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Abstract
The molecular mechanisms that translate drug treatment into beneficial and unwanted

effects are largely unknown. We present here a novel approach to detect gene-drug and

gene-side effect associations based on the phenotypic similarity of drugs and single gene

perturbations in mice that account for the polypharmacological property of drugs. We

scored the phenotypic similarity of human side effect profiles of 1,667 small molecules and

biologicals to profiles of phenotypic traits of 5,384 mouse genes. The benchmarking with

known relationships revealed a strong enrichment of physical and indirect drug-target con-

nections, causative drug target-side effect links as well as gene-drug links involved in phar-

macogenetic associations among phenotypically similar gene-drug pairs. The validation by

in vitro assays and the experimental verification of an unknown connection between oxan-

drolone and prokineticin receptor 2 reinforces the ability of this method to provide new

molecular insights underlying drug treatment. Thus, this approach may aid in the proposal

of novel and personalized treatments.

Author Summary

In order to avoid unwanted effects of current drug interventions, it is necessary to expand
the knowledge of the molecularmechanisms related to drug action. Side effects offer
insight into drug action, as for example similar side effects of unrelated drugs can be
caused by their common off-targets.Moreover, the phenotypes of systematic single gene
perturbation screenings in mice strongly contribute to the comprehension of gene func-
tion. Here, we present a novel approach that detects molecular interactions of drugs based
on the phenotypic similarity of drugs and mouse models. The method is benchmarked
with diverse data sets including drug-target interactions as well as gene-drug links of phar-
macogenetic associations and validated by in vitro assays.
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Introduction

A drug can modulate its targets directly or indirectly (e.g. via modulation of the gene expres-
sion) and only a small proportion of these protein targets are known [1–3]. Due to this incom-
plete understanding of drugmode of action, current drug treatment often suffers from
unwanted effects [4]. In addition, the promiscuity of many drugs, that is the tendency of drugs
to modulate multiple targets [5], hampers the anticipation of drug response and adverse effects
in clinical practice. This is furthermore complicated by the genomic heterogeneity in the popu-
lation, which produces a large variability of efficacy and adverse effects among patients [6].
Pharmacogenomic studies fortified the important role of gene sequence polymorphisms in
drug efficacy and adverse effects [7–9]. Understanding each individual’s drug response is, thus,
an additional challenge in the treatment of diseases and has a huge impact on attrition rates in
drug discovery. Therefore, in order to personalizemedication and to improve drug efficacy as
well as drug safety, it is necessary to develop novel approaches expanding the knowledge of the
molecularmechanisms underlying drug treatment.

Several experimental techniques have been developed to detect molecular associations of
drugs [10]. However, limitations on the identifiable drug targets and their indirect effects, the
high cost and low throughput of those experiments have hindered the elucidation of molecular
determinants of many drugs. Classical approaches to detect drug-target interactions are based
on biochemical affinity purification [11]. This method is time consuming and can only detect
abundant high-affinity binding proteins, hampering its applicability to detect indirect and low
affinity associations as well as interactions with protein complexes. Chemical proteomics
approaches that typically combine affinity chromatography and proteomic techniques [12]
have the advantage of finding interactions on a large scale. Yet, the challenge persists to detect
interactions with proteins expressed at low levels without including unspecific bindings.
Expression-cloning-basedmethods, like phage display or yeast three-hybrid [13], can circum-
vent the low protein abundance issue [14], but they cannot always capture the complexity of
molecular and chemical interactions in the human organism [15].

Computational methods are arising as alternative and complementary approaches to pro-
pose novel molecular drug interactions. Methods relying e.g. on structural similarity of com-
pounds [4, 16] or side effect similarity have been successfully applied to reveal drug-target
relationships and also to provide mechanistic insights into adverse effects [5, 17, 18]. Recently,
the comparison of side effects of drugs and phenotypic traits of perturbedgenes in mousemod-
els has also been proposed as an option to identify drug targets [19]. Interestingly, this
approach has the advantage of not relying on established drug-target relationships, offering the
potential to discover novel drug-target interactions. This method follows the idea that the
manipulation of a target by genetic or pharmacologicalmeans should consistently lead to phe-
notypic changes that are alignedwith the desired therapeutic effect [20]. In this aspect, it has
been shown that phenotypes resulting from knock-outmice correlate well with known pheno-
types of drug response [21]. However, to detect single gene perturbations in mice that share
similar phenotypes with drugs in a sensitive manner, several methodological challenges need
to be overcome. These challenges arise from the large number of side effects of drugs stemming
from their polypharmacological potential [22, 23] as well as physiological differences between
mice and humans.

In this work, we develop a new scoring scheme to evaluate the similarity of phenotypic traits
from gene perturbations in mice and side effect profiles of drugs, which is able to cope with the
polypharmacological property of drugs. Our approach reveals molecular associations of drugs
and genes including direct and indirect drug targets, gene-drug links involved in pharmacoge-
netic associations as well as causal protein-side effect relationships. We moreover provide
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experimental evidence of the capability of our phenotypic similarity scoring scheme to detect
novel drug-target interactions.

Results

Phenotypic similarity of drugs and genes

In order to learn more about drugmode of action and molecularmechanisms underlying side
effects, we devised an extended semantic similarity scoring system to identify drugs and mouse
genes that share similar phenotypes and are, thus, likely to be molecularly related [24]. As we
aimed to find perturbations of mouse genes reproducing the side effects of drugs in human, we
encoded the phenotypic traits in mice and the drug side effects with the Medical Dictionary for
RegulatoryActivities (MedDRA) [25]. MedDRA is a highly standardisedmedical terminology
used for the annotation of adverse side effects in clinical trials that contains terms related to
human health. Besides, an adaptation of the hierarchical organization of MedDRA (seeMateri-
als and Methods for details) enables the assessment of the semantic distance between pheno-
types of different perturbations in mammalian organisms [26].

To determine drug—mouse gene pairs with similar phenotypes, we conceived a symmetric
score that averages the drug-gene and gene-drug phenotypic similarities (seeMaterials and
Methods for details) and devised an approach accounting for the well-known tendency of
drugs to bind multiple targets [4], also known as polypharmacological property.

To compute the gene-drug phenotypic similarity, we averaged the scores of the most similar
side effect-trait pair for all gene phenotypic traits, thereby prioritizing drugs that share a large
proportion of their side effects with traits of mouse models. In contrast, for the computation of
the drug-gene phenotypic similarity, we averaged only a subset of the 20 side effects with the
highest phenotypic trait-side effect scores (see S2 and S3 Figs for cut-off evaluation). In this
way, we disregarded side effects likely to be unrelated to a single target, thereby correcting for
the polypharmacology of drugs (Fig 1a). In addition, as associations of drugs with many side
effects to genes with low phenotypic information are more likely to score high by chance, we
scaled the resulting score with the number of mouse phenotypic traits and downweighted
drugs with many side effects (seeMaterials and Methods for details). This phenotypic similar-
ity measurement allowed us to calculate the similarity of over 8 million gene-drug pairs involv-
ing 1,667 drugs and 5,834 single gene perturbations in mice.

In order to assess if our method can give insights into drugmode of action as well as associa-
tions between drug targets and adverse effects, we compared the phenotypic similarity of the
gene-drug pairs to different data sets providing information of relationships between drugs,
genes, and side effects (see Fig 1b). We tested if our approach detects known direct and indirect
drug-target relationships, including those mediated through drug targets via protein-protein
interactions, pharmacogenetic variations, and causal connections between proteins and side
effects.

Drug-target relationships

First, we evaluated if our method is able to detect known drug-target associations from the
STITCH database [27]. This dataset includes direct interactions, that is, physically interacting
drug-target pairs (863,074 pairs) and drugs that modulate the targets indirectly (4,118,052
pairs), e.g. by altering the expression pattern of a gene via DNA binding (Fig 2a). We assessed
the performance of our model using precision, ROC and lift measurements (Fig 2b and S3 Fig
as well as S5 Fig). The lift value is a measurement of the performance of a method evaluated
against a random choice model that estimates the precision of a scoring scheme in relation to
the probability of obtaining a true value by chance (seeMaterials and Methods for details).We
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found that phenotypically related pairs are strongly enriched in both direct and indirect gene-
drugmolecular interactions (see Fig 2b). We also compared the performance of our model
with a previously proposed gene-drug semantic similarity scoring system [24] and observed
that our semantic similarity approach outperforms it significantly (see S4 Fig).

