞∑

u,v,w=−∞

g[e− 2u]h[f − 2v]h[g − 2w]d1[u, v, w]

+
∞∑

u,v,w=−∞

h[e− 2u]g[f − 2v]h[g − 2w]d2[u, v, w]

+
∞∑

u,v,w=−∞

h[e− 2u]h[f − 2v]g[g − 2w]d3[u, v, w]

+
∞∑

u,v,w=−∞

h[e− 2u]g[f − 2v]g[g − 2w]d4[u, v, w]

+
∞∑

u,v,w=−∞

g[e− 2u]h[f − 2v]g[g − 2w]d5[u, v, w]

+
∞∑

u,v,w=−∞

g[e− 2u]g[f − 2v]h[g − 2w]d6[u, v, w]

+
∞∑

u,v,w=−∞

g[e− 2u]g[f − 2v]g[g − 2w]d7[u, v, w].

(7.28)

As in the two-dimensional case, a[e, f, g] represents a three-dimensional, down-sampled
and low-passed version of object O[e, f, g]. Furthermore, d1[e, f, g], . . . , d7[e, f, g] denote
down-sampled and high-passed versions over either one, two or all three dimensions. A
three-dimensional full-tree decomposition of depth Z possesses 8Z leaves, with each leaf
having approximately 8−ZEFG coefficients.
In two dimensions, the ideal case of a full-view scenario with uniformly distributed projec-
tions spanning all 360◦ of a detection circumference was considered. Then, projection data
can be straightforwardly represented by its sinogram, where neighboring columns corre-
spond to signals measured at adjacent detector positions. In three dimensions, a full-view
detection geometry would be represented by transducers covering a sphere. Out of practi-
cal reasons it is not convenient to entirely enclose the ROI by the detection system as the
positioning of samples or anesthesia hoses for in-vivo measurements require access which
cannot be occupied by a detection system. Furthermore, the wavelet domain algorithm
requires the representation of the pressure data in a three-dimensional sinogram, which can
be subsequently decomposed by means of the three-dimensional wavelet packet transform
(equations 7.20 - 7.27). Obviously, projection data can be represented by spherical coordi-
nates, where two axes of the sinogram correspond to polar and azimuth angle, whereas the
third axis represents the temporal dimension of the signal. However, positioning transduc-
ers equally on a sphere, in a way that the corresponding sinogram maintains the connection
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Figure 7.7: Cylindrical detection geometry for the simulations with the three-dimensional
model-based reconstruction algorithm in the wavelet domain. Every tenth detection ring
is depicted in the figure.

of neighboring projections, is not a trivial task.
Less complex is the application of a cylindrical detection geometry, which results from
scanning a detection ring in the elevational direction. Here, a uniform coverage of the
detection surface is readily obtained from the two-dimensional case. Projection data in the
three-dimensional sinogram is represented by the azimuth angle, the height determining
the position of each detector and the time axis as the third dimension.
In order to illustrate the performance of the wavelet packet algorithm in three dimensions,
numerical simulations have been conducted. To that end, a ROI of 51 × 51 × 51 voxels
covering 5 × 5 × 5 mm3 was considered. For each of the 51 planes of the ROI, optoacoustic
measurements were acquired on a detection circumference of radius 4 cm. Measurements
were recorded every 6◦ spanning all the 360◦ of each circle so that overall 3060 detector
positions were taken into account. The ROI and cylindrical detection geometry can be
seen in figure 7.7. In the center of the ROI a wavelet has been positioned as the image
to be reconstructed (figure 7.9 (a) and (d)). In order to generate optoacoustic signals
and to execute the model-based IMMI algorithm a three-dimensional model matrix has
been calculated, capturing all 3060 detector positions. Optoacoustic pressure signals ~p
have been generated according to mapping 7.1 by multiplying the model matrix M by
the vectorized ROI ~H. Again, in order to avoid the inverse crime, Gaussian white noise
with zero mean and standard deviation of 10% of the maximum amplitude was added to
the projection data. The resulting matrix vector equation has been inverted by means
of the LSQR algorithm and its MIP along the z- and y-axis is depicted in figure 7.9 (b)
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Figure 7.8: Normalized energy of the pressure signals generated by the 64 wavelet packets
positioned at the center of the ROI.

