
Supplemental figures 

 

Supplemental Figure 1. Corrected p-values from univariate linear regression analysis of metabolites 

associated with IGF-I and IGF/IGFBP3 ratio among women in plasma (left panel) and urine (right 

panel). The dotted line denotes a false discovery rate (FDR) of 0.05, displaying the significance 

threshold. Orange marked metabolites are related either to IGF-I or the IGF-I/IGFBP-3 ratio. 

Regression models are adjusted for age, smoking, alcohol consumption, physical activity, waist 

circumference, liver diseases, LDL cholesterol and hypertension. 



 

Supplemental Figure 2. OPLS analyses for modelling IGF-I and IGF-I/IGFBP-3 ratio based on urine 

metabolites among women. Left side: OPLS score plots for log IGF-I (top line) and IGF-I/IGFBP-3 

ratio (bottom line) showing the predictive component t[1] and the first orthogonal component t0[1]. 

Right side: Corresponding variable influence on projection (VIP) values of the predictive component. 

The five metabolites with the highest VIP were mentioned. 

 

  



 

Supplemental Figure 3. Corrected p-values from univariate linear regression analysis of plasma 

metabolites associated with IGF-I (left side) and IGF/IGFBP3 ratio (right side) against the variable 

influence on projection (VIP) values based on orthogonal partial least squares (OPLS) regression 

analyses among women.  

 

Supplemental Figure 4. Corrected p-values from univariate linear regression analysis of urine 

metabolites associated with IGF-I (left side) and IGF/IGFBP3 ratio (right side) against the variable 

influence on projection (VIP) values based on orthogonal partial least squares (OPLS) regression 

analyses among women. 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Supplemental Figure 5. Final results from random forest regression analyses predicting log(IGF-I) 

(upper panel) and the IGF-I/IGFBP-3 ratio (lower panel) in men (left panel) and women (right panel) 

in a two-stage cross validation. For each hormone and sex the dotchart shows the mean and standard 

deviation of a weighted (root mean square error) rank for the ten most important variables across the 

10 outer loops. Additionally, explained (R²) and predicted variance (Q²) are displayed as boxplots. 

eGFR = estimated glomerular filtration rate; GGT = gamma-glutamyl transpeptidase; AST = aspartate 

amino transferase; ALT = alanine amino transferase. 

  



 

Supplemental Figure 6. Boxplots of importance measures from Boruta feature selection with a 

random forest as classifier for prediction of log(IGF-I) (left panel) and the IGF-I/IGFBP-3 ratio (right 

panel) in men (upper panel) and women (lower panel), respectively. Green boxes indicate significant 

(p<0.01) important variables to explain serum hormone concentrations. Blue boxes indicate variation 

in shadow variables used to assess random noise. WC = waist circumference; GGT = γ-glutamyl 

transpeptidase; AST = aspartate transaminase; HbA1c = glycated hemoglobin; ALT = alanine 

transaminase. 



Supplemental tables 

Supplemental Table 1. Metabolites with variable importance in projection (VIP) > 1 resulting from OPLS models in women.  

Plasma  Urine 

 IGF-I/IGFBP3  

ratio 

IGF-I   IGF-I/IGFBP3  

ratio 

IGF-I 

5alpha-pregnan-3beta,20alpha-diol disulfate 2.476 2.201  andro steroid monosulfate 2 3.888 3.263 

pregnanediol-3-glucuronide 2.286 1.716  DHEA-S 3.336 2.787 

DHEA-S 2.223 2.290  4-androsten-3beta,17beta-diol disulfate (2) 3.162 2.956 

pregn steroid monosulfate 2.115 1.928  androsterone sulfate 3.090 2.826 

pregnenolone sulfate 1.877 1.901  epiandrosterone sulfate 2.918 2.390 

epiandrosterone sulfate 1.873 1.976  andro steroid monosulfate (1) 2.698 2.351 

1-oleoylglycerol (1-monoolein) 1.773 1.705  etiocholanolone glucuronide 2.521 2.461 

androsterone sulfate 1.760 1.921  21-hydroxypregnenolone disulfate 2.372 2.149 

eicosapentaenoate (EPA; 20:5n3) 1.547 1.054  pregnen-diol disulfate 2.080 2.104 

docosapentaenoate (n3 DPA; 22:5n3) 1.542 1.383  4-androsten-3beta,17beta-diol disulfate (1) 1.986 2.226 