For a close manual inspection of the most confident gene-drug links detected by our
approach, we focused on the set of high scoring gene-drug associations where the precision in
the direct associations exceeds 10% and the lift reaches a value of 20 (Fig 2b) (1338 associations
connecting 214 genes and 394 drugs). For indirect targets, we obtained an enrichment over
random (lift value) of over 7 at this cutoff. We provide the full list of high scoring pairs in S1
Table. In addition, examples mentioned herein are shown in Table 1. Instances of direct

Fig 1. Schematic representation of the phenotypic similarity approach and validation of the method. a) Illustration of

the phenotypic similarity approach that corrects for the polypharmacological property of drugs. A drug may affect multiple

targets leading to more side effects than the one resulting from single gene perturbations in mice [23]. We therefore utilized

only a subset of 20 side effects (see S2 and S3 Figs for cutoff evaluation) that are most similar to the mouse phenotypic

traits to assess the similarity between a mouse gene and a drug. b) We evaluated our method with benchmark sets of direct

and indirect human drug-target relationships, functional associations mediated through drug targets via protein-protein

interactions, gene-drug pairs involved in pharmacogenetic associations and causal connections between human genes and

side effects.

doi:10.1371/journal.pcbi.1005111.g001
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connections among the high phenotypic similarity relationships include the antipsychotic
drugs aripiprazole and risperidone linked to their direct target dopamine receptor 2 (DRD2),
the Vitamin D Receptor (VDR) connected to its ligand ergocalciferol (Vitamin D2). In addition,
we found the Estrogen Receptor 1 (ESR1) related to the steroid estradiol and its derivatives
estradiol acetate and estradiol cypionate (see Table 1 and S1 Table). We also detected a high
semantic similarity between steroids that activate the androgen receptor (AR) (e.g. oxymetho-
lone, oxandrolone, nandrolone, fluoxymesterone, oxymetholone, and testosterone) and the AR
mouse gene as well as a connection between testosterone and the mouse gene coding for the tes-
tosterone transforming enzyme aromatase (cytochrome P450 family 19 subfamily A member
1, CYP19A1). An indirect relationship in which the drug increases the expression of the gene is
exemplified by the high phenotypic similarity between testosterone and the follicle-stimulating
hormone receptor (FSHR) [28].

Indirect gene-drug associationsmight involve different molecular actions ranging from dis-
tant (e.g. gene expression) to closer (e.g. an interaction with a gene product physically bound to
the drug target) mechanisms. Hence, we decided to investigate whether our method is able to
capture close molecular associations between a drug and the gene product. To that aim, we
analysed the distance between the known drug target and the gene product in a protein-protein
interaction network.We found that phenotypically similar gene-drug pairs tend to share close
molecularmechanisms (see Supplemental Information for details).

Taken together, these results indicate that our scoring scheme enables the detection of
shared molecular links between drug targets and phenotypically similar gene products. These
molecular connections include direct physical binding of the drug to its target as well as indi-
rect effects such as those influencing transcriptional regulation.

Pharmacogenetic/genomic interactions

Pharmacogenomics studies highlighted the important role of genetic polymorphism in drug
efficacy and adverse effects [7]. Whereas some pharmacogenetic associations involve genetic

Fig 2. Benchmarking of the phenotypic similarity method. a) Overview over different benchmarking approaches used to

validate the phenotypic similarity scoring scheme. b) Enrichment over random of direct (blue) and indirect (green) gene-drug

associations benchmarked with drug-target associations from the STITCH database. The gene-drug pairs are classified as high

(low) scoring if their phenotypic similarity is higher (lower) than the score at a precision of 10%. c) Enrichment over random of gene-

drug associations of pharmacogenetic interactions from clinical (light red) and phenotypic annotations (dark red) in PharmGKB. The

low lift values for very high scoring pairs (scores higher than 0.6) is explained by the sparse number of pairs with these scores within

this benchmark set (see S7 Fig). Manual literature inspection of these pairs suggests that our method reveals genes involved in

pharmacogenetic interactions also in the very high scoring regions.

doi:10.1371/journal.pcbi.1005111.g002
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Table 1. Examples of high-scoring gene-drug associations mentioned throughout the text. Information about the associated phenotypic similarity

score and the precision (%) based on the benchmarking results with direct drug targets of STITCH is included. (B) indicates that this drug is a biological.

Gene Drug ATC_pharma Similarity score Precision (%)

AR oxandrolone anabolic steroids 0.687 66.7

AR oxymetholone anabolic steroids 0.614 33.3

AR nandrolone anabolic steroids|other ophthalmologicals 0.457 14.3

AR fluoxymesterone androgens 0.449 16.7

AR testosterone androgens|androgens and female sex hormones in combination 0.431 14.6

AR methyltestosterone androgens|androgens and female sex hormones in combination 0.361 11.1

CASR calcium acetate Calcium 0.383 10.0

CBFB lepirudin recombinant (B) - 0.541 14.3

CBFB calfactant (B) - 0.501 12.1

CBFB alteplase (B) antithrombotic agents|other ophthalmologicals 0.426 15.3

CYP19A1 testosterone androgens|androgens and female sex hormones in combination 0.699 50.0

CYP19A1 dutasteride drugs used in benign prostatic hypertrophy 0.410 14.7

DRD2 aripiprazole antipsychotics 0.579 25.0

DRD2 risperidone antipsychotics 0.503 12.1

ESR1 estradiol acetate estrogens 0.637 50.0

ESR1 estradiolum estrogens|hormones and related agents 0.479 14.3

ESR1 estradiol cypionate estrogens|hormones and related agents 0.425 15.3

F13A1 lepirudin recombinant (B) - 0.561 20.0

F13A1 protein c (B) antithrombotic agents 0.43 15.5

FGA lepirudin recombinant (B) - 0.514 10.7

FGA alteplase (B) antithrombotic agents|other ophthalmologicals 0.382 10.3

FGG lepirudin recombinant (B) - 0.564 21.4

FSHR goserelin hormones and related agents 0.433 12.7

FSHR lutropin alfa (B) gonadotropins and other ovulation stimulants 0.396 12.6

FSHR follitropin beta (B) gonadotropins and other ovulation stimulants 0.387 10.7

FSHR leuprorelin hormones and related agents 0.365 11.1

LEP paroxetine antidepressants 0.4434 14.5

LEP aripiprazole antipsychotics 0.435 13.2

LEP escitalopram Antidepressants 0.397 12.0

LEP pramipexole dopaminergic agents 0.372 10.3

LEPR aripiprazole antipsychotics 0.561 20.0

LEPR paroxetine antidepressants 0.522 11.5

LEPR escitalopram antidepressants 0.419 15.3

LEPR pramipexole dopaminergic agents 0.412 15.2

LMNA mecasermin (B) anterior pituitary lobe hormones and analogues 0.407 14.3

PROKR2 oxandrolone anabolic steroids 0.437 13.5

PROKR2 oxymetholone anabolic steroids 0.432 13.8

RUNX1 lepirudin recombinant (B) - 0.540 14.3

RUNX1 calfactant (B) - 0.486 10.8

RUNX1 alteplase (B) antithrombotic agents|other ophthalmologicals 0.436 13.2

SPTA1 stavudine direct acting antivirals 0.595 25.0

TP53 tamoxifen hormone antagonists and related agents 0.604 33.3

VDR ergocalciferol vitamin a and d, incl. combinations of the two 0.433 13.7

doi:10.1371/journal.pcbi.1005111.t001
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variations in the physical interacting drug targets (e.g.DRD2 connected to aripiprazole and ris-
peridone), others appear to be mediated by more complex and indirect functional associations.
The observationof gene-drug pairs involved in pharmacogenetic relationships among the top
scoring associations prompted us to investigate in a systematic way if gene-drug pairs involved
in pharmacogenetic interactions are also enriched in phenotypically similar gene-drug pairs. To
test this hypothesis, we utilized the associations annotated in Pharmacogenomics Knowledge
Base (PharmGKB) [29]. PharmaGKB contains different types of pharmacogenomics relation-
ships, including the “pheno” and “clinical” associations (seeMaterials and Methods for details).
The “pheno” connections link a gene variant and an affected phenotype, whereas the “clinical”
links are manually curated annotations of clinically relevant pharmacogenetic variant—drug
pairs. We tested if our scoring scheme can detect gene-drug links resulting from these types of
annotations by calculating the enrichment over random (lift) for each relation type. The gene-
drug pairs with high phenotypic similarity showed a strong enrichment over random (over 100)
for the phenotype annotations and even stronger enrichment of 250 for the clinical associations
(Fig 2c).

A known gene-drug pair involved in pharmacogenetic associations among phenotypically
similar pairs includes for example the dopamine receptor 2 (DRD2) connected to antipsychot-
ics. In theDRD2 gene, the SNP rs1799978 is a significant predictor for the response to the anti-
psychotic risperidone [30]. Molecularly more distant pairs related to genetic variations on drug
response are exemplified by the link between the leptin receptor (LEPR) and antipsychotics. In
particular, the LEPRQ223R polymorphism is significantly associated to obesity in women
treated with atypical antipsychotic drugs [31]. Pharmacogenetics is a newly evolving field and
consequently, many pharmacogenetic interactions are not known. This might cause an under-
estimation of the performance of the method to retrieve these interactions. In this context, a lit-
erature survey revealed the presence of pharmacogenetic associations among highly similar
gene-drug pairs. For example, mutations in the TP53 gene, which exhibited a high phenotypic
similarity to an antagonist of the estrogen receptor tamoxifen, have been shown to be a signifi-
cant predictor of poor response in tamoxifen-treated patients [32]. This example illustrates the
potential of the method to reveal novel genes involved in pharmacogenetic interactions.