and (e). Within the xy-plane the original image is accurately reconstructed showing all
distinct peaks. However, as there are no detectors positioned on top or bottom of the ROI,
resolution along the z-axis is strongly affected, resulting in severe out-of-plane artifacts.
The reconstruction is smeared almost over the entire ROI.
Model-based inversion in the wavelet domain has been performed by decomposing the in-
version problem into a set of 64 sub-problems in the wavelet domain, resulting from a
decomposition of depth Z = 2. Yet, as all of the 64 wavelet packets possess directionality,
not all of them are sufficiently captured by the cylindrical detection geometry of figure 7.7.
This can be shown by placing all 64 wavelet packets ~HWP i , (i = 1, . . . , 64) at the center of
the ROI and calculating the optoacoustic pressure ~pWP i generated by them according to
mapping 7.1. Now, to assess the impact of each wavelet packet on the reconstruction, the
energy of the 64 pressure signals is calculated according to

Ei
WP = ‖~pWP i‖2 , i = 1, . . . , 64, (7.29)

and can be seen in figure 7.8. As more than half of the wavelet packets do not generate
information than can be captured by the cylindrical detection geometry, the corresponding
sub-problems with an energy Ei

WP below the threshold THR of 10% of the maximum
energy are not considered for inversion. In fact, these sub-problems effectively pose a
limited view problem and are ill-conditioned as can be seen by inspecting their condition
number.
Eventually, 16 sub-problems were identified as having crucial impact on the reconstruction.
For all of them, in analogy to equation 7.19, a Moore-Penrose-Pseudoinverse (My

W,LIM)†

has been calculated and the reconstruction ~H was obtained according to

~H =
64∑
y=1

Ry · (My
W,LIM)† · ~pyW,LIM , ∀y : Ey

WP > THR. (7.30)
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Figure 7.9: (a) MIP along the z-axis of the wavelet to be reconstructed. (b) MIP obtained
from the IMMI algorithm. (c) Corresponding MIP obtained from the wavelet domain
algorithm. (d) MIP along the y-axis of the original wavelet. (e) MIP of the reconstruction
resulting from the IMMI algorithm. (f) MIP along the y-axis resulting from the wavelet
domain algorithm.

The reconstruction obtained by equation 7.30 can be seen in figure 7.9 (c) and (f). Except
for a slightly higher background noise level, the MIP along the z-axis shows all details of the
expected image. In agreement with the reconstruction obtained from the IMMI algorithm,
the wavelet domain reconstruction exhibits a loss of the resolution in z-direction owing to
the lack of detector coverage.
Image reconstruction with the IMMI algorithm took 380 seconds and required the inver-
sion of a matrix system occupying more than 30 GB of memory. In contrast, inversion in
the wavelet domain was reduced to a summation and a set of matrix vector multiplica-
tions which took around 90 seconds. Holding a Moore-Penrose-Pseudoinverse (My

W,LIM)†

in storage required approximately 13 GB of memory. All three-dimensional image recon-
structions were executed on a workstation computer with Intel Xeon processors and 384
GB of RAM.
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7.2.4 Concluding Remarks

In this section, strategies to improve the performance of model-based image reconstruction
were presented, focusing on memory reduction and faster reconstruction times. Thereby,
in a first step, symmetries in the detection geometry were exploited to significantly mini-
mize the memory consumption. Then, an entirely new framework to perform model-based
inversion in the wavelet domain was introduced. Overall, transferring model-based op-
toacoustic image reconstruction to the wavelet domain reduced the size of the inversion
problem, resulting in a set of smaller problems. By doing so, more complex inversion al-
gorithms, such as calculating the Moore-Penrose-Pseudoinverse, applying `1- or `2-norm
based minimization algorithms or a SVD of the model matrices, could be considered for in-
version. Furthermore, once all direct inverse matrices had been calculated, as in equations
7.19 and 7.30, image reconstruction could be performed significantly faster than by an it-
erative inversion algorithm. Moreover, all modeling advantages of algebraic reconstruction
algorithms are available for the wavelet packet framework and can readily be included.