CMPF 1.517 1.268  histidine 1.913 1.664 

palmitoleate (16:1n7) 1.514 1.254  X - 17736 1.865 1.388 

bilirubin (Z,Z) 1.463   CMPF 1.821 1.585 

10-heptadecenoate (17:1n7) 1.453 1.314  X - 16087 1.736 1.731 

X - 11372 1.424 1.029  salicyluric glucuronide 1.656 1.357 

eicosenoate (20:1n9 or 11) 1.362 1.146  X - 18838 1.499 1.603 

andro steroid monosulfate 2 1.357 1.323  X - 12258 1.459 1.037 

X - 11880 1.316 1.101  X - 12122 1.402  

hexanoylcarnitine 1.288 1.267  X - 12704 1.360 1.043 

butyrylcarnitine 1.287   X - 01911 1.359 1.407 

pregnen-diol disulfate 1.275 1.428  tryptophan 1.354  

X - 02269 1.273 1.124  X - 16397 1.344  

10-nonadecenoate (19:1n9) 1.258 1.219  X - 20620 1.313 1.156 

X - 12096 1.241 1.093  N-acetyl-aspartyl-glutamate (NAAG) 1.295 1.593 

docosahexaenoate (DHA; 22:6n3) 1.239   X - 13726 1.280 1.213 

hydroxybutyrylcarnitine 1.239 1.174  X - 13844 1.274 1.326 

X - 11299 1.210   X - 16774 1.267 1.002 

1-arachidonoylglycerophosphoinositol 1.191   X - 11357 1.251  

X - 11469 1.189   tyrosine 1.230  

X - 11564 1.185 1.041  4-ethylphenylsulfate 1.228  

gamma-glutamylvaline 1.185   X - 12329 1.211  

21-hydroxypregnenolone disulfate 1.176 1.050  N-acetylaspartate (NAA) 1.206 1.443 



myristoleate (14:1n5) 1.161 1.113  N-acetyl-1-methylhistidine 1.200  

C-glycosyltryptophan 1.161 1.083  glycocholenate sulfate 1.195  

cyclo(leu-pro) 1.160   homovanillate sulfate 1.194 1.228 

bradykinin, des-arg(9) 1.158   glycylproline 1.171 1.196 

bradykinin 1.151   N6-acetyllysine 1.139 1.088 

1-stearoylglycerophosphoethanolamine 1.106   X - 11593 1.136  

palmitate (16:0) 1.101   N-acetylthreonine 1.126 1.123 

1-palmitoylglycerophosphate 1.082   uracil 1.121 1.143 

4-acetamidobutanoate 1.079   X - 17353 1.120 1.350 

gamma-glutamylisoleucine 1.072   X - 17185 1.109  

urea 1.071   X - 12722 1.093  

1-eicosapentaenoylglycerophosphoethanolamine 1.071   5-hydroxyhexanoate 1.090  

dihomo-linolenate (20:3n3 or n6) 1.059   4-vinylphenol sulfate 1.081  

glutamate 1.057   hydroquinone sulfate 1.073 1.085 

N1-Methyl-2-pyridone-5-carboxamide 1.045   X - 12511 1.045  

oleate (18:1n9) 1.043   N-acetylhistidine 1.043  

3-(4-hydroxyphenyl)lactate 1.034   X - 17348 1.034 1.235 

1-palmitoylglycerophosphoinositol 1.030   phenylcarnitine 1.033 1.286 

cortisone 1.021 1.015  X - 17303 1.028  

X - 12095 1.018   X - 17320 1.026  

myristate (14:0) 1.015   X - 12636 1.024  

4-androsten-3beta,17beta-diol disulfate (2) 1.015 1.162  dihydroferulic acid 1.006  