Causal drug target-side effect relationships

Since drugs and genes sharing similar phenotypes are likely to be molecularly related [24], we
reasoned that these shared phenotypes might give valuable insights into protein-side effect
relationships and explain the molecular causes of drug adverse effects. For example, the cancer
related phenotypes (e.g. “adenocarcinoma”, “malignant soft tissue neoplasm“, and “sarcoma“)
linked to tamoxifen treatment as well as to mice with impaired TP53 protein functionmight be
due to the effect of the drug on the function/activity of p53 protein, for example, via a coopera-
tive effect with its target, the estrogen receptor [33]. Similarly, the metabolic effects shared by
drugs and mice harbouring defective leptin (LEP) or leptin receptor (LEPR) could be related to
the action of these drugs on the proteins coded by LEP and LEPR genes. For example, “obesity“,
“insulin resistance”, and “glucose tolerance impaired” are phenotypes that atypical antipsy-
chotics as well as antivirals share with LEP and LEPR. These effectsmight be caused by the
direct or indirect influence of the drugs on these proteins (Fig 3a).

To systematically test if the set of side effectsmost similar to the gene phenotype reveal caus-
ative connections between the gene product and the side effects, we compared these terms to a
manually curated dataset of previously reported side effect-protein relationships [18]. In partic-
ular, we compared the fraction of known gene-side effect relationships among the shared side
effects (seeMaterials and Methods for details) of high semantic similarity pairs to the
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Fig 3. Detection of protein-side effect relationships by the phenotypic similarity approach. a) Network of shared

associations between leptin and the leptin receptor and examples of utilized adverse effects (coloured dots). The

coloured hexagons indicate the pharmacological subgroup of the ATC classification system. b) Boxplot of the fraction of

causal protein-side effect links of low vs high scoring associations utilized in the scoring scheme. The *** denote that this

fraction is significantly (P-value = 5.88E-10, Wilkoxon ranksum test) larger in the gene-drug pairs having a high similarity

compared to the low scoring ones.

doi:10.1371/journal.pcbi.1005111.g003
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corresponding fraction of low scoring pairs. We found that this fraction is significantly (5.88E-
10, Wilkoxon ranksum) larger in the gene-drug pairs having a high semantic similarity (Fig 3b).

These findings show that investigating the specific side effects leading to a high overall phe-
notypic similarity can reveal causative connections between the gene product and the side
effects. Thus, our method is capable of providing hypotheses about the molecularmechanisms
leading to adverse drug effects.

Interactions with biologicals

Biologicals are recently gaining the attention of pharmaceutical companies as they open new
avenues for targeting non-druggable proteins, that is, proteins that do not bind chemicals natu-
rally. Thus, we tested if our method can also be applied to detect molecular associations of bio-
logicals and shed light onto their side effects. For that, we manually analysed the relationships
of the 51 biologicals with mouse genes in our set of top-scoring associations (see S2 Table).

Among these associations we found known relationships between biologicals and their pro-
tein interaction partners including the link of follitropin beta, a recombinant form of follicle
stimulating hormone (FSH) to its receptor FSHR (see zoom-in of Fig 4 and Table 1). We also
detected obvious indirect associations between biologicals and the human orthologues of phe-
notypically similar mouse genes. For example, coagulation related proteins (e.g. alpha and
gamma chain of fibrinogen (FGA, FGG) and coagulation factor XIII (F13A1) are connected to
lepirudin recombinant, a recombinant hirudin derived from yeast cells and a direct thrombin
inhibitor (Fig 4 zoom-in and Table 1).

Experimental validation

All the evidence presented above show that our method can detect drug-target associations as
well as gene-drug links resulting from pharmacogenetic studies and provides hypotheses on
the molecularmechanisms behind adverse drug effects. To seek for experimental evidence on
the phenotypically similar drug-target associations, we first compared our high scoring associa-
tions with the hits of in vitro assays of ToxCast project [34], which recently systematically
tested more than 1,800 compounds in 821 in vitro assays. This database contains in vitro activ-
ity information for 14,238 gene-drug pairs analyzed here, comprising the activity of 141 drugs
on different assays related to 263 genes (seeMaterials and Methods for details).We found
experimental information for 38 of the high scoring pairs (S3 Table). These pairs are clearly
enriched in associations with experimental support (4-fold, see S8 Fig), with 50% of these pairs
appearing as hits of in vitro assays. These results therefore provide experimental support for
the phenotypically similar gene-drug associations.

In order to present also experimental evidence on the newly discovered drug-target associa-
tions involving proteins that have not been extensively screened for ligands, we sought for
unknown connections of a drug and a mouse gene for which a functional assay for the encoded
protein is commercially available. Among these connections, we found the intriguing link
between two derivatives of male hormone dihydrotestosterone, oxandrolone, and oxymetholone
and the gene encoding for prokineticin receptor 2 (PROKR2). Prokineticin receptor 2 has
recently been implicated for the first time in the binding of small molecules [35–38]. As oxan-
drolone shows a slightly higher phenotypic similarity to PROKR2 than oxymetholone, we
decided to investigate if oxandrolone has a functional effect on prokineticin receptor 2 protein
(PKR2). We experimentally tested the possible activity of oxandrolone on the receptor in an
agonist and an antagonistic functional assays of HEK-293 cells expressing PKR2 [39] (see
Materials and Methods). We first tested a single concentration of oxandrolone (1.0E-05M) on
both assays and observed activity on the antagonist assay. We then determined the dissociation
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constant (Kb) value (9.5E-06M) of the oxandrolone antagonistic activity in a dose-response
curve (Fig 5). To rule out the possibility of a non-specific effect of oxandrolone on Ca2+ concen-
trations, oxandrolone was tested at high concentrations on HEK-293 cells expressing PKR2 in
the absence of the known stimulant PK2 (S9 Fig). In these conditions, oxandrolone showed no
interference with Ca2+ mobilization, demonstrating its specificity on PKR2 signalling. The
experimental validation of the antagonistic effect of oxandrolone on PKR2 proves that our
method is able to detect novel drug-target interactions, further reinforcing the applicability of
our method to elucidate drug action.

In summary, we have shown the potential of our novel extended similarity scoring system
to unravel molecularmechanisms underlying drug treatment leading to unwanted side effects.
Not only known genes encoding for drug targets exhibit a high semantic similarity to their

Fig 4. Network of high scoring biological-gene associations. The network of high scoring biological-gene connections is shown and some

associations that are discussed in more detail in the manuscript are highlighted in a zoom-in. The follicle stimulating hormone receptor is e.g.

connected to follitropin beta, a recombinant form of follicle stimulating hormone (FSH) or genes encoding for proteins that are members of the

coagulation cascade are linked to anticoagulants like lutropin alpha.

doi:10.1371/journal.pcbi.1005111.g004
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associated drugs, but also protein interaction partners of the known targets do so. Our
approach is moreover able to discover gene-drug connections involved in pharmacogenetic
interactions, protein-side effects links and associations with biologicals.We furthermore
proved experimentally that our method can detect novel drug-target interactions.

Discussion

In this work, we have analysed the similarity of phenotypes resulting from drug treatment (side
effects) and from gene perturbations in mouse models.We showed that our extended semantic
similarity approach can elucidate molecularmechanisms that translate drug influence into
phenotypic effects giving insights into intended (on-targets) and unintended (off-targets) inter-
actions. The detailed analysis of the phenotypes shared by gene-drug pairs exhibiting a high
similarity revealed valuable insights into causative connections between drug targets and side
effects.We validated the potential of our approach to detect known drug targets, genes
involved in pharmacogenetic associations as well as connections to biologicals and experimen-
tally proved the applicability of our method to detect novel drug-target physical interactions.

Phenotypically similar gene-drug pairs exhibit a strong enrichment in known direct as well
as in indirect drug-target relationships (Fig 2b). The proximity of the human orthologue of the
mouse gene to the known drug target in the PPI network confirms that our approach detects
links between drugs targets and functionally related proteins (S6 Fig). This implies that pro-
teins encoded by genes that share similar phenotypes with a drug are likely to physically inter-
act with that drug’s target or cooperate with it in the same pathway.

The high phenotypic similarity between LEP/LEPR and drugs for the nervous system
including the dopamine agonist aripiprazole and the selective serotonin inhibitors paroxetine,
pramipexole and escitalopram further shows the potential of our method to detect non-obvious
associations. The shared phenotypes of aripiprazole and mice with impaired LEP/LEPR func-
tion like “obesity”, “insulin resistance” and “glucose tolerance impaired” (Fig 3a) point to alter-
ations of leptinergic signalling by the antipsychotic aripiprazole. The pharmacogenetic

Fig 5. Experimental validation. a) Network of high scoring associations around the PROKR2 gene. PROKR2 is linked to the anabolic steroids

oxandrolone and oxymetholone. The androgen receptor (AR) exhibits a high phenotypic similarity to known direct (blue) and indirect (green) targets

of AR. The coloured hexagons indicate the pharmacological subgroup of the ATC classification system. b) Dose response curve of oxandrolone on

the PKR2 antagonistic assay. Two replicate measurements, their average and the fitted dose-response curve are shown.

doi:10.1371/journal.pcbi.1005111.g005

Drug-Mouse Phenotypic Similarity Detects Determinants of Drug Effects

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1005111 September 27, 2016 11 / 29



association of LEPR and LEP [31] to obesity caused by antipsychotics additionally confirms
this. Similarly, the side effects that LEP and LEPR share with selective serotonin inhibitors such
as “food craving”, “binge eating”, “hyperphagia” and “obesity” (Fig 3a) suggest a connection
between serotonin signalling and leptin. Indeed, recent studies show that the regulation of
appetite by leptin takes place for the most part through inhibition of serotonin synthesis and
release by brainstem neurons [40, 41]. These results show that our scoring scheme gives valu-
able insights into complex mechanisms leading to adverse effects of drugs.