Chapter 8

Conclusion and Outlook

8.1 Conclusive Summary

The present work introduced advanced image reconstruction techniques for optoacoustics.
Particular emphasis was given to model-based reconstruction algorithms incorporating
geometric detector properties for three-dimensional optoacoustic tomography. After es-
tablishing the theoretical background of ultrasonic transducers, two approaches to model
their detection surfaces were implemented and evaluated. Thereby, the benefits of the
enhanced imaging model could be shown both theoretically in computer simulations and
within experimental measurements of Agar phantoms and biological tissue. Increasing
computational demands were encountered with memory efficiency techniques based on
symmetries in the detection geometry. Significant improvement in reconstruction times
could be achieved by transferring the imaging model to the wavelet domain, which fur-
thermore enabled the application of complex inversion algorithms. In addition, this work
proved, conceptually and experimentally, the feasibility to reconstruct cross-sectional im-
ages from pressure data optoacoustically generated with a cw-laser tomography system.

There exists a considerable variety of approaches to reconstruct images in optoacoustics.
Analytical inversion algorithms, both in time and frequency domain, bear inherent sim-
plicity which makes them numerically very fast with minimal memory requirements. A
crucial factor, contributing to their convenience, consists of the basic imaging model they
are built upon. In general, analytic inversion algorithms merely consider the sound prop-
agation by means of the wave equation as their imaging model. However, with increasing
demands regarding accuracy and quantifiability of optoacoustic images, more sophisticated
imaging models need to be applied for reconstruction. This development paved the way
for the success of algebraic inversion algorithms, also termed model-based reconstruction
algorithms. Their key advantage is the possibility to include any linearizable physical ef-
fect into the imaging model. As a consequence, optoacoustic images reconstructed by them
provide superior image quality and fidelity at the price of increased memory requirements
and calculation times.



110 8. Conclusion and Outlook

A major contribution to image quality comes from an accurate model of the ultrasonic
detection system. In general, optoacoustic imaging models assume ultrasonic detectors to
be confined to points in space. Yet, a majority of optoacoustic imaging systems use ultra-
sound detection technology based on piezoelectricity. In effect, larger detection surfaces
signify higher SNR. Moreover, piezoelectric materials offer the possibility to be manufac-
tured forming a focus. By doing so, pressure signals can be measured only from selective
regions, conveniently reducing the dimension of the imaging problem. The discrepancy be-
tween actual detection surface geometry and point-like transducers assumed in the imaging
model is the cause for severe imaging artifacts. By properly modeling the detection surface
of a cylindrically focused transducer within a model-based reconstruction algorithm, this
work proved, that imaging artifacts related to the transducer’s geometry can be signifi-
cantly mitigated. In particular, resolution in all spatial dimensions could be improved,
enabling localization and quantification even of small absorbers. The experimental results
showed furthermore, that an imaging model including geometric detector properties abates
the background noise floor present in optoacoustic reconstructions.
When holding the model matrix of an algebraic inversion algorithm in storage, more com-
plex imaging models come along with higher memory requirements. This effect becomes
even more significant if high-resolution volumetric reconstructions are demanded. In this
work, I developed and implemented memory efficiency techniques that are based on sym-
metries in the detection geometry. In particular, tomographic signal acquisition along a
cylindrical detection surface possesses symmetries within each detection plane and along
the elevational direction. Combining potential memory savings in all spatial dimensions
potentially reduces the size of the model matrix by a factor of more than 10. Conse-
quently, taking advantage of memory saving strategies enables model-based reconstruction
algorithms to process larger, high-resolution datasets.
Essentially, there are inversion schemes, that calculate the action of the matrix on a vector
on the fly, thus avoiding to hold a large model matrix in storage. However, this pro-
cess is very time consuming, especially when an iterative inversion algorithm requires a
high number of iteration steps to converge. In addition, large model matrices hinder the
calculation of direct inversion matrices or the application of sophisticated inversion algo-
rithms based on calculating a SVD or minimizing the `1-norm. In order to address the
problem of increasing model matrices, a framework for model-based image reconstructions
using wavelet packets was introduced in this work. Decomposition of the data and image
space by means of a discrete wavelet transform divided the large imaging model into a set
of smaller inversion problems, each corresponding to a wavelet packet. In consequence,
also complex inversion procedures could be applied to the set of small inversion problems.
When calculating the Moore-Penrose-Pseudoinverse as a direct inverse, in two dimensions,
it could be shown that even reconstruction times decreased by a factor of more than two.
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8.2 Outlook and Future Directions