15-methylpalmitate 1.009   X - 17453 1.000  

gamma-glutamylphenylalanine 1.007   sucrose  1.271 

xanthine 1.004   creatine  1.270 

X - 02249 1.000   3-methylhistidine  1.208 

glycoursodeoxycholate  1.257  X - 11440  1.175 

X - 11315  1.183  X - 12753  1.113 

X - 17323  1.150  guanine  1.072 

pyroglutamine  1.091  X - 17361  1.061 

gamma-glutamyltyrosine  1.090  7,8-dihydroneopterin  1.058 

palmitoylcarnitine  1.065  X - 13709  1.045 

X - 17612  1.029  N-acetyl-beta-alanine  1.023 

oleoylcarnitine  1.004  1,7-dimethylurate  1.016 
3-carboxy-4-methyl-5-propyl-2-furanpropanoate (CMPF), dehydroisoandrosterone sulfate (DHEA-S), 15-methylpalmitate (isobar with 2-methylpalmitate). 

 

Supplemental Table 2 and 3 are presented in an extra excel file (Supplemental tables.xlsx).



Supplemental methods 

Metabolomics Measurements 

Non-targeted metabolomics analysis for metabolic profiling was conducted at the Genome Analysis 

Center, Helmholtz Zentrum München. Two separate LC-MS/MS analytical methods mere used as 

previously published, i.e. in positive and in negative ionization modes, were used to detect a broad 

metabolite panel (Evans et al. 2009 19624122). In this study, samples were divided into two sets 

according to the biological matrices of the samples, i.e. plasma and urine. On the day of extraction, 

samples were thawed on ice. A 100µL of the sample were pipetted into a 2mL 96-well plate. In 

addition to study samples, a human pooled reference plasma sample (Seralab, West Sussex, United 

Kingdom) and another pooled reference matrix of each sample set (Seralab, West Sussex, United 

Kingdom) were extracted and placed in 1 and 6 wells, respectively, of the 96-well plate. These 

samples served as technical replicates throughout the data set to assess process variability. Beside 

those samples, 100μL of water was extracted as samples and placed in 6 wells of the 96-well plate to 

serve as process blanks. Protein was precipitated and the metabolites were extracted with 475µL 

methanol, containing four recovery standards to monitor the extraction efficiency. After 

centrifugation, the supernatant was split into 4 aliquots of 100µL each onto two 96-well microplates. 

The first 2 aliquots were used for LC-MS/MS analysis in positive and negative electrospray ionization 

mode. Two further aliquots were kept as a reserve. The extracts were dried on a TurboVap 96 

(Zymark, Sotax, Lörrach, Germany). Prior to LC-MS/MS in positive ion mode, the samples were 

reconstituted with 0.1% formic acid (50µl for plasma, 100µl for urine). Whereas samples analyzed in 

negative ion mode were reconstituted with 6.5mM ammonium bicarbonate (50µl for plasma, 100µl for 

urine), pH 8.0. Reconstitution solvents for both ionization modes contained internal standards that 

allowed monitoring of instrument performance and also served as retention reference markers. To 

minimize human error, liquid handling was performed on a Hamilton Microlab STAR robot (Hamilton 

Bonaduz AG, Bonaduz, Switzerland). LC-MS/MS analysis was performed on a linear ion trap LTQ 

XL mass spectrometer (Thermo Fisher Scientific GmbH, Dreieich, Germany) coupled with a Waters 

Acquity UPLC system (Waters GmbH, Eschborn, Germany). Two separate columns (2.1 x 100 mm 

Waters BEH C18, 1.7 µm particle-size) were used either for acidic (solvent A: 0.1% formic acid in 

water, solvent B: 0.1% formic acid in methanol) and or for basic (A: 6.5mM ammonium bicarbonate, 

pH 8.0, B: 6.5mM ammonium bicarbonate in 95% methanol) mobile phase conditions, optimized for 

positive and negative electrospray ionization, respectively. After injection of the sample extracts, the 

columns were developed in a gradient of 99.5% A to 98% B over an 11 min run time at 350µLl/min 

flow rate. The eluent flow was directly run through the ESI source of the LTQ XL mass spectrometer. 