We have demonstrated that our method predicts also molecular associations with biophar-
maceutical drugs, where the market has gained a very high and still growing value in recent
years [42] and whose adverse effects are often not fully understood. For example, the recombi-
nant form of follicle stimulating hormone (FSH), follitropin beta, shows a high phenotypic simi-
larity with mouse models with perturbedFSHR gene (Fig 4, Table 1). This association is further
confirmedby pharmacogenetic associations in PharmGKB. Consistent with the role of gonado-
tropin releasing hormone (GnRH) in the release of FSH, we find FSHR also associated to gosere-
lin, an injectable GnRH superagonist, and to leuprorelin, a GnRH analog (Table 1). In line with
this association, the stimulation of FSH by GnRH leads to increased levels of testosterone, pro-
gesterone, and estradiol. Interestingly, this mechanism is also clearly reflected by the phenotypic
traits that FSHR shares with leuprorelin and goserelin that include "Blood testosterone
decreased", "Oestradiol decreased", "Progesterone abnormal" and "Blood oestrogen abnormal".

Intriguingly, the steroid oxandrolone exhibits a high semantic similarity to its known recep-
tor AR as well as to PROKR2 (Fig 5 and Table 1). We hypothesized that the observedpheno-
typic similarity between oxandrolone and PROKR2 could result from indirect effects e.g. via a
functional connection betweenAR and PROKR2 or, alternatively, from the effects of the drug
on the PKR2 pathway. To precisely determine the link between oxandrolone and PROKR2, we
tested the activity of the drug on in vitro functional assays and observed an antagonistic effect
of oxandrolone on PKR2 signalling.We showed that this effect is specific of PKR2 signalling
(see S9 Fig). Furthermore, it is independent from the AR target, since HEK-293 cells do not
express AR. These results indicate that the detected antagonistic activity is either mediated via
a physical interaction of oxandrolone with PKR2 or through the interference with downstream
proteins of the PKR2 pathway. The direct binding of oxandrolone to the G-protein coupled
receptor (GPCR) protein PKR2 is plausible, since several research studies support the involve-
ment of GPCRs on non-genomic effects of androgens and other steroids [43]. These fast effects
of steroids are not mediated by the classical transcriptional effects, but through interaction of
steroids with their target receptors, which also include GPCRs.

Despite the relative low affinity of oxandrolone to PKR2, its plasma concentration is com-
patible with a clinically relevant interaction of oxandrolone and PKR2. At oxandrolone thera-
peutic dosages (10 mg), its average plasma concentration (417 ng/ml) is in the micromolar
range (1.6 μM) [44] and is expected to be even higher in weightlifters and bodybuilderswho
chronically administer it at supraphysiologic doses [45].

In addition, the physiological effects of a PKR2 antagonist as well as those observed in indi-
viduals carryingPROKR2 gene mutations are in concordance with the clinical effects of oxan-
drolone beingmediated via PKR2 signalling. The clinical effects observedafter oxandrolone
treatment include low levels of luteinizing hormone (LH), GnRH and testosterone [46, 47]. Sim-
ilarly, a PKR2 antagonist (3Cl-MPL) has been shown to blunt circulating luteinizing hormone
(LH) levels in mice [48]. Moreover, mutations in PROKR2 lead to GnRH-deficiencyand more
specifically to Kallmann syndrome, a disease characterized by hypogonadism, a decreased func-
tional activity of the gonads [49]. Interestingly, mutations in PROKR2 linked to Kallmann syn-
drome have been shown to impair Ca2+ release in HEK293 cells [50, 51], which is consistent
with the effect of oxandrolone on PKR2 in the same cell lines detected herein. However, the
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effects of oxandrolone are not clearly distinguishable from those expected as AR agonist, which
also include the influence on LH and GnRH levels [52]. Whether the clinical effects of oxandro-
lone are mediated by the antagonistic activity of oxandrolone on PKR2, via its activity on the
potent target AR or via collaborative effects clearly requires further experimental investigation.

Interestingly, oxandrolone causes less virilising effects and also less adverse effects than the
natural AR agonist testosterone [53]. Although these effects have been ascribed to the inability
of oxandrolone to aromatise to estradiol [54], in the light of this new finding, the contribution
of PKR2 activity of the drug to the decrease of steroid levels deserves further investigation.

Taken together, we could experimentally verify a formerly unknown (direct or indirect)
interaction between the GPCR PKR2 and oxandrolone, which further sheds light into the clini-
cal effects of oxandrolone treatment.

The potential of our method was further confirmed experimentally using the results of in
vitro assays of the ToxCast project.We observed that phenotypically similar gene-drug pairs
are strongly enriched in pairs where the drug is active on in vitro assays of the protein target
encoded by the gene. The results of these assays confirmed associations annotated in the drug
target datasets analyzed herein such as DRD2 and haloperidol or VDR and ergocalciferol and
provide experimental support for new ones including TP53 and azathioprine (see S3 Table).

We have demonstrated that our approach is also able to detect genes responsible for the var-
iation on drug response as indicated by the strong enrichment over random of gene-drug asso-
ciations from PharmGKB (Fig 2c). Recent studies revealed the strong impact of genetic
variations on an individual’s response to drugs [55]. However, the majority of the genetic vari-
ants responsible for the observedvariability on drug response in the population remain to be
elucidated. Our method could guide future pharmacogenomic studies by proposing a priori-
tized list of candidate genes involved in drug response in an analogous manner to gene prioriti-
zation used for genome-wide association studies of (rare or multifactorial) diseases [19, 56–
58]. This may have important implications in personalized treatment decisions helping to
improve drug efficacy and safety.

Although we have shown that our approach can detect many meaningful gene-drug connec-
tions based on in vivo phenotypic information, it has also limitations inherent to the cross-spe-
cies comparison. Mutations in genes in mice do not necessarily have the same effect in human
and associations involving species-specific (mouse or human) genes or gene families may not
be detected by our method. In addition, drugs can act differently in different species, for exam-
ple due to differences in drugmetabolizing enzymes [59]. Terms commonly used as side effect
descriptions, such as headache, may not be detected as phenotypic feature in mice. Moreover,
the mapping of MPO-annotated phenotypic traits to the MedDRA vocabulary leads to a loss of
information among the phenotypes linked to mouse genes. As a consequence, the number of
the genes for which we could detect a sufficient phenotypic similarity to drugs is reduced.

Using a stringent mapping procedure, we could translate with high confidence 26% of the
mouse phenotypic descriptors utilized as gene annotations in MGI to MedDRA (S1–S4 Files).
Interestingly, the coverage of terms mapped to MedDRA terms per mouse gene was higher
(29%) than the total number of uniqueMPO terms mapped to MedDRA. This is explained by
the higher likelihoodof MPO terms representing frequently observedmouse phenotypic traits
to be translated into MedDRA (S1b Fig). This reduces the impact of the loss of phenotypic
information in the approach.

We chose to code the phenotypes in theMedDRA terminologyover other widely used human
clinical ontologies such as HPO to optimally capture information of the effects of drugs in
human. MedDRA is intended to be used in the pre- and post-marketing phases of the medicines
regulatory process covering also adverse drug reactions [25]. Thus, MedDRAmeets our aims bet-
ter than HPO, which is tailored to cover phenotypic abnormalities of human diseases [60].
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Since drug side effect information is recorded from populations with heterogeneous genetic
backgrounds, we opted to aggregate phenotypic traits resulting from different genetic perturba-
tions in mice of the same gene (e.g knock-outs, knock-ins or SNPs) and did not differentiate
between distinct genetic backgrounds. This has the advantage of enriching the number of phe-
notypic descriptions linked to genes. In the future, more detailed phenotypic data of genes and
drugs would allow the development of more discriminative tools to predict for example agonis-
tic or antagonistic effects of the drug on the gene product and specific genetic variants modu-
lating drug response. This information could include the frequency of occurrence of a side
effect per specific drug, additional readouts of the drug action or gene attributes such as meta-
bolic profiles.

Taken together, the results presented here show that our semantic similarity approach is
suited to detect mice models mimicking drug phenotypes with high precision and accuracy
(see S3c–S3f Fig), allowing determining 1338 phenotypic associations connecting 214 genes
and 394 drugs of diverse indication areas. The results of this work demonstrate that the pheno-
typic similarity between drugs and genes gives valuable insights into molecularmechanisms of
drug treatment. The knowledge about relationships between drugs and genes has important
implications in personalized treatment decisions, as considering drugmode of action and the
genetic predisposition of a patient could circumvent drug inefficacy and adverse effects. Even
effects resulting from treatment with combination of drugsmay be anticipated if a better
understanding of drugmode of action is obtained. Moreover, this information could be used
for drug repurposing, because novel drug-target interactions may provide insights for the
application of marketed drugs to new indications.