Model-based image reconstruction has proven to provide superior image quality over any
existing reconstruction algorithm in optoacoustics. However, this performance comes at
the price of increased computational demands. Today, depending on the actual application,
a trade-off between image quality and reconstruction time has to be made and is reflected
in the complexity of the chosen imaging model.
Image reconstruction algorithms are commonly first developed in the time domain, which
facilitates an intuitive understanding of the imaging model. Yet, frequency domain algo-
rithms, as presented in section 4.1.2, offer the computational advantages inherent to Fast
Fourier Transform techniques. As a next step, it is expected, that benefits of Fast Fourier
Transforms can be translated to model-based reconstruction algorithms. Optoacoustic sig-
nal generation is predominately performed by pulsed lasers, approximating a Dirac-delta
source term, which excites a broad-band pressure wave. This setting is reflected by the
imaging model in form of the wave equation Cauchy problem. In contrast, cw-laser optoa-
coustic systems offer the degree of freedom to selectively apply an excitation term covering
a designated frequency band or even single frequencies. Then, the excitation term can be
an overlay of several modulation frequencies corresponding to the size of absorbers one
wants to highlight in the image. Thereby, the selected excitation frequencies act as a
spatial frequency focus on the image. In combination with a dedicated frequency domain
model-based reconstruction algorithm, cw-laser systems potentially generate optoacoustic
images providing concerted, detailed information.
Another promising direction is the development of the wavelet domain framework. The
extension of the presented algorithm to three dimensions is an active field of work and
bears the potential to apply a complex imaging model in combination with sophisticated
inversion algorithms. Thereby, several complications arising in three dimension have to be
overcome. A crucial requirement is the equal distribution of transducers over a spherical
detection geometry, which is not a straightforward task. Moreover, as realistic optoacous-
tic systems do not entirely enclose the ROI, only part of the generated pressure waves is
actually detected. As also wavelets possess inherent directionality, not all inversion sub-
problems, each corresponding to a wavelet packet, need to be taken into account. In fact,
the inversion sub-problem of wavelet packets generating information which is not covered
by the detection geometry, is expected to be badly conditioned. It would therefore merely
amplify noise and deteriorate the image reconstruction. In effect, the development of a
three-dimensional wavelet packet framework is substantially more complex than the two-
dimensional case.
During the last decades, computational hardware was subject to continuous development
and improvements, enabling the handling of large datasets and the execution of complex re-
construction algorithms. Especially the availability of increasingly powerful GPUs provides
the possibility to accelerate demanding calculations.
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Appendix A

Analytical Pressure Formulas

Pressure waves, optoacoustically induced by delta-pulse excitation, can be described by
equation 2.72. In the following two chapters, the solution of equation 2.72 are calculated
analytically for the case of a two- and three-dimensional absorber. In each dimension, the
cases of a parabolic and a uniform absorption pattern Hr(~r) are considered.