The mass spectrometer analysis alternated between MS and data-dependent MS/MS scans using 

dynamic exclusion and the scan range was from 80-1000 m/z. Metabolites were identified by 

Metabolon, Inc. from the LC-MS/MS data by automated multiparametric comparison with a 

proprietary library, containing retention times, m/z ratios, and related adduct/ fragment spectra 



(Lawton et al. 2008 18384253). Identification criteria for the detected metabolites are described in 

Evans et al. (Evans et al. 2009 19624122). Quality control methods and normalization of metabolite 

levels are explained in detail in the supplement. 

  

Metabolomics Measurements: Quality Control and Normalization of Metabolite Levels  

To correct for daily variations of platform performance, the raw ion count of each metabolite was 

rescaled by the respective median value of the run day. Valid estimation of the median was ensured by 

keeping only metabolites with at least three measured values on more than the half of the run days. 

This procedure resulted in 475 and 558 metabolites for plasma and urine, respectively, available for 

the present analysis. 263 metabolites were measured in both bio fluids. We chose probabilistic 

quotient normalization (PQN) (Dieterle et al. 2006 16808434) to account for diurnal variation of urine 

samples, since this procedure was shown to be superior to the common creatinine scaling. For this 

purpose we calculated a mean-pseudo-spectrum depending on metabolites with measurements for all 

participants (131 urine metabolites). Subsequently, we calculated a dilution factor as the median 

quotient between the reference spectrum and each sample. Of note, urine creatinine and the estimated 

dilution factor were highly correlated (r=0.91, p<0.001) within the present study sample. Afterwards 

all metabolite levels were log2-transformed. Separately for plasma and urine samples we performed 

multivariate outlier detection using an algorithm proposed by Filzmoser et al. (Filzmoser et al. 2008) 

as implemented in the pcout function within the R package mvoutlier. The algorithm provides an 

outlier score for each sample based on a weighted combination of location and scatter estimations 

using principle component analysis and the Mahalanobis distance on a robustly scaled data matrix. 

The default parameters were used for the identification process, except the critical value for the 

location outliers was set to 4, as it corresponds to a 4 SD exclusion criteria. The minimum score was 

used as cut-off for outlier identification. As a result 13 and 8 samples from plasma and urine were 

excluded, respectively.  

 

Gaussian graphical models (GGMs) 

Briefly, GGMs are based on partial correlations, which represent the correlation between two 

metabolites correcting for all remaining metabolites. We additionally included age, sex and BMI as 

covariates to account for major confounding factors. Edges in the GGMs were declared significant if 

both partial and Pearson correlation were significant at α = 0.05 after Bonferroni correction for all 

possible edges (correcting for (𝑝
2

) tests, where p is the number of metabolites). Since GGM calculation 

requires a full data matrix, imputation of missing values was necessary. The influence of the 

imputation was minimized by exclusion of all metabolites with more than 20% missing values, 

resulting in 263 and 399 metabolites in plasma and urine, respectively. Assuming missing values 

mainly due to low concentrations of metabolites, the distribution of each metabolite on a run day could 

be estimated as a left-censored log-normal distribution prior normalization. Hence, we reconstructed 



these distributions based on maximum likelihood estimation and sampled missing values from the 

censored part of the distribution. This procedure was only applied for metabolites with at least ten 

observations on the specific run day. Remaining missing values were imputed by multiple chained 