We prove that comparing drug side effects and mouse phenotypic traits reveals insights into
drugmode of action. Gene-drugpairs exhibiting a high phenotypic similarity are enriched in
known direct and indirect drug-target relationships. Our systems biology approach moreover
extends the knowledge about the molecularmechanisms leading to unwanted side effects and
about genetic variation influencing drug response. We furthermore provide in vitro evidence
for the potential of our approach to detect drug-target associations. The experimental valida-
tion of a novel drug-target interaction enabled us in addition to get insights into molecular
mechanisms of oxandrolone treatment.

Thus, this analysis improves drug therapy by advancing the understanding of modes of
drug action, adverse effects and genes involved in pharmacogenetic interactions. This may help
to find new therapeutic applications for drugs or aid in personalized treatment decisions.

Materials and Methods

In order to detect relationships between drugs and genes, we calculate the phenotypic similarity
of drug side effects and phenotypic traits from gene perturbations in mice.

Drug phenotypic information (side effects)

We extracted drug phenotypic information from our in-house drug repository which contains
3987 unique side effects associated to 1667 drugs (155,973 pairs) as previously described [26].
The side effect data was parsed from public documents directed at health care professionals or
the public such as drug labels, monographs or assessment reports.We annotated the pheno-
typic information employing the Medical Dictionary for RegulatoryActivities (MedDRA), a
medical terminology intended to describe e.g. diagnoses, symptoms and signs, adverse drug
reactions and therapeutic indications [25]. Terms of this terminologywere collected from
diverse sources like theWorld Health Organization's (WHO) adverse reaction terminology,
Coding Symbols for a Thesaurus of Adverse Reaction Terms (COSTART) and International

Drug-Mouse Phenotypic Similarity Detects Determinants of Drug Effects

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1005111 September 27, 2016 14 / 29



Classification of Diseases (ICD) 9 and are maintained, further developed and distributed by the
Maintenance Support ServicesOrganisation. MedDRA is organized hierarchically which
allows us to compute the semantic relatedness of the terms in this ontology. We used an
adapted four-level hierarchy of MedDRA suited for semantic reasoning describedpreviously
[26]. In this adapted version of MedDRA, we merged the fifth and the fourth level of MedDRA,
because there is no clear hierarchical relationship between these two levels. In addition, as
described in [26], we integrated 59 StandardizedMedDRAQueries (SMQs), which represent
groups of terms across the entire ontology to a definedmedical condition. These modifications
make MedDRA applicable to measure the semantic similarity of phenotypes.

Phenotypic information from single gene perturbations in mice

Mapping of Mammalian PhenotypeOntology terms to MedDRA. In this section, we
describe in detail the procedure we followed to map mouse phenotypes fromMouse Genome
Informatics (MGI) [61] encoded in the Mammalian Phenotype Ontology (MPO) [62] to the
MedDRA terminology [25] (see also [23]). To obtain the set of gene-phenotype annotations
encoded in theMedDRA terminology, we made use of several files given by MGI with informa-
tion of phenotypes of mice strains. These files are described in the following paragraphs and
are provided as supplemental information.

The fileMGI_PhenoGenoMP.txt (S1 File, accessed in April 2012) contains information
about the allelic composition and the genetic background of the mice strains, MGI marker
accession ID and the corresponding phenotypes coded in the MPO. MGI_Coordinate.txt (S2
File, accessed in April 2012) includes the mapping of the MGI marker accession ID to the
Ensembl Gene ID. VOC_MammalianPhenotype.txt (S3 File, downloaded fromMGI in April
2012) contains all terms of the MPO.

We first mapped MPO terms to the MedDRA terminology. For that, we mapped the terms
of the vocabulary of the MPO (from S3 File) to the UMLSMetathesaurus, where MedDRA is
integrated, with the help of the MetaMap application (http://mmtx.nlm.nih.gov) [63]. This
application from the National Library of Medicine maps biomedical text to the UMLS
Metathesaurus using natural language processing. The MetaMap algorithm parses a given text
(here the terms of the MPO) into simple noun phrases. Then, for each noun, MetaMap gener-
ates variants consisting of the noun itself and its acronyms, abbreviations, synonyms, deri-
vational variants and inflectional and spelling variants derived from the SPECIALIST lexicon
and a supplementary database of synonyms [64]. This set of terms is then evaluated against the
terms in the UMLSMetathesaurus by calculating the weighted average of four metrics: cover-
age and cohesiveness, centrality (involvement of the head) and variation (an average of inverse
distance scores, which differ for spelling variants, for inflections, for synonyms or acronyms/
abbreviation and for derivational variants) [63]. This results in a mapping fromMPO to terms
in MedDRA that are linked to concepts of the UMLSMetathesaurus. Each mapping is associ-
ated to a normalized value between 0 and 1,000, with 0 indicating no match at all and 1,000
indicating an exact match. ThoseMPO terms with an exact match (score 1000) to MedDRA
terms were assigned automatically. Non-exact MPO-MedDRAmappings associated with a
high scoringmatch (score> 865) were manually curated, ensuring a high-quality mapping.
Mappings with scores lower than 865 contained a high number of false positives.We, therefore,
manually chose this cutoff, in order to assure a high quality of mapped terms (see also S4 File
containing the usedMPO terms mapped to MedDRA as describedbelow).

Subsequently, we assigned gene names to MGI markers with phenotypic information in the
fileMGI_PhenoGenoMP.txt utilizing the association to theMouse Ensembl Gene ID in the
MGI_Coordinate.txt file (S2 File). Then we designated the human orthologs of the mouse genes
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with the Human Ensembl IDs provided by Ensembl BioMart (accessed in Dec. 2011). All MPO
phenotypes of theMGI markers linked to the same Human Ensembl Gene ID were assigned to
the gene. This allowedmapping 1,939MPO terms out of 7,051 terms originally assigned to genes
in theMGI repository (S1 File) to MedDRA. For 85% (30,811 out of 36,157) of theMPO terms
mapped toMedDRA, we could assign a MedDRA term corresponding to an exact match or man-
ually curatedmappings (using the webportalMetaMap). For the remaining 15% of the mouse
phenotypes annotations linked to genes (5347 out of 36157 MedDRA terms- human genes) the
mapping was established via a MPO super-class, again on the basis of an exact match or manually
curated termmapped toMedDRA. The full list of gene annotations inMPOmapped toMedDRA
can be accessed in S4 File. If the mapping was done using a super-class of the term, this class is
also given in the column “super-class MPO” in addition to the annotated MPO term.

Analysis of loss of mouse phenotypic information due to the mapping process. In order
to evaluate precisely the loss of information after translating MPO terms to MedDRA, we
quantified the proportion of MPO phenotypes as well MPO-mouse genes pairs that were
mapped to MedDRA. Out of 7,449 MPO terms representing phenotypes of geneticallymodi-
fiedmice in MGI (see S1 File), we mapped 1,939 terms to MedDRA used as annotations
(including the annotations of more general terms). In total, we mapped 26% of the mice pheno-
typic annotations. Interestingly, the percentage of mapped MedDRA-mouse gene pairs was
higher (29%, 31,025 MedDRA-mouse gene pairs out of 106,639 MPO-mouse gene pairs) than
the percentage of uniqueMPO terms mapped to MedDRA. This might be explained by the
higher likelihoodof frequently observedmouse phenotypes to be translated to MedDRA.

To test this hypothesis, we binned the MPO codedmice phenotypes by their frequency of
occurrence in the MGI data (bin1: 1, bin2:] 1,5], bin3:] 5,10], bin4:] 10,50], bin5:]50,100], bin6:
>100). Analogously, we binned the MedDRA coded side effects by their frequency of occur-
rence in our in-house drug data (bin1: 1, bin2:] 1,5], bin3:] 5,10], bin4:] 10,50], bin5:]50,100],
bin6:]100,500], bin7:>500). SomeMedDRA terms occur very frequently as side effect descrip-
tion, therefore we added an extra bin containing side effects terms occurring in more than 500
drugs. Then, for each bin, we calculated the fraction of annotations that could be mapped from
MPO to MedDRA (S1b and S1c Fig).

Comparison of number of phenotypes linked to drugs and mouse genes. Drugs have
many more phenotypic annotations compared to single gene perturbations in mice, which is
likely caused by the potential of drugs to influencemultiple targets. To rule out the possibility
that the larger number of drug side effects is due to a loss of information caused by the mapping
procedure fromMPO toMedDRA, we examined the number of MedDRA–encoded drug side
effects in comparison to the number of phenotypes of mouse genes in the originalMPO gene
annotations as well as mapped to MedDRA.More specifically, we plotted the number of pheno-
types of the 6,509 mouse genes with gene annotations inMPO as well as 5,384 human genes
with annotations mapped to MedDRA in comparison to the drug annotations (S1a Fig). In order
to attribute the polypharmacological property of drugs, we analyzed the average number of side
effects per known direct drug target (given in S5 File) for the 1,000 drugs in our data set with
direct drug target information.We observed that drugs tend to have many more annotations
than mouse genes, even when compared to the originalmice phenotypes fromMGI encoded in
the mammalian phenotype ontology. This indicates that the higher number of drug phenotypes
(side effects) is likely to be caused by the tendency of drugs to influencemultiple targets.