A.1 Analytical Pressure Formulas in 2D

A.1.1 Parabolic Absorption

In the case when optical absorbers are assumed to be confined to a plane, the three-
dimensional problem 2.53 - 2.55 can be reduced to two dimensions. Therefore, equation
2.72, the representation of optoacoustically induced pressure p as a function of spatially
varying absorption Hr, is simplified to

p(~r, t) =
Γ

4π

∂

∂t

¨
|~r−~r ′|=cst

Hr(~r
′)

|~r − ~r ′|
d~r ′ (A.1)

=
Γ

4π

∂

∂t

˛
|~r−~r ′|=cst

Hr(~r
′)

|~r − ~r ′|
dl(~r ′). (A.2)

Here, ~r = (x, y)T ∈ R2 is a two-dimensional vector in space. The integral in A.2 is now
reduced to a line integral over the circle with radius cst and center ~r. The scalar line
element is denoted by dl(~r). Figure A.1 (a) shows the parabolic absorption pattern Hr

under consideration. It is defined by

Hr(x, y) =

{
1− (x−x0)2+y2

r20
, (x− x0)2 + y2 ≤ r20,

0, (x− x0)2 + y2 > r20,
(A.3)

with r0 being the radius of the absorbing circle. Without loss of generality, the center of
the absorber is assumed to lie on the x-axis. Furthermore, the detector position is assumed
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Figure A.1: (a) Parabolic absorption pattern. (b) Uniform absorption pattern. (c) Analyt-
ical signal emitted by a truncated paraboloid. (d) Analytical signal emitted by a uniform,
circular absorption pattern.

to be at the origin, ~r = (0, 0)T , simplifying equation A.2 to

p(

(
0
0

)
, t) =

Γ

4π

∂

∂t

˛
|~r ′|=cst

Hr(~r
′)

cst
dl(~r ′). (A.4)

xi and yi define the coordinates in the xy-plane where the detection circumference with
radius cst intersects the circular absorber with radius r0. They can be calculated as

xi =
x20 + c2st

2 − r20
2x0

, (A.5)

yi =
√
c2st

2 − x2i =

√
c2st

2 − (x20 + c2st
2 − r20)

2

4x20
. (A.6)
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The line over which the integral is calculated can then be parametrized by the two mappings

Ψ± :


[xi, cst] −→ R2,

x 7−→

(
x

±
√
c2st

2 − x2

)
.

(A.7)

The scalar line element is then given by

dl(~r) =

∥∥∥∥ ddxΨ±(x)

∥∥∥∥ dx =
cst√

c2st
2 − x2

dx. (A.8)

As both the detection arc and the circular absorber are symmetric with respect to the x-
axis, it is sufficient to consider only two times the positive part Ψ+ of the parametrization.
Therefore, inserting parametrization A.7 into equation A.4 leads to

p(

(
0
0

)
, t) =

Γ

4π

∂

∂t

˛
|~r ′|=cst

Hr(~r
′)

cst
dl(~r ′)

=
Γ

4π

∂

∂t
2

ˆ cst

xi

1

cst

(
1−

(x− x0)2 + (
√
c2st

2 − x2)2

r20

)
cst

c2st
2 − x2

dx

=
Γ

2π

∂

∂t

ˆ cst

xi

(
1− x2 − 2xx0 + x20 + c2st

2 − x2

r20

)
1

c2st
2 − x2

dx

=
Γ

2π

∂

∂t

{(
1− x20 + c2st

2

r20

) ˆ cst

xi

1√
c2st

2 − x2
dx+ 2

x0
r20

ˆ cst

xi

x√
c2st

2 − x2
dx

}
.

(A.9)

Taking the anti-derivative further gives

p(

(
0
0

)
, t) =

Γ

2π

∂

∂t

{(
1− x20 + c2st

2

r20

)[
arcsin

(
x

cst

)]cst
xi

+ 2
x0
r20

[
−
√
c2st

2 − x2
]cst
xi

}

=
Γ

2π

∂

∂t

{(
1− x20 + c2st

2

r20

)(
π

2
− arcsin

(
xi
cst

))
+ 2

x0
r20

√
c2st

2 − x2i
}

=
Γ

2π

∂

∂t

{
r20 − x20
r20

π

2
− c2sπ

2r20
t2 − r20 − x20

r20
arcsin

(
xi
cst

)
+
c2s
r20
t2 arcsin

(
xi
cst

)
+

2x0
r20

√
c2st

2 − x2i
}
.