equations using the R-package ‘mice’. Both approaches are expected to rather lower (truncated 

sampling) or maintain (mice, using predictive mean matching) correlations between metabolites than 

falsely increasing them.  Since each data set (plasma and urine) contained a ratio of observations to 

metabolites of about 2:1 we decided to use a shrinkage estimator based approach as implemented in 

the R-package ‘GeneNet’ (Opgen-Rhein et al. 2007 17683609) to generate the GGMs following 

previous work (Do et al. 2015 25434815). The GGMs derived for plasma and urine were overlaid to 

visualize inter-fluid dependencies comprising 576 unique nodes and 681 edges. The network was 

visualized using the freely available software Cytoscape 3.2.1 (http://www.cytoscape.org/). 

Subsequently, results from linear regression analyses were mapped on the graph to visually inspect 

altered clusters of metabolites.   

 

Variable Importance on PLS projection (VIP) 

The VIP score summarizes the influence on the dependent variables (Y, here IGF-I or IGF-I/IGFBP-3) 

of every predictor variable (Xk, here all plasma or urine metabolites and age) in a given PLS model. 

The VIP score for the variable Xk is defined as 

𝑉𝐼𝑃𝐴𝑘 = √∑ (w𝑎𝑘
2 + ∗ (𝑆𝑆𝑌𝑎−1 − 𝑆𝑆𝑌𝑎) ∗

𝐾

(𝑆𝑆𝑌𝑎 − 𝑆𝑆𝑌𝐴)
)

𝐴

𝑎=1

 

Where K is the number of predictors, A the number of total dimensions, (wak)
2
 the squared PLS weight 

of variable Xk for dimension a, (SSYa-1 – SSYa) the explained sum of squares of the PLS dimension a 

and (SSYa – SSYA) the total explained sum of squares of the PLS model. The Sum of squares of all 

VIP's is equal to the number of terms in the model hence the average VIP is equal to 1. Terms with 

large VIP, larger than 1, are the most relevant for explaining Y. 

 

Random Forest Regression 

Predictive signatures for log(IGF-I) and the IGF-I/IGFBP-3 ratio were built on the following 

phenotypic characteristics using random forest regression: age, waist circumference, height, weight, 

hip circumference, glycated hemoglobin, fibrinogen, creatinine, glucose, cystatin C, estimated 

glomerular filtration rate, presence of hypertension or liver disease, smoking behavior, amount of 

alcohol consumption, physical activity, LDL-cholesterol, HDL-cholesterol, triglycerides, cholesterol, 

serum activities of gamma-glutamyl transpeptidase, alanine aminotransferase, aspartate 

aminotransferase and lipase. Feature selection and validation of the performance were assessed in a 

shuffled two-stage procedure implying the separation of 100 subjects each for independent validation. 

The inner loop consisted of a feature selection approach as the random forest (500 trees) was trained 

http://www.cytoscape.org/


with all variables and prediction was performed on the left data. Subsequently, the importance of each 

variable during this process was obtained based on the permutation of the out-of-bag data and 

weighted by the achieved root mean square error of prediction. The ten highest ranking variables were 

now used to build a new random forest which was validated on the unseen remaining subjects (outer 

loop). Once more weighted variable importance was obtained and finally the ten top ranking 

candidates were presented (Supplemental Figure 5). Both, the inner and outer loops were repeated ten 

times. The random forest was implemented in R using the package ‘randomForest’. To compile 

whether the selected variables were significant predictors of either log(IGF-I) or the IGF-I/IGFBP-3 

ratio we employed Boruta feature selection (Kursa et al. 2010). Briefly, this procedure adds noisy 

variables to the feature matrix which are derived by randomly shuffling original variables. Importance 

of the variables is obtained using Z-scores derived from the loss of accuracy when omitting a variable. 

Finally, Z-scores of original features are compared with their noisy shadows to test for a significant 

contribution. 
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