Phenotypic similarity method

Information content. We assessed the phenotypic similarity of mouse phenotypic traits
and drug side effects using a semantic similarity measure based on the information content
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(IC) as introduced by Resnik [65]. Analogously to a previous approach comparing drugs to dis-
eases [23], the similarity of two terms was calculated by determining the maximal IC of the
common ancestors of these terms (Most Informative CommonAncestor (MICA)).We used an
IC that is based on the number of children of a term within the ontology and not on the anno-
tation frequency in order to decrease the influence of annotation bias:

ICterm ¼
logðchildðtermÞÞþ 1

logðNÞ

In this equation, term is a given ontology term, child(term) gives the number of all of its
children terms, and N denotes the total number of terms in the ontology. Following this for-
mula, a term with less children is considered as more specific.

Weighting scheme. Analogously to the previous approach by Vogt et al. [26], frequency
and co-occurrenceweights were incorporated to downweight frequent and co-occurring terms,
as they have been shown to carry less information about drugmechanism [17]. We defined the
frequencyweight as the negative natural logarithm of the fraction of drugs or genes the term is
annotated to. For the co-occurrenceweight, we used the negative natural logarithm of the Jac-
card index:

JðA;BÞ ¼
jA \ Bj
jA [ Bj

Here, A and B represent the sets of drugs and mouse genes the terms under consideration
are annotated to.

Semantic similarity scores. The similarity score between one side effect i and one mouse
phenotypic trait j was then computed as the product of the IC of the MICA and the minimum
of the frequency and co-occurrenceweights in order to emphasize phenotypic effects specific
in both annotation sets:

sij ¼ ICMICA �minðfi � ci; fj � cjÞ

where fi and ci refer to the frequency and co-occurrenceweights of the compared terms.
Subsequently, the final overall phenotypic similarity between a drug and a gene was calcu-

lated as follows: For each side effect the best matching mouse trait was determined as identified
by the highest similarity score Sij:

bestj ¼ maxðsi1; si2; . . .; simÞ

Then, the individual similarity scores from all best matches for a drug were averaged by cal-
culating the arithmetic mean of all best matching scores.

Analogously, for each mouse trait the side effect yielding the highest similarity score among
all side effects of the drug was considered as best match:

besti ¼ maxðsj1; sj2; . . .; sjnÞ

Thus, only if a drug and a gene share specific effects, they will show a high phenotypic
similarity.

“Drug polypharmacology”, that is, the tendency of drugs to bind multiple targets, is a well-
known property of drugs [21]. Polypharmacology frequently leads to many diverse side effects
[23] that contrast with the lower number of phenotypic traits frommouse models resulting
from single gene perturbations (see Fig 1a). This difference cannot be explained by the loss of
information due to the MPO toMedDRAmapping, as it is also noted when the number of
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originalMPO terms annotated to mouse genes are compared with the drug phenotypic features
(S1a Fig). Thus, the large number of side effects of many drugs can be attributed to their poly-
pharmacological property. Hence, only a subset of side effects should be taken into account in
the phenotypic similarity calculation of a single gene to a drug. To that aim, we searched for an
optimal number of side effects representing effects of a single target for each drug-gene compar-
ison. To determine this number, we evaluated the performance in detecting known drug targets
when using only a subset of the highest scoring side effects-gene phenotypes matches (note that
the highest scoring side effects-gene phenotypematches might differ between the different
genes compared). We tested a broad range of cut-offs differing in the number of top scoring
side effects used for the similarity calculation and obtained the best performance by utilizing
the 20 best scoring side effects (see S2a Fig). If a drug has fewer than 20 side effects, then the
number of all annotated side effects is taken into account. This threshold also exhibited an opti-
mal performancewhen retrieving associations from an independent and mutually exclusive
dataset of indirect drug-target interactions (S2b Fig). This shows, that the best performance for
a cut-off of 20 best scoring side effects for each drug-gene pair is not a result of data over-fitting.

We calculated the arithmetic mean of these 20 top scoring phenotypic features of a drug
and all best scoring phenotypic features of a gene for each drug-gene pair. In this manner, our
new scoring scheme enabled us to find gene-drug relationships resulting from one drug target
while disregarding the side effects originating from other targets.

A gene with very few annotations can score high with a drug if one of the annotations is
similar to a side effect by chance. This is more likely to happen when comparing genes with
few annotations to drugs with many side effects, resulting frequently in false positives in high
scoring pairs. To alleviate this issue, we downweighted associations from genes with low phe-
notypic information by multiplying the score with the natural logarithm of the number of
MedDRA terms annotated to mouse genes. Additionally, we binned the drugs into three bins
depending on the number of side effects and weighted them accordingly (low (0–33% quan-
tile): weight 1), medium (33–66% quantile): weight 0.66, high (66%-100% quantile): weight
0.33). Subsequently we normalized the resulting score by the maximum occurring value in
order to get a value between 0 and 1.

Performance measurement

To evaluate the performance of the presented phenotypic similarity scoring scheme we used
Receiver Operating Characteristic (ROC), precision, lift and accuracy plots. For all perfor-
mance plots, the R package "ROCR" [66] was utilized. In the following paragraph we explain
the different performancemeasurements.

Let Y be a random variable representing the known information about the relatedness of a
drug-gene pair and Ŷ a random variable representing the classification according to the scoring
scheme for a randomly drawn sample. φ denotes the positive class and �φ denotes the negative
class, respectively. Further, P describes the number of (empirical) positives, N the number of
negatives, TP the number of true positives and FP the number of false positives.

ROC plots. A ROC plot is created by plotting the true positive rate against the false posi-
tive rate at each score threshold. The true positive rate, also known as recall, measures the pro-
portion of actual positives, which are correctly identified as such, it is, thus, a measure for the
specificity of a classification system:

True positive rate :PðŶ ¼ φjY ¼ φÞ ¼
TP
P
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The false positive rate measures the proportion of false positives among all negative sam-
ples:

False positive rate: PðŶ ¼ φjY ¼ �φÞ ¼
FP
N

Accuracy. The accuracymeasures the proportion of true positives and true negatives
among the total number of samples:

Accuracy :PðŶ¼ YÞ ¼
TPþ TN
P þ N

Precision. The precision value is defined as the fraction of true positives among all posi-
tives at a certain score threshold:

Precision :PðY ¼ φjŶ ¼ φÞ ¼
TP

TP þ FP

The precision, thus, measures the percent of correct positive predictions at a certain score.
Lift. The lift value additionally incorporates a random choice model, by considering the

precision as well as the probability of obtaining a true value by chance:

Lift :
PðŶ ¼ φjY ¼ φÞ

PðŶ ¼ φÞ
¼

PðY¼φjŶ¼φÞPðŶ¼φÞ
PðY¼φÞ

PðŶ ¼ φÞ
¼
PðY ¼ φjŶ ¼ φÞ

PðY ¼ φÞ
¼

Precision
PðY ¼ φÞ

¼
Precision
PðtrueÞ

The area under the ROC curve (AUC, given in the manuscript as number truncated after
three digits) is a valuable measurement of the overall performance of a scoring scheme inde-
pendent from the threshold of the score. However, for the classification of millions of drug–
gene pairs only the highest scoring ones (those located at the lower left corner of a ROC plot)
are relevant. Thus, precision and lift plots, depicting the performance values at each score, are
more suitable to show the performance at the high scoring regions.

The function of the lift measurement (PrecisionPðtrueÞ ) has the same shape as the precision function,
because the probability of randomly obtaining a true value does not depend on the evaluated
score. Yet, the lift value has the advantage to also show the enhancement of the predictive
power of a scoring scheme in relation to the case where no scoring scheme is applied. For
instance, if a benchmark set contains many true values, the precision would be high even with-
out an adequate scoring scheme. The lift value, in contrast, would be low if no suitable scoring
was applied. Taken together, the lift value measures the performance of a scoring scheme com-
pared to random expectation.

Drug-target interactions

We benchmarked our results with known human drug-targets interactions from the STITCH
database [27]. We only used associations from curated databases, excluding e.g. relationships
based only on textmining and applied a high confidence cutoff of 0.7 for the drug-target rela-
tionships. We mapped the drugs by name, including synonyms, to our in house drug dictio-
nary. Moreover, we distinguished direct physical interactions from indirect ones as described
in [26]. We created a benchmark set of direct interactions and another one of indirect associa-
tions by selecting those genes/drugswhere at least one physical or indirect interaction has been
reported, respectively. In these benchmark sets we constructed the positive set with all known
associations involving those genes and drugs and the negative set by all possible combinations
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of these drugs and genes. This resulted in 863,074 and 4,118,052 drug gene pairs, respectively.
We divided our set of drug-gene associations into high and low scoring ones where the preci-
sion in direct associations exceeded 10%, which was true at a score higher or equal to 0.354.
This lead to 1338 high scoring associations linking 214 genes to 394 drugs.