(A.10)
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Now, by taking the derivative with respect to t one gets

p(

(
0
0

)
, t) =

Γ

2π

−
c2sπ

r20
t− r20 − x20

r20

1√
1−

(
xi
cst

)2 ∂xi
∂t
cst− csxi
c2st

2

+
2c2s
r20
t arcsin

(
xi
cst

)
+
c2s
r20
t2

1√
1−

(
xi
cst

)2 ∂xi
∂t
cst− csxi
c2st

2

+
2x0
r20

1√
c2st

2 − x2i

(
c2st− xi

∂xi
∂t

)}
.

(A.11)

Notice that xi depends on time t. Further simplification leads to

p(

(
0
0

)
, t) =

Γ

2π

{
−c

2
sπ

r20
t+

2c2s
r20
t arcsin

(
xi
cst

)
+

(
c2s
r20
t2 − r20 − x20

r20

) ∂xi
∂t
− xi

t√
c2st

2 − x2i

+
2x0
r20

1√
c2st

2 − x2i

(
c2st− xi

∂xi
∂t

)}
.

(A.12)

With A.5 one can transform

c2s
r20
t2 − r20 − x20

r20
=
c2st

2 − r20 + x20
r20

=
2x0
r20
xi (A.13)

in equation A.12. This results in

p(

(
0
0

)
, t) =

Γ

2π

{
−c

2
sπ

r20
t+

2c2s
r20
t arcsin

(
xi
cst

)
+

2x0
r20

1√
c2st

2 − x2i

(
xi
∂xi
∂t
− x2i

t
+ c2st− xi

∂xi
∂t

)}

=
Γ

2π

{
−c

2
sπ

r20
t+

2c2s
r20
t arcsin

(
xi
cst

)
+

2x0
r20

1√
c2st

2 − x2i

(
c2st

2 − x2i
t

)}
.

(A.14)
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Now, inserting A.5 for xi gives

p(

(
0
0

)
, t) =

Γ

2π

{
−c

2
sπ

r20
t+

2c2s
r20
t arcsin

(
x20+c

2
st

2−r20
2x0

cst

)

+
2x0
r20

1√
c2st

2 − (x20+c2st2−r20)
2

4x20

c2st− (x20+c2st2−r20)
2

4x20

t




=
Γ

2π

{
−c

2
sπ

r20
t+

2c2s
r20
t arcsin

(
x20 + c2st

2 − r20
2x0cst

)

+
2x0
r20t

√
c2st

2 − (x20 + c2st
2 − r20)

2

4x20

 ,

(A.15)

which can be finally simplified to the expression for the optoacoustic pressure emitted by
a circular parabolic absorber upon delta-pulse excitation

p(

(
0
0

)
, t) =

Γ

2π

{
−c

2
sπ

r20
t+

2c2s
r20
t arcsin

(
x20 + c2st

2 − r20
2x0cst

)

+
2x0cs
r20

√
1− (x20 + c2st

2 − r20)
2

4x20c
2
st

2

 .

(A.16)

The characteristic shape of the pressure signal can be seen in figure A.1 (c).

A.1.2 Uniform Absorption

In this section the analytic expression for the pressure wave emitted by an uniformly
absorbing circular absorber is calculated (figure A.1 (b)). Again, the excitation pulse is
assumed to be a delta-function and the absorber is confined to the two dimensions of the
xy-plane. Therefore 2.72 can be simplified to a line integral in two-dimensions,

p(~r, t) =
Γ

4π

∂

∂t

˛
|~r−~r ′|=cst

Hr(~r
′)

|~r − ~r ′|
dl(~r ′). (A.17)

The absorption pattern considered now is defined as

Hr(x, y) =

{
1, (x− x0)2 + y2 ≤ r20,

0, (x− x0)2 + y2 > r20,
(A.18)

with r0 being the radius of the absorbing circle. Once more, without loss of generality, the
detector is assumed to be at the origin, ~r = (0, 0)T , and the absorber is centered on the
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x-axis at x0. Then, by using the same parametrization A.7 as in the previous section one
gets

p

((
0
0

)
, t

)
=

Γ

4π

∂

∂t
2

ˆ cst

xi

1

cst

cst√
c2st

2 − x2
dx (A.19)