Comparison with existing method

We compared the developed scoring scheme to the one proposed by Hoehndorf et al. [24] by
evaluating the performance of the algorithm of Hoehndorf and collaborators using our data.

The semantic similarity scoring scheme proposed by Hoehndorf and collaborators provides
two asymmetric scores corresponding to drug-gene and gene-drug pairs. In order to compare
our approach with the previous published one [24] using the same annotation framework, we
applied the algorithm (https://code.google.com/p/phenomeblast/source/browse/trunk/
phenotypenetwork/SimGIC-twosides.cc) proposed by Hoehndorf to our MedDRA framework
and phenotypic annotations (see S4 Fig). To calculate the Hoehndorf non-symmetric scores,
we utilized our phenotypes of drugs and genes encoded in MedDRA and the information con-
tent of the most informative common ancestor within MedDRA as input of the given code.We
did not change the code of the provided algorithm, implying a pre-set threshold of at least 7
phenotypes defined in the code (defineMINPHENOTYPES 7). Subsequently, we compared
the resulting non-symmetric similarity scores (drug-gene and gene-drug pairs) to the scores of
our scoring scheme, where we also applied the threshold of 7 phenotypes.We compared the
performance of the two approaches using lift and ROC plots (S4 Fig) and our benchmark set of
direct drug-target interactions (see section drug-target interactions above). Both performance
measurements showed that our approach outperforms the method proposed by Hoehndorf
and collaborators.

To calculate the significance of the increase of the ROC plots over the method proposed by
Hoehndorf et al., we used the function roc.test from the R package pROC to compare the dif-
ferences in ROCAUC. We tested the hypothesis that our ROC plot has significantly higher
AUC values than each of the assymetric scores proposed by Hoehndorf et al. We observed sig-
nificantly higher ROCAUC values for our method.

Also the lift plot illustrates that the approach presented here performs remarkably better
classifying true positives at high scoring regions.

Influence of benchmark sets on ROC plot performance

We noticed that the application of Hoenhdorf algorithm to our benchmark set of physically
interacting human drug-targets results in lower AUC values than those published by Hoehn-
dorf, who use different benchmark sets [24]. These differences suggest that the benchmark sets
have an influence on the performance as measured by the ROC plots. In order to confirm this
hypothesis, we evaluated the performance of the scores of ourMedDRA-based semantic similar-
ity measurement on two benchmark sets provided by Hoehndorf (in http://phenomebrowser.
net/drugeffect-data.tar.bz2). In particular, we benchmarked our approach with the DrugBank
(drugeffect-data/positive/drugbank-targets.txt) and STITCH (drugeffect-data/positive/stitch-
human-targets-0.7.txt) datasets, which contain associations between geneMGI IDs and drug
STITCH IDs reported in the DrugBank [67] and STITCH databases [27], respectively. We first
mapped the drugs and genes for which we have phenotypic information to MGI and STITCH
identifiers. To map the genes in our dataset to theMGI IDs in these benchmark sets, we utilized
the file mousephenotypes-names.txt provided by Hoehndorf et al. containing theMGI marker
ID and gene name (in the folder drugeffect-data/input-phenotypes/).We mapped the drug
names to STITCH IDs (STITCHORIG:) using a file downloaded from the STITCHwebsite

Drug-Mouse Phenotypic Similarity Detects Determinants of Drug Effects

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1005111 September 27, 2016 20 / 29

https://code.google.com/p/phenomeblast/source/browse/trunk/phenotypenetwork/SimGIC-twosides.cc
https://code.google.com/p/phenomeblast/source/browse/trunk/phenotypenetwork/SimGIC-twosides.cc
http://phenomebrowser.net/drugeffect-data.tar.bz2
http://phenomebrowser.net/drugeffect-data.tar.bz2


(chemical.aliases.v3.1.tsv, accessed in Dec. 2013). This resulted in 7,262,444MGI ID-STITCH
ID pairs associated with scores from our algorithm. Following the descriptions of Hoehndorf
and collaborators, we constructedROC plots utilizing as positive sets the DrugBank and
STITCH benchmark files and all the remaining possible associations of drugs and genes as nega-
tive set. The negative set, thus, includes drugs with side effects linked to genes with phenotypic
information never occurring in the evaluation dataset of DrugBank or STITCH. This results in a
bigger dataset with a higher proportion of true negatives in low similarity regions leading to a
better performance in the ROC curve (see S5 Fig), although the interesting top-scoring cases
only contribute very little to the overall AUC. These results demonstrate the influence of the dif-
ferent benchmark sets on the ROC plot evaluation performance.

Interactions with biologicals

Biologicals or biopharmaceuticals are “recombinant therapeutic proteins and nucleic acid
based products and in the broader sense also engineered cell or tissue-based products”[68, 69].
In order to identify biologicals within highly similar drug-gene relations, we manually curated
the list of drugs that are part of these relationships. In total, we identified 51 biologicals associ-
ated with a high phenotypic similarity to 95 genes via 226 connections by our phenotypic simi-
larity measurement.

Shortest path in Protein-Protein Interaction (PPI) network to known drug

target

We extracted protein-protein interactions from the String database [70]. In order to guarantee
high confident interactions we selected protein-protein associations using a cutoff of 0.7 [71].
Using this network, we calculated the shortest path for each human orthologue of the mouse
gene product in our data set to all drug targets from drugs in our data set. We used the target
information provided by STITCH where a direct interaction is reported and annotated for
each drug-gene pair the closest distance between a known target of the drug and the human
gene product.

Pharmacogenetic/genomic interactions

To test if our method is able to detect genes involved in pharmacogenetic associations, we com-
pared our results to the data collected in the Pharmacogenomics Knowledge Base (PharmGKB)
[29]. PharmGKB includes connections of genes to single drugs, groups of drugs as well as ther-
apeutic classes of drugs. If multiple drugs were annotated simultaneously to one gene, we split
these associations and treated each drug-gene pair individually. In order to analyse therapeutic
classes of drugs, we classified the drugs in our dataset using the class “pharmacological sub-
group” from the Anatomical Therapeutic Chemical (ATC) classification system. Subsequently,
we mapped the resulting set via the drug name (including synonyms), if possible, or via phar-
macological subgroup otherwise to the files “clinical_ann” and “pheno_ann” of PharmGKB.
The “clinical” links are manually curated annotations of clinically relevant pharmacogenetic
variant—drug pairs and “pheno” connections link a gene variant and an affected phenotype.
The positive set of our investigation consisted of all drug-gene associations from PharmGKB
and the negative set of all possible drug-gene combinations of this mapping where no pharma-
cogenetic interaction was reported in PharmGKB. Altogether we analysed 616.955 and
4.401.175 drug-gene pairs by calculating the enrichment over random (lift) of clinical and phe-
notypic pharmacogenetic associations in these pairs, respectively. We moreover checked the
distribution of the quantity of data points by binning according to the phenotypic similarity
score and calculating the natural logarithm of the number of drug-gene pairs per bin (S7 Fig).
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Causal gene-side effect relationships

We checked if the side effectsmost similar to gene phenotypic traits of the most phenotypic
similar drug-gene pairs are enriched in a manually curated dataset of known side effect-protein
relationships published recently [19]. For every drug-gene pair, we calculated the fraction of
known gene-adverse effect associations among the side effects sharing similar phenotypic traits
to the mouse gene under consideration (maximal 20 side effects). Subsequently, we compared
the resulting fraction of causal gene-side effect relationships of the high-scoring pairs to the
low-scoring ones.

ToxCast in vitro assays

To provide experimental evidence for interactions of phenotypically similar drug-gene pairs,
we compared our results to the hits of the ToxCast project [34, 72]. We collected the hit anno-
tations from the file AllResults_hitc_Matrix_141121.csv, where 1860 compounds are tested in
822 assays. Subsequently, we annotated the assays to their intended target and mapped the tar-
gets to our set of genes and the compounds to our drug data set. Then, we calculated the preci-
sion of the resulting 14,238 drug-gene pairs in relation to their phenotypic similarity score.
Furthermore, we manually investigated the 38 high scoring drug-gene pairs, which included 19
experimentally validated associations.

Experimental validation of a novel drug-target interaction

In order to test the hypothesis that oxandrolone interacts with prokineticin receptor 2 (PKR2),
the antagonistic and agonistic effects of oxandrolone were investigated in functional assays of
PKR2 activity [39]. All the experiments were performed by the company CEREP. Oxandrolone
was purchased from Sigma-Aldrich and Ehrenstorfer GmbH. In these assays the activity of
PKR2 was tracedmeasuring the intracellular Ca2+ by fluorimetry in HEK-293 cells expressing
PKR2. In the agonist experiments, Ca2+ mobilization after oxandrolone stimulation was mea-
sured and then the agonist effect of oxandrolone was calculated as a % of control response to
the known reference agonist PK2 (used at 10 nM concentration). The activity of oxandrolone
on the antagonist assay was tested after the stimulation of PKR2 with the control reference ago-
nist PK2 at a concentration of 2 nM. The antagonist effect was then calculated as a % inhibition
of control reference agonist response.
Oxandrolone was initially tested in both assays at a concentration of 1.0E-05M. At this con-

centration, we only detected activity on the antagonist assay (32.3% inhibition of control ago-
nist response).We subsequently quantified the antagonistic effect of oxandrolone in a dose-
response curve and determined the Kb (dissociation constant) value. We fitted the dose-
response curve using the R function drm from the package drc (cran.r-project.org/web/pack-
ages/drc/index.html)with the four-parameter log-logistic function LL.4.