=
Γ

2π

∂

∂t

[
arcsin

(
x

cst

)]cst
xi

=
Γ

2π

∂

∂t

(
π

2
− arcsin

(
xi
cst

))
= − Γ

2π

1√
1−

(
xi
cst

)2 ∂xi
∂t
cst− csxi
c2st

2

= − Γ

2π

∂xi
∂t
− xi

t√
c2st

2 − x2i
. (A.20)

Inserting A.5 into A.20 yields

p

((
0
0

)
, t

)
= − Γ

2π

c2st
x0
− x20+c

2
st

2−r20
2x0t√

c2st
2 −

(
x20+c

2
st

2−r20
2x0

)2 , (A.21)

which can be finally simplified to

p

((
0
0

)
, t

)
=

Γ

2π

x20 − c2st2 − r20

2x0t

√
c2st

2 − (x20+c2st2−r20)
2

4x20

, (A.22)

the expression for the pressure wave emitted by a uniformly absorbing circular area and
can be seen in figure A.1 (d).

A.2 Analytical Pressure Formulas in 3D

A.2.1 Parabolic Absorption

In this part, the analytical pressure wave emitted by a spherical absorber with parabolic
absorption in three dimensions is calculated. In three dimensions, one has to solve the
surface integral defined by equation 2.72

p(~r, t) =
Γ

4π

∂

∂t

˚
|~r−~r ′|=cst

Hr(~r
′)

|~r − ~r ′|
d~r ′ (A.23)

=
Γ

4π

∂

∂t

‹
|~r−~r ′|=cst

Hr(~r
′)

|~r − ~r ′|
dS(~r ′). (A.24)
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Figure A.2: (a) Volumetric, parabolic absorption pattern. (b) Uniformly absorbing sphere.
(c) Analytical signal emitted by a truncated three-dimensional paraboloid. (d) Analytical
signal emitted by a uniformly absorbing sphere.

with ~r = (x, y, z)T . Here, the integral to be solved is a surface integral over the sphere
with radius cst centered at ~r. The surface element is denoted by dS(~r). For simplicity, the
detector position is assumed to be the origin, ~r = (0, 0, 0)T . Furthermore, without loss of
generality it is assumed that the spherical absorber is centered on the x-axis at position
x0. The spherical absorption pattern is then given by

Hr(x, y, z) =

{
1− (x−x0)2+y2+z2

r20
, (x− x0)2 + y2 + z2 ≤ r20,

0, (x− x0)2 + y2 + z.2 > r20,
(A.25)

and can be seen in figure A.2 (a). Therefore, equation A.24 simplifies to

p(

0
0
0

 , t) =
Γ

4π

∂

∂t

{‹
|~r ′|=cst

Hr(~r
′)

cst
dS(~r ′)

}
. (A.26)
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xi and yi define the coordinates in the xy-plane where the detection surface with radius
cst interects the spherical absorber with radius r0. They can be calculated as

xi =
x20 + c2st

2 − r20
2x0

, (A.27)

yi =
√
c2st

2 − x2i =

√
c2st

2 − (x20 + c2st
2 − r20)

2

4x20
. (A.28)

Then, the surface over which the integral is calculated can be parametrized by

Ψ :


[0, yi]× [0, 2π[ −→ R3,

(r, φ) 7−→


√
c2st

2 − r2

r cos(φ)

r sin(φ)

 ,
(A.29)

which leads to the surface element

dS(~r ′) = ‖Ψr × Ψφ‖ dr dφ = r

√
1 +

r2

c2st
2 − r2

dr dφ. (A.30)

Inserting parametrization A.29 into equation A.26 and evaluating the integrals leads to
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(A.31)
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By taking the anti-derivative [104], equation A.31 further simplifies to
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(A.32)
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(A.35)
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Evaluating expressionA.36 at yi =

√
c2st

2 − (x20+c2st2−r20)
2

4x20
gives
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(A.37)

Finally, derivation of A.37 with respect to t yields

p
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]
. (A.38)

The characteristic shape of the signal can be seen in figure A.2 (c).