To rule out the possibility of a non-specific effect of oxandrolone on Ca2+ concentrations on
the antagonist assays, we additionally measured Ca2+ using fluorimetry in PKR2 expressing
HEK-293 cells employing high concentrations of oxandrolone (1.0E-05, 3.0E-05, 1.0E-04, 3.0E-
04) in the absence of the known stimulant PK2 (S9 Fig).

Supporting Information

S1 Table. Table of high scoring drug-gene associations.We extracted 1338 high scoring asso-
ciations connecting 214 genes and 394 drugs by cutting at the phenotypic similarity score
where the precision in the direct associations exceeds 10%.
(TXT)
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S2 Table. Table of high scoring drug-gene associationswith biologicals.
(TXT)

S3 Table. Table of high scoring associationswith in vitro activity information in ToxCast.
(TXT)

S1 File. MGI_PhenoGenoMP.txt (accessed in April 2012) contains information about the
allelic composition and the genetic background of the mice strains,MGI marker accession
ID and the corresponding phenotypes coded in theMammalian PhenotypeOntology.
(TXT)

S2 File. MGI_Coordinate.txt (accessed in April 2012) contains the association of theMGI
marker accession ID to the Ensembl Gene ID and additional gene and sequence related
information.
(TXT)

S3 File. VOC_MammalianPhenotype.txt (downloadedfromMGI in April 2012) compre-
hends the vocabularyof theMammalian PhenotypeOntology in a tab-delimited format.
(TXT)

S4 File. Mouse_Human_Gene_MPO_MedDRA.txt contains the phenotypic annotations of
mouse genesmapped from theMammalian PhenotypeOntology to MedDRA. ThoseMPO
terms linked to genes with a corresponding specificMedDRA term are annotated. The MPO
terms without a match to a specificMedDRA term were translated, when possible, utilizing the
mapped super-classes of theseMPO terms. The mouse gene, the human orthologue and the
annotated MPO term is given. In addition, we provide the MPO term of the super-class if the
mapping was done utilizing the super-class of a term (column 'mapped super-class MPO').
Moreover, the most_specific_MedDRA_code to which the mapping was conducted and its
level within the MedDRA hierarchy is presented (HG = 'High Level Group Term', HL = 'High
Level Term', LLT/P = ‘Lowest Level Term/Preferred Term’ where LLT/PT represent the most
specific level, followed by HL and then by HG).
(TXT)

S5 File. S5_DirectTargets.txt contains the benchmark set of physically interacting drug-
gene pairs.The CID (the ID from the STITCH database), the drug name and the human
Ensembl gene ID and the name of the interacting gene is given.
(TXT)

S1 Fig. Evaluation of the mapping from theMammalian PhenotypeOntology (MPO) to
theMedDRA terminology. a) To rule out the possibility that the larger number of drug side
effects compared to the number of phenotypes of single gene perturbations in mice is due to a
loss of information caused by the mapping procedure, we compared the number of MedDRA–
encoded drug side effects (green line) to the number of phenotypes of mouse genes in the origi-
nal MPO gene annotations (dark blue) as well as mapped to MedDRA (light blue). More spe-
cifically, we plotted the number of MPO original annotations of 6509 mouse genes (GenesMP)
as well as the number of MedDRA annotations for 5384 mouse genes (GenesMedDRA) sorted
by number of phenotypes (x-axis). As drugs influencemultiple gene products, we plotted the
average number of annotations (y-axis) per direct drug target in our dataset sorted by increas-
ing number of side effects (x-axis). Drugs tend to have many more annotations than mouse
genes, even when compared with the original mice phenotypes fromMGI encoded in the
mammalian phenotype ontology. b) MPO codedmice phenotypes binned by their frequency
of occurrence as gene annotations in the MGI data (x-axis). For each individual bin, we
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calculated the fraction of MedDRA terms that could be mapped fromMPO terms (y-axis).
This fraction increases with increasing gene annotation frequency of the MPO terms.
(TIF)

S2 Fig. Cut-off evaluation for the adaption of the phenotypic similarity approach to
account for the polypharmacologyproperty of drugs.We searched for an optimal number of
side effects representing effects of a single drug target. To that aim, we tested a broad range of
different numbers of side effects-mouse gene phenotype best matches (depicted in different
colors) used for the similarity calculation in a benchmark dataset of direct drug-target interac-
tions (a). We obtained the best performance by considering the 20 best scoring side effect-phe-
notype pairs (yellow line). We confirm the suitability of the cut-off of 20 side effects-mouse
phenotype best matches for the drug-gene semantic similarity score calculation by evaluating
the different cut-offs using an independent and mutually exclusive benchmark datasets of indi-
rect (b) drug-target interactions.
(TIF)

S3 Fig. Precision and ReceiverOperating Characteristic (ROC) and accuracyplots for the
different cut-offs (in different colors) evaluated for the adaption of the phenotypic similar-
ity approach to account for the polypharmacologyproperty of drugs.The performance in
detecting direct (a, c and e) and indirect (b,d and f)drug-target interactions is shown.
(TIF)

S4 Fig. Comparison to the semantic similaritymethodproposed by Hoehndorf [24] in the
potential to detect direct drug-target associations from the STITCH database.Hoehndorf
et al. calculated two asymmetric similarity scores, a drug-gene (black line) score and a gene-
drug score (grey line). Lift plots (left) and ROC (right) are shown comparing the non-symmet-
ric measure of semantic similarity proposed by Hoehndorf and collaborators to the one devel-
oped herein (Prinz et al., blue line). We applied this algorithm to drugs and genes part of our
benchmark set of direct drug-target interactions.We utilized our phenotypes of drugs and
genes encoded in MedDRA and the information content of the most informative common
ancestor withinMedDRA as input of the algorithm provided by Hoehndorf et al. The code of
this algorithm (https://code.google.com/p/phenomeblast/source/browse/trunk/
phenotypenetwork/SimGIC-twosides.cc) defines a pre-set threshold of at least 7 phenotypes,
which we consequently also applied to our data. The approach developed herein noticeable
outperforms the scoring scheme developed by Hoehndorf et al. The non-homogeneous shape
of the lift plots in the high scoring regions is due to the decreasing number of data points. Our
method results in significantly higher ROCAUC values than the method proposed by Hoehn-
dorf et al to calculate gene-drug and drug-gene semantic similarity scores (P-value = 7.7E-34
and 4.6E-21 respectively).
(TIF)

S5 Fig. ROC plots evaluating our semantic similaritymethodwith the benchmark sets pro-
vided by Hoehndorf [24] (data downloadedfrom http://phenomebrowser.net/drugeffect-
data.tar.bz2). The performance of the method on the benchmark sets that Hoehndorf and col-
laborators gathered from STITCH (human) (drugeffect-data/positive/stitch-human-targets-
0.7.txt) is shown in light blue and fromDrugBank (drugeffect-data/positive/drugbank-targets.
txt) is depicted in darker blue.
(TIF)

S6 Fig. Distance in the PPI-network of STRING from gene products part of low (high)
scoring drug-gene associations to known drug targets. Phenotypically similar drug-gene
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pairs tend to share close molecularmechanisms, as drug-gene pairs involving a drug target that
interacts directly (shortest path distance 0) or through a common protein (shortest path dis-
tances 1 or 2) with the protein coded by the human orthologue of the mouse gene are signifi-
cantly enriched in high semantically similar pairs (P-value = 3.41E-62,Wilcoxon test).
(TIF)

S7 Fig. Data distribution of PharmGKBbenchmark set in relation to the similarity score.
We binned the drug-gene pairs according to their phenotypic similarity and calculated the nat-
ural logarithm of the number of drug-gene pairs in the benchmark set of PharmGKB per bin.
(TIF)

S8 Fig. Enrichment over random (a) and precision (b) of hits of in vitro assays from the
ToxCast project.The intended targets of the ToxCast assays were mapped to our set of genes
and the compounds to our drug data set. The precision and lift of the resulting 14,238 drug-
gene pairs showed the strong tendency of phenotypically similar drug-gene pairs to be a hit in
assays of the ToxCast project.
(TIF)

S9 Fig. Specificity of the antagonistic activity of oxandrolone on PKR2.We tested oxandro-
lone in HEK-293 cells expressing PKR2 in the absence of PK2, the known ligand of the receptor.
We could not detect activity of oxandrolone in this assay, even at the highest concentrations
tested. This result demonstrates the specificity of the action of oxandrolone on PKR2 signaling,
thereby excluding the possibility of interference through a completely different route.
(TIF)

S1 Text. Investigation if the targets of a drug that is phenotypically similar to a mouse gene
are close to the proteins encodedby this mouse gene in a protein-protein interaction (PPI)
network.
(DOC)
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