A.2.2 Uniform Absorption

In the following, the analytical expression for an optoacoustic pressure wave emitted by
a spherical uniform absorber (figure A.2 (b)) upon delta-pulse excitation is calculated.
Thereby, equation A.26 is solved for the absorption pattern

Hr(x, y, z) =

{
1, (x− x0)2 + y2 + z2 ≤ r20,

0, (x− x0)2 + y2 + z2 > r20.
(A.39)

Function A.39 defines a homogeneously absorbing sphere with radius r0 and center on the
x-axis at x0. Analog to section A.2.1, inserting surface parametrization A.29 into equation
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A.26 yields
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Considering A.28 one can substitute the square root in expression A.44 by xi, resulting in
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(A.45)

Equation A.45 gives an expression for the pressure emitted from a uniform spherical ab-
sorber upon delta-pulse excitation (figure A.2 (d)).
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[19] Xosé-Lúıs Déan-Ben, Daniel Razansky, and Vasilis Ntziachristos. The effects of
acoustic attenuation in optoacoustic signals. Physics in Medicine and Biology,
56:6129 – 6148, 2011.

[20] Vasilis Ntziachristos and Daniel Razansky. Molecular Imaging by Means of Multi-
spectral Optoacoustic Tomography (MSOT). Chemical Reviews, 110:2783 – 2794,
2010.

[21] Adrian Taruttis, Stefan Morscher, Neal C. Burton, Daniel Razansky, and Vasilis
Ntziachristos. Fast Multispectral Optoacoustic Tomography (MSOT) for Dynamic
Imaging of Pharmacokinetics and Biodistribution in Multiple Organs. PLOS ONE,
7:30491, 2012.

[22] Andreas Buehler, Eva Herzog, Daniel Razansky, and Vasilis Ntziachristos. Video
rate optoacoustic tomography of mouse kidney perfusion. Optics Letters, 35:2475 –
2477, 2012.

[23] Adrian Taruttis, Eva Herzog, Daniel Razansky, and Vasilis Ntziachristos. Real-time
imaging of cardiovascular dynamics and circulating gold nanorods with multispectral
optoacoustic tomography. Optics Express, 18:19592 – 19602, 2010.

[24] Vasilis Ntziachristos, Jorge Ripoll, Lihong V. Wang, and Ralph Weissleder. Look-
ing and listening to light: the evolution of whole-body photonic imaging. Nature
Biotechnology, 23:313 – 320, 2005.



Bibliography 125

[25] Xosé-Lúıs Déan-Ben and Daniel Razansky. Adding fifth dimension to optoacoustic
imaging: volumetric time-resolved spectrally enriched tomography. Light: Science &
Applications, 3:e137, 2014.

[26] Robert A. Kruger, Pingyu Liu, Yuncai Richard Fang, and C. Robert Appledorn.
Photoacoustic ultrasound (PAUS) – Reconstruction tomography. Medical Physics,
22:1605 – 1609, 1995.

[27] Christoph G.A. Hoelen and Frits F. M. de Mul. Image reconstruction for photoa-
coustic scanning of tissue structures. Applied Optics, 39:5872 – 5883, 2000.

[28] Minghua Xu and Lihong V. Wang. Universal back-projection algorithm for photoa-
coustic computed tomography. Physical Review E, 71:016706, 2005.

[29] Yuan Xu, Dazi Feng, and Lihong V. Wang. Exact Frequency-Domain Reconstruc-
tion for Thermoacoustic Tomography – I: Planar Geometry. IEEE Transactions on
Medical Imaging, 21:823 – 828, 2002.

[30] Yuan Xu, Minghua Xu, and Lihong V. Wang. Exact Frequency-Domain Reconstruc-
tion for Thermoacoustic Tomography – II: Cylindrical Geometry. IEEE Transactions
on Medical Imaging, 21:829 – 833, 2002.
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[54] Jacques Curie and Pierre Curie. Développement par compression de l’électricité po-
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